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ABSTRACT: The future change in dry and humid heatwaves is assessed in 10-yr pan-African convective-scale (4.5 km) and
parameterized convection (25 km) climate model simulations. Compared to reanalysis, the convective-scale simulation is better
able to represent humid heatwaves than the parameterized simulation. Model performance for dry heatwaves is much more
similar. Both model configurations simulate large increases in the intensity, duration, and frequency of heatwaves by 2100
under RCP8.5. Present-day conditions that occur on 3–6 heatwave days per year will be normal by 2100, occurring on
150–180 days per year. The future change in dry heatwaves is similar in both climate model configurations, whereas the future
change in humid heatwaves is 56% higher in intensity and 20% higher in frequency in the convective-scale model.
Dry heatwaves are associated with low rainfall, reduced cloud, increased surface shortwave heating, and increased
sensible heat flux. In contrast, humid heatwaves are predominately controlled by increased humidity, rainfall, cloud,
longwave heating, and evaporation, with dry-bulb temperature gaining more significance in the most humid regions. Approx-
imately one-third (32%) of humid heatwaves commence on wet days. Moist processes are known to be better repre-
sented in convective-scale models. Climate models with parameterized convection, such as those in CMIP, may
underestimate the future change in humid heatwaves, which heightens the need for mitigation and adaptation strate-
gies and indicates there may be less time available to implement them to avoid future catastrophic heat stress condi-
tions than previously thought.

SIGNIFICANCE STATEMENT: Temperatures are higher in dry heatwaves, but humid heatwaves can be more
dangerous, as the ability to cool by sweating is limited. We found that dry heatwaves are caused by decreased
cloud, allowing the sun to heat the surface, whereas humid heatwaves are caused by increased cloud, rainfall, and
evaporation from the surface. We found that a state-of-the-art very high-resolution climate model predicts a larger
future change in humid heatwaves compared to a more traditional global climate model. Previous estimates of the
prevalence of humid heatwaves in the future may therefore be underestimated. If we do not cut emissions of greenhouse
gases, present-day African heatwave conditions could be experienced on up to half of all days of the year by 2100.
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1. Introduction

There is mounting evidence that heatwaves, regardless of def-
inition, have increased in intensity, frequency, and duration
over Africa over the last three decades (Ceccherini et al. 2017;
Fontaine et al. 2013; Lyon 2009; Moron et al. 2016; Seneviratne
et al. 2021). The IPCC Working Group 1 Sixth Assessment
Report (Seneviratne et al. 2021) states that at the continental
scale, it is “very likely” the intensity and frequency of African
hot extremes will increase even under 1.58C global warming,

and the changes are “virtually certain” to occur under 48C
global warming (Dosio 2017; Fitzpatrick et al. 2020a; Perkins-
Kirkpatrick; Lewis 2020; Russo et al. 2016). Vicedo-Cabrera
et al. (2021) attribute more than 40% of heat-related mortality
in South Africa during the period 1991–2018 to human-induced
climate change.

Humid heatwaves are extreme heat events that involve in-
creases in both temperature and humidity. Humidity limits the
body’s ability to sweat and therefore plays a major role in heat
stress (i.e., when the body’s ability to control its internal tempera-
ture starts to fail; Kjellstrom et al. 2016). Equatorial Africa, in
particular, is projected to be a global hotspot for heat stress
by the end of the century (Coffel et al. 2017; Dosio et al. 2018;
Mora et al. 2017). The impacts of heat stress in Africa}including
deaths}go largely unreported (Harrington and Otto 2020)
and the sparse observation network means humid temperature
extremes in particular are hard to detect. Despite this, a
small number of studies have shown that heatwaves cause
harm in Africa (Azongo et al. 2012; Diboulo et al. 2012).
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There is limited literature on the drivers of humid heatwaves
anywhere in the world (Raymond et al. 2021) and the vast
majority of research on African heatwave drivers is focused
on dry-bulb heatwaves in the Sahel region of sub-Saharan
Africa. Dry-bulb temperature extremes in the Sahel due to
moisture advection and surface longwave heating through the
water vapor greenhouse gas effect have been highlighted in a
number of studies (Fontaine et al. 2013; Guigma et al. 2020;
Guigma et al. 2021; Largeron et al. 2020; Oueslati et al. 2017).
Bouniol et al. (2021) analyzed daily maximum (daytime) and
minimum (nighttime) dry-bulb temperature heatwaves over the
Sahel using satellite-derived cloud, aerosol, water vapor, and ra-
diative fluxes. They found that daytime heatwaves occur during
reduced cloud, a lower aerosol load, and increased surface short-
wave radiation flux. Conversely, nighttime heatwaves occur dur-
ing periods with increased cloud, aerosol, and water vapor and a
resulting increase in longwave heating that exceeds the decrease
in shortwave heating.

