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Abstract: An important consideration when developing a deep neural network (DNN) for the
prediction of molecular properties is the representation of the chemical space. Herein we explore the
effect of the representation on the performance of our DNN engineered to predict Fe K-edge X-ray
absorption near-edge structure (XANES) spectra, and address the question: How important is the
choice of representation for the local environment around an arbitrary Fe absorption site? Using two
popular representations of chemical space—the Coulomb matrix (CM) and pair-distribution/radial
distribution curve (RDC)—we investigate the effect that the choice of representation has on the
performance of our DNN. While CM and RDC featurisation are demonstrably robust descriptors,
it is possible to obtain a smaller mean squared error (MSE) between the target and estimated XANES
spectra when using RDC featurisation, and converge to this state a) faster and b) using fewer data
samples. This is advantageous for future extension of our DNN to other X-ray absorption edges,
and for reoptimisation of our DNN to reproduce results from higher levels of theory. In the latter
case, dataset sizes will be limited more strongly by the resource-intensive nature of the underlying
theoretical calculations.

Keywords: machine learning; deep neural network; Coulomb matrix; radial distribution curve; X-ray
absorption spectroscopy; XANES; K-edge

1. Introduction

Structural techniques, such as X-ray diffraction (XRD) and spectroscopy (XS), have made it
possible to determine directly the structures of molecules and condensed matter systems and have
had a huge influence across physics, chemistry, and biology. The proliferation of high-brilliance light
sources such as 3rd generation synchrotrons and X-ray free-electron lasers (XFELs) is helping to increase
this influence of these techniques by facilitating the measurement of increasingly challenging systems
such as operating catalysts [1,2] and short-lived reaction intermediates [3,4].

Besides providing element- and site-specific information on geometric structure, X-ray absorption
spectroscopy (XAS) is also able to provide direct information on the electronic structure around
the absorption site [5,6]. Indeed, XAS spectra are characterised by X-ray absorption edges that
correspond to the excitation of core electrons to the ionisation threshold. The electrons are initially
excited to unoccupied or partially-occupied orbitals at energies just below the ionisation potential
(IP); these bound transitions, which form the pre-edge spectral features, provide detailed information
about the nature of the unoccupied valence orbitals. At energies above the IP, resonances occur due to
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interference of the electron wave originating from the absorbing site with the electron wave scattered
back from the neighbouring atoms. When the kinetic energy of the electrons is large, the scattering
cross-section of the electrons is small, and information on the short-range geometric structure around
the absorption site is accessible. This information is encoded in the extended X-ray absorption
fine structure (EXAFS) region of the XAS spectrum, and is typically found >50 eV above the X-ray
absorption edge. EXAFS encodes information about coordination numbers and the distance of nearest
neighbours to the absorption site. In contrast, the X-ray absorption near-edge structure (XANES) region
of the XAS spectrum, found at lower photoelectron energies (<50 eV above the X-ray absorption edge),
is dominated by the interference of scattering pathways between multiple atoms. The XANES region
encodes detailed information about coordination numbers, bond distances, and bond angles.

Extracting this information via analysis of the XAS spectrum demands detailed theoretical
treatments [7,8]. The requisite theory for the analysis of EXAFS spectra is better developed than that
required for the analysis of XANES spectra; the reason for this is that the higher-energy photoelectron is
largely insensitive to the details and response of the potential [9,10]. The analysis of XANES spectra is
more challenging and, despite significant progress [11–13], quantitative interpretation still necessitates
resource-intensive theoretical treatments that can take hours/days to yield a single spectrum (cf. a few
minutes for the calculation of an EXAFS spectrum). While the computational cost of such theoretical
treatments is not prohibitive for a few calculations, it becomes so for the most challenging systems, e.g.,
disordered/amorphous systems, such as the surface of an operando catalyst [14–16], or dynamical
processes [17–21]. A huge number of different and dynamically-evolving absorption sites must be
modelled for a quantitative analysis, but to treat theoretically every possible chemically-inequivalent
absorption site (or even to sample a meaningful number of such sites) is computationally challenging,
resource-intensive, and time-consuming. This is a considerable challenge in the EXAFS analyses of such
systems, which routinely necessitate molecular dynamics (MD) simulations with nuclear ensemble
approaches [22] and, at present, an insurmountable one in many XANES analyses. Such analyses are
out of reach for the majority of XAS users and, for the most complex systems, even expert theoreticians.

