
1. Introduction
The meteoric metal layers in the Earth's upper atmosphere have received growing attention in recent years because 
of new observational discoveries made by high-sensitivity lidars and other remote sensing instruments (e.g., Chu 
et al., 2011, 2021; Dawkins et al., 2014; Gao et al., 2015; Langowski et al., 2015, 2017; Raizada et al., 2020), as 
well as the implementation of metal chemistry, based on laboratory studies of pertinent reactions and meteoric 
ablation efficiencies, into general circulation models (e.g., Bones et  al.,  2019, 2020; Chu & Yu,  2017; Daly 
et al., 2020; Feng et al., 2013; Huba et al., 2019; Plane et al., 2015, 2018). These metal layers are of particular 
interest for cosmic dust research, and as tracers of atmospheric dynamics, thermal structures, and ion-neutral 
coupling in the middle/upper atmosphere (e.g., Chu & Yu, 2017; Chu et al., 2011, 2020; Huang et al., 2015; 
Liu et al., 2016; Plane, 2003, 2012). After nearly a century of ground-based observations of the (permanent) 
main metal layers (∼75–105 km) (e.g., Bernard, 1938; Bowman et al., 1969; Chu & Papen, 2005; Plane, 1991), 
thermosphere-ionosphere metal (TIMt) layers above the main layers were first discovered in Fe species by lidar 
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observations in Antarctica (Chu et al., 2011) and then observed globally at all latitudes. By now TIMt layers 
have been observed by lidars for the metallic species Fe, Na, K, and Ca + extending to ∼200 km for neutrals and 
∼300 km for Ca + (e.g., Chu et al., 2011, 2020, 2021; Friedman et al., 2013; Gao et al., 2015; Jiao et al., 2021; 
Liu et al., 2016; Lübken et al., 2011; Raizada et al., 2015, 2020; Tsuda et al., 2015; Xun et al., 2019). Most of the 
neutral TIMt layers exhibit clear signatures of gravity or tidal waves, showing fast downward phase progression 
(e.g., Chu et al., 2011, 2020, 2021; Gao et al., 2015; Lübken et al., 2011).

At the topside of the main layers and bottomside of the TIMt layers, there exists another interesting phenomenon—
the sporadic metal layers between ∼105 and 120 km that are obviously detached from the main layers (like TIMt) 
but are confined below 125 km with small downward/upward phase speeds. Because they are located in the 
lower thermosphere and correlate closely with sporadic E layers as shown later, we name these high-altitude 
sporadic layers the thermosphere-ionosphere sporadic metal (TISMt) layers, to distinguish them from other metal 
layers. TISMt layers have been observed in Na, Fe, K, and Ca (e.g., Chu et al., 2011; S. C. Collins et al., 1996; 
Gardner et al., 2001; Gerding et al., 2001; Gong et al., 2003; Höffner & Friedman, 2005; Ma & Yi, 2010; Raizada 
et al., 2004). These TISMt layers usually have a full-width-at-half-maximum of 5–10 km in altitude, and their 
peak densities can sometimes be very high, comparable to or exceeding the main-layer peak densities (e.g., Dou 
et al., 2013; Gardner et al., 2001; Wang et al., 2012; Xue et al., 2013; Yuan et al., 2014).

Lidar observations of neutral nickel (Ni) atoms were made only recently, and are technically challenging. The 
first two studies of the main Ni layers were made by R. L. Collins et al. (2015) for two nights in Alaska and by 
Gerding et al. (2019) for six nights in Germany. Large discrepancies were found in peak density (1.6 × 10 4 vs. 
∼3 × 10 2 cm −3) and column abundance (∼2.7 × 10 10 vs. ∼4 × 10 8 cm −2) between them. We then made extensive, 
year-round lidar observations of the main Ni and Na layers at Yanqing near Beijing (25 nights in Wu et al. (2021) 
and 126 nights in Jiao et al. (2022)). The main Ni layers at Yanqing have peak density of ∼100–460 cm −3, peak 
altitude between 80 and 88 km, and column abundance of (1.52–6.0) × 10 8 cm −2 (Wu et al., 2021), in good  agree-
ment with Gerding et al. (2019). Figure 3 of R. L. Collins et al. (2015) showed one TISNi at ∼110 km on 27–28 
November 2012 with its peak density nearly 30% of the main Ni layer peak, but no analysis was done on it. Our 
observations at Yanqing have revealed many TISNi layers that possess peak densities several times higher than 
that of the main Ni layers. This paper describes the first simultaneous lidar observations of TISNi and TISNa 
along with concurrent measurements of sporadic E and the main Ni and Na layers, providing good evidence of 
plasma-neutral coupling involved in producing the TISMt layers.