Even within the discipline of meteorology, there is no
universally accepted metric for dry or humid heatwaves and
different metrics do not necessarily identify the same events
(Guigma et al. 2020). A number of recent global studies have
focused on metrics that account for both temperature and humi-
dity because both are physiologically important for human heat
stress (Coffel et al. 2017; Mora et al. 2017; Russo et al. 2017).
Globally, 74% of the world’s population is projected to be
exposed to deadly heat stress for at least 20 days per year by
2100 under RCP8.5 (Mora et al. 2017). South Asian wet-bulb
temperature is projected to approach, and in a few locations
exceed, the critical threshold of 358C, which is considered the
limit of human survivability, by 2100 under high emission
scenarios (Im et al. 2017; Pal and Eltahir 2016).

Projections of future heat extremes are almost ubiquitously
provided by relatively coarse-resolution regional (Gutowski et al.
2016) or global climate (Eyring et al. 2016; Taylor et al. 2012)
models, which require a parameterization scheme to represent
convective rainfall processes. Such models are known to poorly
represent tropical rainfall characteristics, whereas convective-
scale climate models are better able to represent intense rain-
fall and dry spells (Berthou et al. 2019b; Finney et al. 2020;
Prein et al. 2015), related processes such as storm life cycles
and propagation (Crook et al. 2019; Finney et al. 2020), the
atmospheric overturning circulation (Hart et al. 2018; Jackson
et al. 2020), the atmospheric water cycle (Birch et al. 2014b;
Finney et al. 2019), and soil moisture–precipitation feedbacks
(Taylor et al. 2013). Additionally, they project larger future
increases in rainfall extremes (Berthou et al. 2019a; Finney
et al. 2020; Kendon et al. 2014, 2019). Emerging studies suggest
that heat extremes over Europe are better represented and the
increases under climate change are larger in magnitude in convec-
tive-scale climate models (Kennedy-Asser et al. 2020; Tölle et al.
2018). It is not currently known if African heat extremes are
better represented in convective-scale models, although given the
crucial role of convection in African weather, the representation
of convection is likely to be important. It is, therefore, critical to
understand how African heatwave projections from global
models are affected by their parameterization of convection.

This study uses 10-yr pan-African climate simulations with
4.5-km (convective scale) and 25-km (convection parameterized)
horizontal grid spacing (Senior et al. 2021; Stratton et al. 2018).
We evaluate the present-day mean temperature and humidity
in the climate models using observations and reanalysis
(section 3a). We assess the present-day values and future changes
(2100, RCP8.5) in the intensity, duration, and frequency of
wet- and dry-bulb heatwaves in the climate model simula-
tions (section 3b). We demonstrate the contrasting drivers
of wet- and dry-bulb heatwaves over Africa (section 3c) and show
how the drivers of humid heatwaves differ over different re-
gions of Africa (section 3d). We explain why the convective-
scale climate model simulates a larger number of more intense
and longer duration heatwaves under climate change than the
climate model with parameterized convection (section 3d).

2. Data and methods

a. Model simulations

This study utilizes two 10-yr regional atmosphere-only climate
simulations using the Met Office Unified Model (MetUM) run
over a pan-Africa domain of 258W–578E, 458S–408N (Stratton
et al. 2018). Both simulations are driven by the N512 (approxi-
mately 25 km 3 40 km in the tropics) global atmosphere-only
(GA7) configuration of the MetUM (Walters et al. 2017). The
first regional model (CP4) has a horizontal grid spacing at the
equator of 4.5 km 3 4.5 km (0.048 3 0.048) and is “convective-
scale” (i.e., its horizontal resolution is sufficient to not require a
parameterization for convection and it is switched off). The
second regional model (P25) has a horizontal grid spacing
matching the global model and includes parameterized convec-
tion (Gregory and Rowntree 1990; Walters et al. 2017). P25 is
also based on the GA7 configuration, but to restrict differences
between P25 and CP4 to convection some settings such as soil
types and aerosol forcing have been made the same as those in
CP4.