To address this, a number of recent works have explored supervised machine learning/deep
learning algorithms with a view towards mapping the relationship between XANES spectra and
the underlying electronic and geometric structure of materials [23–31]. In the majority of these
recent works, the authors have focused on mapping the spectrum onto a property or structure,
and these works have generally been system-specific or restricted to a narrow class of systems.
Indeed, generally-applicable machine learning models capable of predicting XANES spectra for
arbitrary absorption sites (i.e., machine learning models capable of learning ‘reverse’ mappings
of the structure onto the spectrum) are lacking. We have addressed this by introducing a deep
neural network (DNN) for the instantaneous prediction of Fe K-edge XANES spectra in a recent
publication [32]. Our motivation is to accelerate the XANES analysis of complicated, disordered,
and dynamically-evolving systems and, in these cases, it is unlikely that deriving a single structure
from a XANES spectrum would prove useful or physically meaningful. In such cases, an accurate,
high-throughput DNN for XANES simulation has great potential for revealing structure-spectrum
relationships. Our DNN, which requires no input beyond the local geometric structure around an
arbitrary Fe absorption site, is able to predict Fe K-edge XANES spectra with a mean squared error
(MSE) below ca. 3% (evaluated on ca. 2000 unseen XANES spectra) after training with ca. 7000
theoretical examples [32]. We have demonstrated sub-eV accuracy on spectral peak positions and
accuracy on peak positions that is an order of magnitude smaller than the spectral variations that our
model was engineered to reproduce [32].

An important consideration when engineering a DNN for this task is the representation,
or ‘featurisation’, of the input data: How should the local environment—the ‘chemical space’—around
an arbitrary Fe absorption site be best represented to maximise the performance of the DNN?
In this contribution, we explore the effect of representation on the performance of our DNN [32].
Using the Coulomb matrix (CM) [33–35] and pair-distribution/radial distribution curve (RDC) [36–39],
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we demonstrate that the latter not only leads to smaller mean squared error (MSE) but also achieves
this faster and with smaller training set sizes, which greatly supports the development of a DNN
which is generalisable across the whole periodic table.

2. Theory and Computational Details

2.1. Deep Neural Network

A schematic of our DNN is shown in Figure 1. Our DNN is based on the multilayer perceptron
model (MLP); an MLP is a class of feed-forward neural network comprising an input layer, n hidden
layers, and an output layer. The dimensions of the input layer in our DNN are determined by the
representation used (see the “Representation” section). The first hidden layer comprises 1200 neurons
and every subsequent layer is reduced in size by 30% relative to the preceding hidden layer; our DNN
uses four hidden layers. The output layer comprises X neurons, defined by the discretization of our
target XANES spectra.

Figure 1. Schematic representation of the deep neural network (DNN) used in this work. The DNN
takes the local environment around an atomic absorption site (featurised using either Coulomb matrix
(CM) or radial distribution curve (RDC)) as input. This is passed through the network which consists
of four hidden layers to output a predicted spectrum and mean squared error between the theoretical
and predicted XANES spectra.

The layers are all fully connected, or ’dense’, i.e., each neuron in an arbitrary layer, k, is connected
to every neuron in the preceding layer, k − 1, via a matrix of weights, w

(k)
i,j . The pre-activation value

of an arbitrary neuron in an arbitrary layer, zk,j, is given by the linear combination of the input
activations, x(k−1) (these being the output activations of each neuron in the preceding layer), and their

respective weights: zk,j = ∑i w
(k)
ij x(k−1),i. A non-linear activation function, g(z), is then applied to the

pre-activation values to compute output activations for the neuron in the layer, ŷk,j; our DNN uses a
hyperbolic tangent (tanh) activation function which constrains the possible values of ŷ between −1 and
+1. The resulting activations, obtained for an arbitrary neuron in an arbitrary layer as ŷk,j = g(zk,j),
then serve as the input activations for the next layer, unless subject to an intermediate transformation.
Information propagates through the MLP via a ’feed-forward’ process until it arrives at the output
layer. The activations of the output layer are then compared against target activations via evaluation
of a cost function, J(W) = 1

n ∑
n
i ℓ{ f (x(i), W), y(i)}, that quantifies the difference between the obtained,

f (x(i), W), and expected, y(i), activations over a dataset of n samples as a function of the weights, W,
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and input activations, x(i). Our DNN uses a mean-squared error (MSE) cost function of the general
form J(W) = 1

n ∑
n
i {y(i) − f (x(i), W)}.