2. Concurrent Observations of TISNi and TISNa Layers at Yanqing
A dual-wavelength, broadband resonance-fluorescence lidar, which is part of the Chinese Meridian Project, was 
used to probe the Ni and Na layers simultaneously at Yanqing (40.42°N, 116.02°E). This lidar consists of two 
pulsed dye lasers that were pumped by one Nd:YAG laser. One of the dye lasers was frequency doubled to 
341.5744 nm (in vacuum) while another one was tuned to 589.1583 nm to excite resonance fluorescence from 
the Ni( 3D3 ↔  3F4) and Na D2 transitions, respectively. Details can be found in Jiao et al. (2015, 2022) and Wu 
et al. (2021). The raw data were taken at time and vertical resolutions of 33 s and 96 m. The Ni and Na densities 
were then retrieved with integrated resolutions of 30 min and 960 m, but with an over-sampling step size of 
15 min.

2.1. High-Density TISNi and TISNa Layers

Illustrated in Figures 1a and 1b are two examples of strong TISNi layers observed in the ∼105–120 km region on 
17 May and 18 June 2021. Both TISNi layers appear to be clearly detached from the main Ni layers between 80 
and 95 km. The maximum peak density of the TISNi on 17 May 2021 was ∼818 cm −3 at 14.5 UT and ∼106 km 
(Figure 1e), which is the highest Ni density detected for all altitudes of 80–120 km at Beijing and over 4 times 
of the peak density (∼200 cm −3) of the main Ni layer during the same night. This strong TISNi layer spanning 
from ∼103 to 116 km remained at approximately the same altitudes throughout the ∼5-hr observations, with 
nearly zero phase speed. In contrast, the TISNi on 18 June 2021 exhibited a slow downward phase progression of 
∼0.7 m/s. Its maximum peak density was ∼220 cm −3 at 13.75 UT and ∼112 km (Figure 1f), lower than Figure 1a 
but still 1.9 times of the main-layer peak density in Figure 1b. After 15.5 UT, the TISNi and main Ni layers have 
comparable peak densities.
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The corresponding Na measurements are illustrated in Figures 1c and 1d, and two vertical profiles of Na densities 
are compared to the Ni profiles in Figures 1e and 1f. The TISNa features are strikingly similar to the TISNi layers 
on both nights, for example, nearly zero phase speed on 17 May 2021 and a slow downward phase progression 
at ∼0.7 m/s with nearly identical layer structures to the TISNi on 18 June 2021. The maximum TISNa density 
(∼900 cm −3) also occurred on 17 May 2021 around 106 km, although slightly earlier (at ∼14 UT) than the maxi-
mum TISNi occurrence. This maximum TISNa density was ∼67% of the peak density of the main Na layers, 
similar to the findings by Wang et al. (2012) that a strong TISNa layer on 22 May 2010 occupied ∼64% of the 
main-layer peak density at Yanqing.

Such TISMt layers possessing high densities appear frequently, for example, besides the event on 17 May 2021, 
the TISNi on 26 May 2021 showed nearly 700 cm −3 peak density, about 6.4 times higher than that of the main Ni 

Figure 1. (a, b) Ni and (c, d) Na number densities from 80 to 120 km on the nights of 17 May 2021 and 18 June 2021, (e, f) vertical profiles of Ni and Na densities.
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layer (see Figure 2). Among the 19 TISNi events identified so far, 8 TISNi layers have their peak densities exceed-
ing the corresponding main Ni layers. The thermosphere-ionosphere sporadic Fe (TISFe) layers observed on 21 
June and 21 December 1999 at the North and South Poles, respectively, had peak densities of 2.3 × 10 5 cm −3 and 
6,000 cm −3 while the peak densities of the main Fe layers were only 1,500−3,000 cm −3 (see Figure 1 in Gardner 
et al., 2001). The current and previous lidar observations demonstrate that both TISNi and TISFe layers can have 
their peak densities many times higher than those of the corresponding main layers. In contrast, the TISNa peak 
densities are usually smaller than those of the main Na layers.