In the historical period, representing the years 1997–2006,
all models use Reynolds daily sea surface temperature (SST)
observations (Reynolds et al. 2007; Stratton et al. 2018). The
future climate simulations use the representative concentra-
tion pathway (RCP) 8.5 for greenhouse gas concentrations for
the year 2100 (Moss et al. 2010). In all the future simulations
(CP4FUT, P25FUT, and the driving GCM) the average SST
change between 1975–2005 and 2085–2115 in a separate
CMIP5 HadGEM2-ES RCP8.5 run is added to the historical
SSTs (Kendon et al. 2019).

The CP4 data were interpolated onto the P25 grid, and all
subsequent analysis is performed on the P25 grid. Regridding
the P25 and CP4 data onto a much coarser grid of 28 3 28 made
negligible difference to the results (not shown). The full 10 years
of simulation data, from January 1997 to December 2006, were
used. Dropping the first year to allow for spinup made negligible
difference to all results (not shown).

b. Observations and reanalysis

We diagnose dry-bulb heatwaves using near-surface daily max-
imum temperature (Tmax) observations from the Berkeley Earth
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Surface Temperature gridded dataset (BEST). It uses the sta-
tistical kriging method to interpolate data from weather sta-
tions compiled from a number of data archives onto a global
regular 18 3 18 grid (Rohde and Hausfather 2020). We evalu-
ate the mean temperature in the climate models using monthly
mean near-surface temperature from the Climatic Research
Unit (CRU) TS4.03 reference dataset, on a 0.58 3 0.58 grid
(Harris et al. 2020).

We diagnose both wet- and dry-bulb heatwaves using hourly
data from the fifth generation of the European reanalysis
(ERA5) at the native horizontal resolution of 0.258 3 0.258
(∼30 km) (Hersbach et al. 2020). We note that ERA5 is pro-
duced by an atmospheric model, itself with parameterized
convection. It cannot be considered as “observations” and
the drivers of the heatwaves in ERA5 may suffer from similar
biases as the climate models, particularly P25. Previous work
has compared and evaluated daily maximum and minimum
dry-bulb temperature in four reanalysis products, including
ERA-Interim, the ERA5 predecessor, against the BEST dataset
and found that ERA-Interim performed the best (Barbier et al.
2018). There are limitations in using reanalysis datasets but there
are also likely big uncertainties in the BEST and CRU datasets
due to the sparsity of surface station observations over Africa.

To evaluate the diurnal cycles of dry- and wet-bulb tem-
perature and humidity in reanalysis and the climate model
simulations, we use hourly observations from three weather
stations, with multiyear subhourly records that include hu-
midity. The stations are located in Skukuza, South Africa
(25.08S, 31.58E), which has data available for 2000–13 (Pastorello
et al. 2020); Demokeya, Kordofan, central Sudan (13.38N,
30.58E), which has data available for 2002–12 (Ardö 2013);
and Banizoumbou, Niamey, Niger (13.58N, 2.78E), where
data for 2008–15 were used (Lebel et al. 2009).

We use the daily Integrated Multi-satellitE Retrievals for GPM
(IMERG) satellite retrievals of rainfall (Huffman et al. 2014),
available frommid-2000 to near-present. The IMERG data are in-
terpolated onto the ERA5 grid before any analysis is performed.

c. Heatwave identification

Heatwaves are defined using near-surface daily maximum dry
(Tmax) or wet (Twbmax) bulb temperature over the pan-Africa

region of 228W–548E, 428S–378N, which includes the Arabian
Peninsula, for land points only. This means a 38 band around
the edge of the model domains has been removed to allow
for the effects of the lateral boundary conditions. There are
various quantities that can be used to represent humidity
in heat stress, including wet-bulb temperature, wet-bulb
globe temperature, and apparent temperature. Sherwood
(2018) shows that although all three of these quantities in-
crease with increasing humidity, wet-bulb temperature is the
most sensitive to humidity, which makes it a good choice
here in order to best highlight the differences in the drivers
of Tmax and Twbmax heatwaves.