The derivatives of J(W) with respect to the internal weights, δJ(W)
δW , can be calculated

cost-effectively and used to adjust the internal weights such that J(W) is minimised; succinctly,
the objective is to find a set of internal weights, W∗, for which W∗ = argmin

W

J(W).

Our DNN optimizes c.a. three million internal weights via sequential feed-forward and back
propagation cycles. Gradients of the MSE cost function with respect to the internal weights are updated
iteratively according to the Adaptive Moment Estimation (ADAM) algorithm. Gradients are estimated
over minibatches of 100 samples. The learning rate for the ADAM algorithm, η, is set to 3 × 10−4.

The performance of our DNN is assessed via K-fold cross validation [40]. The data are randomly
partitioned into K folds with K − 1 folds kept in-sample to train the DNN and the remaining fold left
out-of-sample to evaluate the performance of the DNN on unseen data. K evaluations are made such
that every data sample appears in the out-of-sample testing set once, and in the in-sample training set
K − 1 times. The entire procedure can be repeated any number of times with different random K-fold
partitions. The repeated evaluations of performance can be used to estimate an error. We mitigate
the risk of overfitting our DNN to the training set by assessing the performance of each K-fold on the
out-of-sample data only. We use five-fold cross-validation, i.e., an 80:20 in-sample/out-of-sample split,
with five repetitions.

Our DNN also utilises dropout [41]; dropout is a regularisation technique that sets the
activations of a certain fraction of the neurons in each layer are set to zero during the
feed-forward/back-propagation procedure. Utilising dropout encourages a DNN to distribute weights
probabilistically, and works to mitigate layers adapting to correct for mistakes in other layers; the latter
behaviour would otherwise lead to overfitting, as these adaptions will not generalise well beyond the
in-sample dataset. Our DNN uses a dropout of 15%.

Our DNN is programmed in Python 3 with the TensorFlow/Keras [42,43] API.
All hyperparameters were determined via Bayesian optimisation using the GPyOpt [44,45] module,
as in Reference [32].

2.2. Representation

We trial two alternative representations of chemical space: The CM and RDC.
The CM representation (MI J) [33–35] is constructed as:

MI J =















1
2

Z2.4
I ∀I = J

ZI ZJ

|RI − RJ |
∀I 6= J

(1)

Z is the nuclear charge of an atom and R is the position of the atom in Cartesian space. MI J is a
symmetric matrix of dimensions N × N where N is the upper limit on the number of atoms designated
for inclusion in the CM. The off-diagonal elements of MI J correspond to a Coulombic repulsion term
between atoms I and J and the on-diagonal elements of MI J correspond to the Coulomb potentials
of the free atoms. The rows of MI J are sorted in descending order according to their Euclidean (L2)
norms, ||MI ||, i.e., a permutation of the rows and columns is found that satisfies the inequality:

||MI || ≥ ||MI+1|| ∀I (2)

The upper triangle of MI J is then taken and flattened row-wise to yield a feature vector of length
1
2 (N2 + N). Practicably, this feature vector should have the same length, regardless of the size of the
system it encodes, if it is to be input into a neural network. If the system contains more than N atoms,
the closest N atoms to the absorbing atom are used to construct the CM and the rest are discarded;
if the system contains less than N atoms, the remaining rows and columns of the CM are zero-filled.
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The sorted CM representation is unique, invariant with respect to atomic indexing, translations, and
rotations of the chemical space that it describes, and its construction requires no explicit information
on chemical bonding [33–35].

Where CM featurisation is used in this work, N = 20.
The RDC representation [36–39] encodes local chemical space as an intensity distribution ( fRDC)

as a function of equally-distributed values of R, where the intensity is defined:

fRDC =
n

∑
I

n

∑
J>I

ZI ZJexp−α(rI J−R)2
(3)

ZI and ZJ are the nuclear charges of atoms I and J, respectively. rI J is the distance between atoms
I and J, and R is a vector obtained by discretizing a linear interpolation between zero and twice the
cutoff radius around the absorption site (defining the maximum pairwise distance that can be encoded
by the RDC). α is a smoothing parameter that controls the resolution of the RDC. As α is increased,
so too is the detail that is visible in RDC, but if α is too large, the RDC starts to become sparse. This is
illustrated in Figure 2.