Figure 2. Lidar observations of (left) Ni and Na densities from 80 to 125 km, (middle) thermosphere-ionosphere sporadic Ni and Na (TISNi and TISNa), and (right) 
the temporal-spatial correlations of TISNi with TISNa variations on 22 May 2019 and 26 May 2021.
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2.2. Comparisons of TISNi With TISNa Layers in May and June

A total of 19 TISNi events were identified out of 208 lidar observational nights spanning from April 2019 to 
April 2020 and from July 2020 to June 2021. All 19 TISNi layers occurred in May–September. Among them, 
TISNi with high peak densities mainly occurred in May and June, and TISNi appeared on every observational 
night from 5 May to 8 June. It is necessary to consider the detection threshold for Ni observations because the 
Ni return signals are 2–3 orders of magnitude smaller than those of Na. The detection threshold can be estimated 
as 1.5 times of the standard deviation of the background noise from 130 to 160 km, following the method in 
Gao et al. (2015). With a receiver telescope of ∼1.2 m in diameter and the 341-nm laser power of ∼0.5 W (Wu 
et al., 2021), the lidar detection thresholds for Ni ranged from ∼10 to ∼215 cm −3, much higher than those for Na 
(∼0.1–0.75 cm −3). From October through April (∼75% of the total observation time), many nights of observa-
tions had high detection thresholds (>35 cm −3) and some nights even reached over 100 or 200 cm −3 (likely due 
to the worsened air quality in winter that attenuates the ultraviolet lidar signals), which were comparable to or 
even exceed the main Ni layer densities. Therefore, a reasonable conclusion is that TISNi with densities above 
detection thresholds did not occur outside the period of May through September. However, we cannot rule out the 
possibility that weak TISNi may occur from October through April.

The 14 TISNi events observed in May and June correlate closely with TISNa. Two examples to demonstrate this 
are shown in Figure 2. Shown in the left column of Figure 2 are the Ni and Na density contours in the full altitude 
range of 80–120 km, while the middle column shows only TISNi and TISNa from 100 to 120 km on 22 May 
2019 and 26 May 2021. The TISNi and TISNa are strikingly similar in layer peak altitude (ranging from ∼105 
to 112 km with a mean at ∼108 km), height distribution, and time evolution of the densities. To quantify the 
correlation between TISNi and TISNa, we compute the temporal-spatial correlation coefficients between TISNi 
and TISNa, which are defined as the ratios of the covariance between two density perturbations (calculated by 
subtracting the nightly mean density) to the product of standard deviations of these two density perturbations (see 
Equation 3 in Huang et al., 2013). As shown in the right column of Figure 2, both cases exhibit high correlation 
coefficients close to 1 over the observational time and through the altitude range of 105–120 km, demonstrating 
the strong correlation between TISNi and TISNa.

Figure 3 displays the peak density ratios and column abundance ratios of TISNi to TISNa in the left and middle 
columns, while the right column shows the column abundance ratios of the main Ni to Na layers. Despite some 
variations from night to night, the overall mean [TISNi]/[TISNa] ratios are close to 1, while the main [Ni]/[Na] 
ratios are close to 0.1. TISNi and TISNa have similar column abundance in 105–120 km, ranging from ∼5 × 10 7 
to ∼5 × 10 8 cm −2 (see Tables S1 and S2 in Supporting Information S1). The mean column abundance of the main 
Ni and Na layers in May–June is respectively ∼2.6 × 10 8 and ∼3.9 × 10 9 cm −2 (Jiao et al., 2022). Therefore, the 
[TISNi]/[TISNa] ratios are ∼10 times of the main layer [Ni]/[Na] ratios.