Hourly wet-bulb temperature is computed from hourly specific
humidity, dry-bulb temperature, and pressure using the method
of Davies-Jones (2008) and then the daily maximum, Twbmax, is
found. The results are not sensitive to using hourly dry-bulb
temperature to compute Tmax, rather than the daily dry-bulb
maximum temperature output directly from the model sim-
ulations. Because Twbmax was not output directly from the
climate model simulations, it was necessary to compute
the daily maximums from the hourly data because, due to
the diurnal cycle of humidity, it is essential to use hourly
rather than daily mean humidity data to compute Twbmax

(see section 2d). For consistency, we also use hourly data to
calculate Tmax.

Heatwaves were identified as follows (described here for
Twbmax heatwaves; a description of the differences between
how Twbmax and Tmax heatwaves are diagnosed follows):

1) For each grid box, the 90th percentile of Twbmax over a
31-day running window, Twbmax_31d90p (blue line, Fig. 1)
and the 97th percentile of daily maximum wet-bulb tem-
perature over all days in the dataset, Twbmax_97p (red solid
line, Fig. 1) are computed.

2) Hot days are defined as days where Twbmax (black dots,
Fig. 1) are above both the blue and red solid lines (i.e.,
unseasonably warm days in the colder months are not
diagnosed as hot days).

3) A heatwave event is defined as 3 or more consecutive hot
days. A “heatwave day” is defined as each individual day
within a heatwave event.

FIG. 1. (a) Illustration of the heatwave identification method for one arbitrary grid box in CP4, with (b),(c) consecutively zoomed in
views of (a). The black dots represent daily Twbmax over an example 3-yr time slice. The blue line is the 90th percentile of Twbmax over a
31-day running window. The red solid and dashed lines are the 97th and 98.9th percentiles, respectively, of Twbmax over all days and all
years. The dots in (c) show the unitless heat intensity on each identified hot day.
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Three key metrics are recorded for each grid box: the duration
of each heatwave, the intensity of each heatwave day (defined
below), and the total number of heatwave days that occur over
the length of the dataset (i.e., the frequency). The total number
of heatwave days is analyzed, rather than the number of heat-
wave events, because the future change in heatwaves in the
climate models is so large that most days in the future are
diagnosed as heatwaves, so the number of events can decrease
while the number of heatwaves days increases, and thus ana-
lyzing the number of heatwave events (and the heatwave dura-
tion) is misleading.

The intensity of each heatwave day is computed using a
modified version of Eq. (2) in Russo et al. (2015):

I � Twbmax 2 Twbmax_97p

Twbmax_98:9p 2 Twbmax_97p
,

where Twbmax_98.9p is the 98.9th percentile of daily maximum
wet-bulb temperature over all days in the dataset (red dashed
line, Fig. 1); I is a dimensionless measure of the intensity of
each heatwave day relative to the variability of the hottest
days that occur in each grid box.

This heatwave methodology was chosen because 1) it is a
percentile-based metric, which allows ERA5 and the climate
models to be directly compared regardless of differences in
their mean climatology of temperature and humidity; 2) it is
computed for each grid box separately, which allows the
widely varying climates in Africa to be directly compared; and
3) it is possible to look at the intensity, duration, and frequency
of heatwaves as separate metrics.

Heatwaves in CP4FUT and P25FUT are computed twice:
once relative to the present-day baseline (i.e., Twbmax_31d90p,
Twbmax_97, and Twbmax_98.9p are taken from the present-day simu-
lation at each grid box) and once relative to the future climate

baseline (i.e., Twbmax_31d90p, Twbmax_97, and Twbmax_98.9p are taken
from the future climate simulation at each grid box). Heatwaves
computed using the present-day baseline are used throughout
the paper (except in Figs. 13, 15, and 16, where the future change
in heatwave drivers is assessed). Future heatwaves are so fre-
quent and long in duration under climate change that identifiable
individual heatwaves do not exist in the future. Therefore, using
the future climate baseline diagnoses a similar number of discrete
heatwaves as are diagnosed in the present day.