In
te

n
si

ty

86420

Distance / Å

 α = 0.5 

  α = 1.0 

  α = 2.5 

  α = 5.0 

  α = 10.0 

  α = 25.0 

  α = 50.0 

  α = 100.0 

  α = 200.0 

Figure 2. An RDC for an arbitrary system; the intensity (the probability of finding an interatomic
distance, rI J at some arbitrary distance, r) is plotted as a function of the distance, r, for nine values of α

between 0.5 and 200.0. A larger value of α increases the decay of the exponential at each value of r,
increasing the resolution of the RDC; very large values of α yield sparse RDCs.

Like the CM representation, the RDC representation is invariant with respect to atomic indexing,
translations, and rotations of the chemical space that it describes, and its construction requires
no explicit information on chemical bonding [39]. It does not have to be weighted by ZI and ZJ

alone; indeed, it is possible to construct property-weighted RDCs using any relevant atomic property
(e.g., electron affinity, electronegativity, van der Waals radius, ect.) [46,47] to engineer the descriptor
for a specific purpose.

An additional advantage of the RDC is that fRDC can be discretised to yield a feature vector of
constant length [39,46,47] regardless of the size of the chemical space it describes, i.e., CM featurisation
encodes information on a fixed number of atoms and, consequently, a fixed number of interatomic
distances, while RDC featurisation flexibly encodes information on all atoms and interatomic distances
below a cutoff radius as per specification of R.

Where RDC featurisation is used in this work, α = 10.0 and R = 0.0 1.2
⇁ 800.0 pm.

The CM and RDC representations are useful descriptors on account of their simplicity; both require
very little space in memory, and the requisite operations for their construction are easily vectorisable;
large datasets can be featurised quickly, and can typically fit in the memory in their entirety.
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2.3. Dataset

Our dataset comprises 9040 unique Fe-containing structures harvested from the Materials Project
Library via the Materials Project API. Fe K-edge XANES spectra for one arbitrary absorption site
per structure have been calculated using multiple scattering theory as implemented in the FDMNES
package [12]. The Fe K-edge XANES calculations employed a self-consistent muffin-tin-type potential
of radius 6.0 Å around the absorbing site. The interaction with the X-ray field was described using
the electric quadrupole approximation, and scalar relativistic effects were included. To transform the
computed cross-sections into XANES spectra that can be compared to experiment, the cross-sections
need to be convoluted with a function that accounts for the core-hole-lifetime broadening, instrument
response, and many-body effects, e.g., inelastic losses. Throughout this work, this convolution has
been performed using an energy-dependent arctangent function via an empirical model close to the
Seah-Dench formalism [48]:

Γ = Γi + Γ f

(

1
2
+

1
π

arctan

(

π

3
Γ f

Ew

(

E − E f

Ec
−

E2
c

(E − E f )2

)))

(4)

Γ is defined over the energy scale, E, of the XANES spectrum as per specification of the core-level
and final-state widths (Γi and Γ f , respectively), and the centre and width of the arctangent function
(Ec and Ew, respectively). The arctangent convolution is performed as implemented in the FDMNES
package [12].

The arctangent convolution is only applied as a post-processing step on XANES spectra estimated
by our DNN; our dataset comprises only unconvoluted cross-sections, and our DNN learns from these
unconvoluted cross-sections.

3. Results

3.1. Performance of the Deep Neural Network

Figure 3a shows the MSE as a function of the number of in-sample spectra accessible to our
DNN during the learning process. The local environment around each Fe absorption site has been
featurised either as a CM (black) or RDC (red). In the small-sample limit (ca. 100 in-sample spectra),
both representations exhibit similar performance with the MSE of 0.17. However, as the number of
in-sample spectra accessible to our DNN is increased, an almost linear improvement in MSE is seen
when CM featurisation is used and a MSE of 0.12 is obtained for the large-sample limit (ca. 9000
in-sample spectra). In contrast, RDC featurisation gives a rapid initial improvement, delivering a
much smaller MSE than can be achieved via CM featurisation. Beyond ca. 2000 in-sample spectra,
the improvement in the MSE begins to slow, but the final MSE in the large-sample limit (ca. 0.08) is
still significantly lower than the MSE that can be achieved using CM featurisation.

Figure 3b illustrates the performance during the training of the DNN, shown as a function of the
number of forward passes through our dataset. While, as seen in Figure 3a, we achieve a lower MSE for
the RDC representation, in both cases it is observed that the DNN can be optimised in <500 forward
passes through the dataset. This is achievable in as little as five to ten minutes if graphical processing
unit (GPU) acceleration is used.