3. Discussion
The main Ni and Na layers peak around 85 and 92 km, respectively, and main [Ni]/[Na] ratios are ∼0.1, consistent 
with the results of Jiao et al. (2022). The probable explanations include the more efficient ablation of Na from 
cosmic dust than Ni, the more rapid neutralization of Na + than Ni + between 90 and 100 km, and the signifi-
cant differences in the neutral chemistries of these two metals below 90 km (Jiao et al., 2022). In contrast, the 
TISNi and TISNa layers have strikingly similar morphologies with temporal-spatial correlations of nearly 1 and 
[TISNi]/[TISNa] ratios close to 1. These results suggest that the TISNi and TISNa layers share similar formation 
mechanisms, which are quite different than the main layer formation.

The main Ni and Na layers are formed mainly by release of these metal atoms from the ablation of cosmic dust, 
with their layer shapes controlled by neutral chemistry on the layer undersides and ion-molecule chemistry on 
their topsides (Daly et  al.,  2020; Plane et  al.,  2015). The metallic ions (Mt +) are produced during meteoric 
ablation by collisional ionization, by charge transfer with ambient NO + and O2 + ions, and (to a lesser extent) by 
photoionization. We hypothesize that TISMt layers are most likely produced by the neutralization of converged 
Mt + ion layers, due to the high concentration of accompanying electrons, mainly via direct (radiative) recombi-
nation (Mt + + e − → Mt) (Chu & Yu, 2017). This hypothesis is further supported by the observational findings 
of good correlations between high-altitude sporadic Na layers and sporadic E layers (e.g., Dou et al., 2013; Xue 
et  al.,  2013; Yuan et  al.,  2014). Sporadic E layers mainly consist of metallic ions (e.g., Kopp,  1997; Roddy 
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et al., 2004) that have converged into concentrated layers and have much longer lifetimes than the molecular ions 
NO + and O2 + which undergo rapid dissociative electron recombination (e.g., Chu & Yu, 2017; Plane, 2003).

We test this hypothesis by examining concurrent observations of sporadic E layers that were made with an 
ionosonde at Shisanling (40.3°N, 116.2°E), 28 km away from Yanqing. Strong sporadic E layers with critical 
frequencies foEs greater than 5 MHz were observed simultaneously with all the TISMt events shown in Figures 1 

Figure 3. (left) [TISNi]/[TISNa] peak density ratios, (middle) [TISNi]/[TISNa] column abundance ratios, and (right) [Ni]/[Na] column abundance ratios of the main 
layers on four observational nights.



Geophysical Research Letters

WU ET AL.

10.1029/2022GL100397

7 of 11

and 2 (see Figure S1 in Supporting Information S1), and several cases have critical frequencies even greater 
than 10 MHz, reaching ∼13 MHz two hours before the strong TISMt events on 17 May 2021 and 18 June 2021 
(Figure 1). The corresponding electron concentrations, calculated from the relation [e −] ≈ 1.24 × 10 4 × (foEs) 2 (c
m −3), are 3.1 × 10 5 and 1.24 × 10 6 cm −3 for 5 and 10 MHz, respectively. Rocket-borne measurements have shown 
that the dominant metal ions in sporadic E layers are Fe + while the relative concentrations of Mg +, Na +, and Ni + 
are 0.61, 7.41 × 10 −2, and 3.44 × 10 −2, respectively, when normalized to Fe + (Kopp, 1997). Assuming that these 
relative concentrations are reasonably constant in different sporadic E layers and taking into account of all the 
metal ions listed in Table 2 of Kopp (1997) but neglecting NO + and O2 +, then the Ni + and Na + densities relative 
to the total electron density in a sporadic E layer would be 3.44 × 10 −2/1.77 = 1.94 × 10 −2 and 7.41 × 10 −2/1.77 
= 4.18 × 10 −2, respectively. The corresponding Ni + and Na + ion densities would be 6 × 10 3 and 1.3 × 10 4 cm −3 for 
a 5-MHz foEs and 2.4 × 10 4 and 5.2 × 10 4 cm −3 for a 10-MHz foEs, respectively. Therefore, the Na + concentration 
is ∼2.2 times that of Ni + within sporadic E layers (Kopp, 1997).