Dry-bulb heatwaves are computed in the same way as
above, by replacing Twbmax with Tmax. The only other differ-
ence is that the two percentile thresholds (red solid and
dashed lines in Fig. 1) are set at Tmax_98 and Tmax_99.9p for dry-
bulb heatwaves, rather than the 97th and 98.9th percentile
used for Tmax. There is no clear choice of percentile in the lit-
erature, with different authors choosing to use different val-
ues (Guigma et al. 2020; Lyon 2009; Raymond et al. 2021;
Russo et al. 2015). The consequence of using different percen-
tiles for Tmax and Twbmax heatwaves is that the values of inten-
sity are not directly comparable. However, it is done to make
the number of Tmax and Twbmax heatwaves diagnosed in
the present day similar, to provide consistency for the heat-
wave driver analysis.

For ERA5 we use two periods: 1) 1997–2006 for comparison
of the ERA5 heatwave metrics with the present-day climate
simulations and 2) 2000–19 when looking at atmospheric heat-
wave drivers, in order to align with the availability of the GPM
rainfall observations. We compared with the period 1987–2016
to assess the impact of using a longer time series on the heat-
wave metrics. The mean and standard error of the pan-African
heatwave metrics in ERA5 over 1997–2006, 1987–2016, and
2001–19 are as follows: for intensity, 1.36 6 0.002, 1.41 6 0.002,
and 1.50 6 0.002; for duration, 3.93 6 0.003, 4.01 6 0.002, and
3.976 0.002 days; and for frequency, 2.56 0.05, 2.76 0.16, and
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FIG. 2. Example heatwave on 25 Jun 2001 in P25 and CP4. The grid boxes where a heatwave was identified on this
day are marked in red. Also shown are the subregions used later in the analysis and the locations of the three weather
stations used in Fig. 3. GoG = Gulf of Guinea.
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2.5 6 0.10 days per year, respectively. These are negligible dif-
ferences apart from in intensity, where a small climate change
signal of higher intensity in later years is apparent, consis-
tent with previous studies (Ceccherini et al. 2017). The rela-
tive importance of the different heatwave drivers is not
dependent on the period used (not shown).

Figure 2 illustrates the resulting Twbmax heatwave diagnosis
in P25 and CP4 for an example day. The methodology is able
to identify large, spatially coherent heatwaves. The event of
25 June 2001 is more than 4 years into the climate simulation,
so the fact that both climate models produce a heatwave of a

similar size and location at the same time suggests that the
lateral boundary conditions and SSTs (which are the same
in both simulations) have a strong control on this event.

d. Daily versus hourly specific humidity values in Twbmax

calculation

The mean diurnal cycle of near-surface specific humidity and
wet- and dry-bulb temperature from ERA5, P25, and CP4 are
plotted against observations from the three automatic weather
stations (Fig. 3). Specific humidity has a diurnal cycle that is out
of phase with the diurnal cycle in dry-bulb temperature at both
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FIG. 3. Mean diurnal cycle of (left) near-surface dry bulb temperature, (center) near-surface specific humidity, and (right) wet bulb
temperature at the locations of the surface stations in (a)–(c) South Africa, (d)–(f) Sudan, and (g)–(i) Niger. Wet-bulb temperature is
computed using both hourly and daily mean q. Using daily mean or hourly surface pressure has negligible impact on the wet-bulb calculation.
The locations of the three stations are illustrated in Fig. 2.
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FIG. 4. Mean near-surface dry-bulb temperature. (a),(d) mean future changes, (b),(e) difference between present-day model simulations
and ERA5, (c),(f) difference between present-day model simulations and CRU, and (g)–(i) differences between P25 and CP4 in the present
day, future, and the future change.

J OURNAL OF CL IMATE VOLUME 355986

Brought to you by UNIVERSITY OF LEEDS | Unauthenticated | Downloaded 09/13/22 12:50 PM UTC



locations, which is consistent with dry-air entrainment into the
boundary layer during the day and moisture advection at night
(Couvreux et al. 2015). This has a strong control on the magni-
tude and timing of Twbmax, causing a flattening of the diurnal
peak of wet-bulb temperature (solid lines, Figs. 3c,f,i).