Molecules 2020, 25, 2715 7 of 13

0.18

0.16

0.14

0.12

0.10

0.08

M
S
E
 /

 A
rb

. 
U

n
it

s

80006000400020000

N. of In-Sample Spectra

 (a)

0.30

0.25

0.20

0.15

0.10

M
S
E
 /

 A
rb

. 
U

n
it

s

10008006004002000

Epochs

 (b)

Figure 3. (a) Evolution of the mean squared error (MSE) as a function of the number of in-sample
spectra accessible to the DNN. (b) Evolution of the MSE as a function of the number of forward
passes through our dataset (‘epochs’). The local environment around each Fe absorption site has been
featurised either as a CM (black) or RDC (red). Data points are averaged over 100 K-fold cross-validated
evaluations; error bars indicate one standard deviation.

3.2. Predictions of Peak Position and Intensity

When predicting XANES spectra, accurate reproduction of the positions and intensities of
above-ionisation resonances is crucial, as these directly encode the structural information in the
spectrum. Figure 4 shows parity plots of the difference between the estimated and target peak positions
on the energy (ETarget and EEst.) and intensity (µTarget and µEst.) scales. The upper (Figure 4a,b) and
lower panels (Figure 4c,d) display the results from CM and RDC featurisation, respectively.
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Figure 4. Parity plots of estimated and target peak positions on the (a,c) energy (ETarget and EEstm.,
respectively) and (b,d) intensity (µTarget and µEstm., respectively) scales; (a,b) use the CM representation,
while (c,d) use the RDC representation.
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In both cases, a strong linear relationships are evidenced by the coefficients of determination, R2,
which are 0.974 and 0.930 for energy and intensity, respectively, if CM featurisation is used, and 0.986
and 0.973 for energy and intensity, respectively, if RDC featurisation is used. As expected from the
training curve shown in Figure 3a, the RDC representation performs slightly better exhibiting a lower
R2 in both cases as expected from the narrower spread which is visible in Figure 4.

3.3. Predictions of Spectra

Figure 5 compares six computed XANES spectra with their corresponding out-of-sample DNN
estimations. The dashed lines represent the computed and predicted cross-sections (scaled by 50% for
clarity) and the solid lines represent the computed and predicted XANES spectra post-convolution of
the cross-sections with the arctangent function (Equation (4)). These XANES spectra all belong to the
first centile when performance is ranked over all out-of-sample DNN estimations by MSE.

The top three XANES spectra (Figure 5a–c) were obtained using CM featurisation, while the
bottom three (Figure 5d–f) were obtained using RDC featurisation. In the latter case, the DNN-
estimated XANES spectra can hardly be distinguished from the target XANES spectra; while
discrepancies can be observed in the unconvoluted cross-sections on which our DNN is trained,
the differences are negligibly small and can be considered insignificant once the arctangent convolution
has been applied. In contrast, differences between the DNN-estimated and target XANES spectra
are amplified when using CM featurisation. Inspection of the unconvoluted cross-sections suggests
that these differences have their origin in the estimated intensities of peaks; this is most apparent
in Figure 5a. CM featurisation performs less effectively than RDC featurisation on estimated peak
intensities, as also evidenced in Figure 4.
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Figure 5. Arctangent-convoluted (solid) and unconvoluted (dashed) target (black) and out-of-sample
DNN-estimated (red) Fe K-edge X-ray absorption near-edge structure (XANES) spectra for absorption
sites in (a,d) C6Al2Fe4O15, (b,e) FeOF, and (c,f) Sm2Fe17H3. Spectra belong to the first centile when
performance is ranked over all out-of-sample DNN estimations by MSE. Spectra in panels a–c and d–f
were obtained using the CM and RDC representations, respectively. Amplitudes of all unconvoluted
spectra have been reduced by half for clarity.

Figure 6 shows the three samples spectra, optimised using the CM (panels a–c) and the RDC
(panels d–f) representation, drawn from the ninety-nineth centile, i.e., the mostly poorly predicted
spectra. In this case, as with previous work [32], the principle reason that these are in the lowest centile
is due to their underestimation of the spectral intensity that compounds across the energy scale. This is
especially true in the case of the RDC representation which finds peaks in the right position. This is less
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so for the CM representation, which is especially apparent in Figure 6b,c, for which larger deviations
are observed.
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Figure 6. Arctangent-convoluted (solid) and unconvoluted (dashed) target (black) and out-of-sample
DNN-estimated (red) Fe K-edge XANES spectra for absorption sites in (a,d) Fe3H36C12S6(BrO2)3,
(b,e) KFe2F6, and (c,f) Li7Fe3O10. Spectra belong to the ninety-nineth centile when performance is
ranked over all out-of-sample DNN estimations by MSE. Spectra in panels a–c and d–f were obtained
using the CM and RDC representations, respectively. Amplitudes of all unconvoluted spectra have
been reduced by half for clarity.