However, the neutralization rate for Ni + → Ni is larger than that of Na + → Na, which will likely balance out the 
concentration difference. There are two neutralization paths: direct (radiative) and dissociative recombination with 
electrons. We are not aware of published high-level quantum mechanical calculations of the thermal rate coeffi-
cient for Ni + + e − → Ni + hν. In our previous study we adopted a rate coefficient of 8 × 10 −12(T/300) −0.51 cm 3 
s −1, taken from the analogous reaction of Fe + (Daly et al., 2020). However, quantum calculations are available 
for radiative recombination of Ni 2+ + e − → Ni + (Nahar & Bautista, 2001), Fe 2+ + e − → Fe + (Nahar, 1997), and 
Fe + + e − → Fe + hν (Nahar et al., 1997). The ratio of the radiative recombination rates of Fe + and Fe 2+ is almost 
constant over the appropriate temperature range (0.43–0.49 between 250 and 500 K). Fe and Ni are both first row 
transition metals with similar electron configurations ([Ar]3d 64s 2 and [Ar]3d 84s 2, respectively). We have there-
fore scaled the rate coefficient for Ni 2+ by the Fe +/Fe 2+, yielding 1.5 × 10 −11(T/300) − 0.34 cm 3 s −1. This should be 
compared with 2.9 × 10 −12(T/300) −0.74 cm 3 s −1 for Na + + e − → Na + hν (Plane et al., 2015). At T = 300 K, the 
Ni + rate is ∼5.2 times faster, likely compensating the lower Ni + concentration and leading to comparable TISNi 
and TISNa densities.

The paths of dissociative recombination for Na + and Ni + are quite different. Na  + ions first recombine with N2 
and CO2 to form cluster ions, which then undergo dissociative recombination with electrons to produce Na (see 
Table S3 in Supporting Information S1) (Cox & Plane, 1998; Plane et al., 2015). Ni + ions react with O3 and 
O2 to form stable oxide ions, which then undergo dissociative recombination with electrons (see Table S4 in 
Supporting Information S1). However, these oxide ions also react with O, reducing them back to Ni + and this 
process competes with dissociative recombination, thereby slowing the conversion of Ni + to Ni. Thus, the relative 
electron to O concentrations control the rate of dissociative recombination (Bones et al., 2020; Jiao et al., 2022).

Utilizing the WACCM-Ni modeling results of Daly et al. (2020), and taking the mean densities of neutral species 
near Beijing in May and June (Figure 4d), we compute the first-order neutralization rates of Ni + and Na + by direct 
and dissociative recombination for foEs of 5–10 MHz. The results are plotted in Figures 4a and 4b for Ni + and 
Na +, respectively. The ion-molecular reactions applied to the dissociative recombination of Ni + and Na + (Daly 
et al., 2020; Jiao et al., 2017; Plane et al., 2015), and the method for calculating the first-order rates (Plane, 2004; 
Qiu et al., 2021) are detailed in Supporting Information S1.

Neutralization rates increase with the increasing electron density in Figure 4. Dissociative recombination domi-
nates below 100 km, and direct recombination dominates above 105 km. Figure 4c shows the profiles of the direct 
recombination rate coefficients in the 105–120 km, for which the temperature profile was taken from the average 
temperature of the WACCM-Ni model (Daly et al., 2020) in May. At the mean peak altitude (∼108 km) of TISNi 
and TISNa, the reaction rates of Ni + are ∼5 times the Na + rates. Considering [Na +]/[Ni +] ≈ 2.2 (Kopp, 1997), the 
ratio of Ni to Na production rates (k[Mt +][e −]) is ∼2.3, close to the [TISNi]/[TISNa] ratio. The similar formation 
mechanisms and production rates of TISNi and TISNa also explain why the spatial-temporal correlation coeffi-
cients of TISNi and TISNa are close to 1 (Figure 2).