Due to the lack of availability of subdaily humidity diagnostics
from ensemble model studies such as CMIP5 (Taylor et al.
2012), CMIP6 (Eyring et al. 2016), and CORDEX (Gutowski
et al. 2016), past studies that diagnose humid heatwaves using the
daily maximum wet-bulb temperature [or wet-bulb globe tem-
perature (WBGT)] (e.g., Russo et al. 2017; Coffel et al. 2017)
necessarily use the daily mean, minimum, or maximum humidity
to compute daily maximum humid-heat metrics. Using daily
mean specific humidity in the calculation of Twbmax produces a
smooth diurnal cycle in wet-bulb temperature, which follows the
shape of the diurnal cycle of dry-bulb temperature (dashed lines,
Figs. 3c,f,i). The impact of the choice of daily or subdaily specific
humidity on the present-day heatwave metrics used in this study
is strikingly large and perhaps unpredictable, with no clear trend
in the direction of the impact in ERA5, CP4, and P25 (see
Fig. S1 in the online supplemental material). The future change
in wet-bulb heatwave intensity, duration and frequency are over-
estimated in both CP4 (by 106%, 40%, and 16%, respectively)
and P25 (by 73%, 16%, and 3%, respectively) when daily specific
humidity is used in the Twbmax calculation (Fig. S1). This is
particularly important for wet-bulb temperature, which is
the most sensitive to humidity out of the most frequently
used humidity–temperature indices (Sherwood 2018).

e. Computation of anomalies and climatologies

Data shown in later figures (see Figs. 10, 14, 15, and 16) are
presented as mean anomalies relative to a locally and temporally
relevant climatology. For each heatwave diagnosed in ERA5
and the model simulations, a daily mean time series of each vari-
able is extracted for a 31-day period, from day 215 to day 15,
where day 0 is the onset of the heatwave. The local (i.e., grid
box specific) daily mean annual cycle (31 values), smoothed us-
ing a 50-day running window, is subtracted from each 31-day
time series to produce anomalies from the mean climatology at
the relevant time of year. The bars (shown in Figs. 10, 14, 15,
and 16) are an average of each anomaly over the first 3 days of
all diagnosed heatwaves, so that each heatwave is weighted
equally in the analysis. The exception is the humidity and tem-
perature advection (qadv, Tadv) (shown in Figs. 10 and 14), which
are presented as absolute values for ease of interpretation.

f. Statistical testing of rainfall distribution

TheWilcoxon matched-pairs signed rank test is used to assess
whether the distribution of daily rainfall accumulations on heat-
wave days is statistically significantly different (p , 0.01) to the
climatological distribution of rainfall. For each heatwave, taking
day 25 to day 5 in turn (where the first day of the heatwave is
day 0), the difference between the rainfall accumulation on day
x and the rainfall accumulation on day 215 is computed. It is
assumed that day215 is far enough away in time from the heat-
wave event to be sufficiently independent. The Wilcoxon signed
rank test is performed 10000 times on 1000 randomly selected

difference pairs for each day from day25 to day 5. This process
is then repeated using daily rainfall accumulation on day 15, to
allow for seasonal changes in rainfall between day215 and day
15, which can be large around the time of monsoon onset.

The Wilcoxon matched-pairs signed rank test determines
whether two dependent samples were selected from populations
having the same distribution (i.e., the null hypothesis is that the
medians of the heatwave and climatological rainfall are equal).
It is an appropriate test because rainfall data do not have a
normal distribution; instead, there are many more dry and/or
low rainfall days than wet days.

3. Results

a. Annual mean temperature and humidity

An assessment of the mean dry-bulb temperature shows that
there is a cold bias of 1.248 and 1.398C in mean near-surface
dry-bulb temperature in CP4 compared to ERA5 and CRU,
respectively (Figs. 4e and 4f). P25 is also biased cold, but only
by 0.228 and 0.378C, respectively (Figs. 4b and 4c). In both the
present-day and future climate, CP4 is on average ∼18C cooler
than P25 (Figs. 4g and 4h). CP4 and P25 simulate future mean
temperature increases by 2100 of 6.38 and 6.48C, respectively
(Figs. 4a and 4d), with P25 projecting a smaller increase in
central Africa and CP4 predominately projecting a smaller
increase elsewhere (Fig. 3i).