4. Discussion and Conclusions

Appropriate featurisation is crucial for achieving best-in-class performance from a DNN. In this
contribution, we have outlined the effect that the choice of featurisation (CM or RDC featurisation) has
on the performance of our DNN [32] engineered for the prediction of XANES spectra at Fe K-edge.
In both cases, a MSE of ≤0.12 is readily achievable in only a few minutes of real-time learning, and the
example estimations of out-of-sample XANES spectra shown in Figures 5 and 6 demonstrate that both
representations are able to deliver qualitative predictions of out-of-sample XANES spectra, even in
the ninety-nineth centile. However, Figure 3 demonstrates that convergence of the DNN during the
learning process is faster, better if one is restricted to the small-sample limit, and ultimately achieves a
lower final MSE in the large-sample limit. These results evidence that the RDC is to be preferred over
the CM as a representation of chemical space for this particular problem and DNN architecture.

At this point, it is important to highlight an important difference between the CM and
RDC representations. Throughout this work we have limited the dimensions of MI J to 20 × 20.
Optimisation of our DNN has lead us to identify N = 20 as the optimal CM dimension, i.e., that which
gives the lowest MSE as evaluated on out-of-sample examples, within the limit of the possible values
of N that are large enough to capture the necessary structural information, but not so large as to
increase the propensity for overfitting. The maximum radius around an absorption site encoded into a
CM of dimensions 20 × 20 is consequently system-dependent, e.g., it depends on the identities of the
neighbouring atoms around the absorption site and, by extension, the packing density of the system to
be featurised.

Figure 7a shows a histogram of the maximum radius around the absorption site encoded into MI J

when the dimensions are limited to 20 × 20. The modal radius is ca. 3.5 Å, which is in close agreement
with, albeit slightly smaller than, the optimal cutoff radius identified for RDC featurisation (4.0 Å)
and this cutoff radius encodes approximately two coordination spheres around the absorption site.
The smaller cutoff radius suggests that it is harder for CM featurisation to encode effectively all of the
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geometric information required to reproduce the XANES spectra as accurately as when using RDC
featurisation. Figure 7b shows the reverse, i.e., a histogram of the CM dimensions when the radius
around the absorbing atoms is set to 4.0 Å. Here the model dimension is around 25 × 25, meaning that
the RDC featurisation, on average, can describe the effect of a larger number of atoms around the
absorbing atom.

In summary, the performance of our DNN demonstrates that it is possible to develop a highly
generalisable neural network for the prediction of XANES spectra at a specific absorption edge for an
arbitrary absorption site, and that the RDC is a robust local descriptor for this purpose. This represents
a highly encouraging starting point for our proof-of-principle demonstration which can be developed in
a number of ways. Firstly, our theoretical XANES spectra (from which our DNN learns) are calculated
under the muffin-tin approximation, and although this represents a computationally cost-effective
choice for developing the underlying method, it is clear that the usefulness of our DNN can be
considerably improved by moving beyond this. Secondly, the training set from which our DNN
learns is composed of perfectly-ordered, homogeneous crystalline systems. While we have previously
demonstrated [32] that it can be applied to situations outside of this scope, the sensitivity of our DNN
to irregularities in the bulk such as vacancies, defects, undercoordinated sites, and the effects of lattice
stress remains unclear. Finally, our DNN primarily considers only the local geometric environment
around the absorption site of interest, and its ability to describe the changes in electronic charge state
of the absorbing atom and therefore reproduce edge shifts is still uncertain. This could be incorporated
as a post-processing step by simply shifting the predicted XANES spectra; this is commonly used for
good approximation in time-resolved XAS experiments [49,50]. It remains desirable, however, to have
this included from first principles. These aspects will be the focus of future work.
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Figure 7. (a) Histograms of (a) the maximum radii around each Fe absorption site encoded in a CM
of dimensions 20 × 20, and (b) the necessary CM dimension, N, required to encode a radius of 4.0 Å
around each Fe absorption site in our dataset. Histograms are normalised.
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