For the highest TISNi density of 818 cm −3 observed around ∼106 km at 14:30 UT on 17 May 2021, the mean foEs 
in the two hours before it was 10.25 MHz (see Figure S2 in Supporting Information S1). The corresponding [e −], 
[Ni +], and [Na +] would have been 1.3 × 10 6, 2.5 × 10 4, and 5.4 × 10 4 cm −3, respectively. At ∼106 km, the Ni and 
Na production rates were then ∼0.49 and ∼0.23 cm −3s −1 by direct recombination, and ∼0.13 and ∼0.14 cm −3s −1 
by dissociative recombination, respectively. Given 1–2 hr of production, the Ni densities can reach ∼1,700–3,500 
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and ∼450–900 cm −3 while the corresponding Na densities are ∼800–1,600 and ∼500–1,000 cm −3 for direct and 
dissociative recombination, respectively. These are comparable to the observed TISNi and TISNa peak densities.

4. Conclusions
In this first report of simultaneous lidar observations of TISNi and TISNa over Yanqing, we have found that these 
metal layers occur simultaneously in the same altitude range with similar peak densities and temporal-spatial 
correlation coefficients close to 1. The enrichment of Ni in the TISMt layers is evident as the [TISNi]/[TISNa] 
column abundance ratios are unity, nearly an order of magnitude higher than the main layer [Ni]/[Na] ratios. 
High-density TISNi and TISNa layers mainly occur in May and June, and they correspond to strong sporadic E 
layers with critical frequencies greater than 5 MHz as observed by an ionosonde nearby. Multiple TISNi events 
have peak densities significantly exceeding (by ∼1.3–6.4 times) that of the main Ni layers, while the TISNa peak 
densities reach maximum ∼67% of the main Na layers. Back-of-the-envelope calculations provide good evidence 
that the TISNi and TISNa are formed by the neutralization of converged Ni + and Na + ions in the sporadic E layers 
via recombination with electrons, and direct recombination dominates over dissociative recombination above 
∼105 km. The lower Ni + concentration is compensated by the higher direct-recombination rate coefficient of Ni + 
when compared to Na +, thus leading to similar Ni and Na production rates. The highest peak density 818 cm −3 
of TISNi observed on 17 May 2021 is comfortably explained by the strong sporadic E layer with ∼10 MHz foEs 
that occurred 1–2 hr before the lidar observations.

Detailed modeling that includes chemical production and loss reactions, ion and neutral transport, and the 
meteoric input flux will be necessary to fully understand the observations. While the TISMt and TIMt layers 
appear to share the same origins (i.e., neutralization of converged Mt + ions), it is still puzzling why TISMt layers 

Figure 4. (a, b) The first-order neutralization rates per unit metal ion density for dissociative recombination (dashed lines) 
and direct recombination (solid lines) of Ni + and Na + for foEs varied from 5 to 10 MHz. (c) The reaction rate coefficients for 
direct recombination of Ni + and Na + with electrons. (d) Concentrations of main neutral species and [e −], [Ni +], and [Na +] for 
foEs = 10 MHz used in the calculations.
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remain below ∼120 km but sometimes possess very high densities while TIMt layers can reach much higher up 
(∼200 km) with large downward phase speeds. Mechanisms of ion transport/convergence should be considered 
in future modeling. The question of why TISMt layers occur most frequently in May and June with the highest 
densities, which is likely related to the abnormally high occurrence of sporadic E layers during summer in the 
Asian sector (e.g., Smith,  1978), deserves future studies. Global observations are necessary to explore these 
open questions. Such TISMt and TIMt studies call for development of high-sensitivity metal lidars to enable new 
science endeavors.

Data Availability Statement
Sporadic E data were provided by Beijing National Observatory of Space Environment, IGGCAS through the 
Geophysics Center, National Earth System Science Data Center (http://wdc.geophys.ac.cn). The data shown in 
this work, including the sporadic E data shown in Figure S1 in Supporting Information S1, can be downloaded 
in MatLab data format from Mendeley Data repository (Wu et al., 2022, https://doi.org/10.17632/scnxzsyj92.2).
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