Compared to ERA5, CP4 and P25 have a mean dry bias of
0.88 and 0.50 g kg21 in specific humidity, respectively, although
P25 is wetter by 1–2 g kg21 over central Africa (Figs. 5b and
5d). Both CP4 and P25 project mean future increases in specific
humidity of ∼3.4 g kg21 (Figs. 5a and 5c) but the future change
is ∼1.5 g kg21 larger in P25 over central Africa and ∼0.5 g kg21

larger in CP4 elsewhere (Fig. 5g). The resulting impact on mean
wet-bulb temperature is a cold bias relative to ERA5 of
1.18 and 0.58C in CP4 and P25, respectively (Figs. 6b and
6d), although the humidity bias in P25 in central Africa pro-
duces a warm bias in wet-bulb temperature of 0.58–18C. P25
is on average 0.68–0.78C warmer than CP4 in wet-bulb tem-
perature in both the present day and future, with a large re-
gion of central Africa being up to 28C warmer (Figs. 6e and
6f). The future change in mean wet-bulb temperature is
∼4.48C in both CP4 and P25 (Figs. 6a and 6c), with spatially
variable differences in the future change between P25 and
CP4 that are fairly small due to the compensating effects of
humidity and temperature biases in the calculation of wet-bulb
temperature (Fig. 6g). The cold and dry biases are consistent
with those in other climate models (Fischer and Knutti 2013;
Zhao et al. 2015).

b. Wet- and dry-bulb heatwave metrics

Summaries of present-day and future change in intensity,
duration, and frequency of Twbmax and Tmax heatwaves in
ERA5, P25, and CP4 (and BEST for Tmax) are shown in
Fig. 7. For Tmax intensity, there is relatively good agreement
between ERA5, BEST, and both climate models (Fig. 7g).
For Twbmax intensity, both CP4 and P25 are skewed toward
intensities , 1, although CP4 is much less so and is,
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FIG. 5. Mean near-surface specific humidity: (a),(d) mean future changes, (b),(d) difference between present-day model simulations and
ERA5, and (e)–(g) differences between P25 and CP4 in the present day, future, and the future change.
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FIG. 6. Mean near-surface wet bulb temperature. (a),(d) mean future changes, (b),(d) difference between present-day model simulations
and ERA5, and (e)–(g) differences between P25 and CP4 in the present day, future, and the future change.
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FIG. 7. Present-day and future change in pan-African heatwave metrics in ERA5, P25, CP4 (for both Twbmax and Tmax heat-
waves), and BEST (for Tmax heatwaves only): (a)–(c) present-day Twbmax heatwaves, (d)–(f) future change in Twbmax heatwaves,
(g)–(i) present-day Tmax heatwaves, and (j)–(l) future change in Tmax heatwaves. All data are for the period 1997–2006. The
numbers in the legends represent the mean and standard error of each distribution. The data in the intensity and duration distri-
butions only include times and locations where heatwaves were diagnosed and are presented as a frequency of occurrence (i.e.,
the distribution is divided by the total number of heatwaves diagnosed). The frequency distribution is a count of the number of
model grid boxes in each frequency bin.
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therefore, in much better agreement with ERA5 (Fig. 7a).
There is good agreement between P25, CP4, and ERA5
(and BEST for Tmax heatwaves) for both Twbmax and Tmax

heatwave duration, with present-day mean heatwave lengths of
∼4 days (Figs. 7b and 7h). For frequency, there is reasonable
agreement between the climate models and observations for
Tmax heatwaves, with on average 2.4–3.0 days yr21 (Fig. 7i). For
wet-bulb heatwaves, the distribution of heatwave frequency in
P25 is skewed toward lower values, with a mean in P25 of
1.8 days yr21 compared with values of 2.7 and 2.5 days yr21 in
CP4 and ERA5, respectively (Fig. 7c).

By 2100, under RCP8.5 both CP4 and P25 simulate large
increases in all three metrics for both Twbmax and Tmax heatwaves.
Considering both types of heatwaves and both model simu-
lations, the ranges of future increases are from 11.5 to 13.7
for intensity, from 19 to 121 days for length, and from
1145 to 1178 days yr21 for frequency (Figs. 7d–f,j–l). The
frequency increase can be interpreted as, on average over all of
Africa, up to half of all days of the year will experience heat
and/or humidity conditions that currently only occur on the an-
nual hottest/most humid 2–3 days. With such large increases,
the future heatwave duration metric becomes inappropriate,
and the focus should be on the total number of heatwave days
per year (i.e., the frequency) and the intensity.

For Twbmax heatwaves, the future change in intensity is 56%
higher in CP4 than in P25 (Fig. 7d) and the future change in
frequency is 20% higher in CP4 than P25 (Fig. 7f). For Tmax

heatwaves the future change in intensity is only 10% higher in
CP4 than P25 (Fig. 7j) and the future change in frequency is
actually 5% higher in P25 than CP4 (Fig. 7l). The model differ-
ences and future changes are broadly similar in all six of the
subregions illustrated in Fig. 2 (not shown). Clearly there is
much more disagreement between CP4 and P25 in the future
change of Twbmax heatwaves than Tmax heatwaves. Processes
such as moisture transport, cloud, evaporation, and rainfall are
potentially key drivers of humid heatwaves, and it is known
from previous work that moist processes are generally better
represented in convective-scale models than models with
parameterized convection (Finney et al. 2020; Finney et al.
2019; Jackson et al. 2020; Kendon et al. 2019). The following
section diagnoses and compares the drivers of Twbmax and
Tmax heatwaves over the African continent.

c. Drivers of present-day wet- and dry-bulb heatwaves

Figure 8 shows the mean annual cycle of ERA5 near-surface
humidity, dry- and wet-bulb temperature, and GPM rainfall for
the six subregions illustrated in Fig. 2. The Tmax heatwaves oc-
cur most frequently in the months with the highest mean dry-
bulb temperature, generally before the onset of the rainy sea-
son. For example, Tmax heatwaves occur most frequently in
the Gulf of Guinea (GoG) in February–April before the onset
of the monsoon season in May/June. In contrast, Twbmax heat-
waves occur most frequently at least a month later, when tem-
peratures are still hot but the humidity is beginning to increase.
The difference in the timing of Twbmax and Tmax heatwaves
is largest in the Sahel, where Tmax heatwaves occur in
March–May, consistent with previous studies (Barbier et al.

2018; Guigma et al. 2020; Largeron et al. 2020), but Twbmax

heatwaves occur most frequently in July–September, when the
mean dry-bulb temperature is lower but the mean wet-bulb
temperature and rainfall is highest.

It is important to understand if rainfall is a driver of and/or a
response to humid heatwaves because it is known that models
with parameterized convection struggle to represent rainfall fre-
quency and intensity (Fiedler et al. 2020) and because there may
be a growing risk of compound heat–flood hazards under climate
change (Liao et al. 2021; You and Wang 2021). Figure 9 shows
composites of the anomaly of wet day occurrence 5 days before
(day 25) to 5 days after (day 5) the onset of Twbmax and Tmax

heatwaves, relative to the weighted climatology of wet day occur-
rence (see section 2e). Wet days are defined as daily rainfall accu-
mulations of .1 mm. Table 1 shows the percentage of Twbmax

and Tmax heatwaves where the first day of the heatwave (day 0)
is defined as a wet day, compared to the occurrence of wet days
in the weighted climatology.

ERA5-GPM and all four climate model simulations show a
positive anomaly in wet days between day 25 and day 5 after
the commencement of Twbmax heatwaves (Fig. 9a). For all heat-
wave–climatology rainfall pairs in Table 1 and Fig. 9, the
Wilcoxon matched-pairs signed rank test shows that the
rainfall distributions do not come from the same population
(p ,, 0.01; see section 2f), so the differences in rainfall on
heatwave days and in the climatology are statistically signifi-
cant. The dots on Fig. 9 show where the anomalies are of the
highest statistical significance (see Fig. 9 caption). The wet
day anomaly in ERA5-GPM peaks between day 0 and day 3
of the heatwaves, whereas the peak in the climate models
occurs the day before the onset of the heatwave (day 21).

It is not clear why there is a difference in the timing of the
peak between ERA5-GPM and the models, which means
that, in a pan-African sense at least, it is not clear whether
rainfall drives Twbmax heatwaves through evaporation or if the
rainfall is a consequence of the increased humidity. However,
evaporation from rain that falls during a Twbmax heatwave is
likely to help prolong it by maintaining higher levels of near-
surface humidity. Splitting the plot into the six subregions
provides more insight [see section 3d(2)].

In ERA5-GPM, Twbmax heatwaves commence on wet days
32.3% of the time compared to an occurrence of wet days 22.9%
of the time in climatology; that is, wet days occur almost 10%
more often on the first day of a Twbmax heatwave than they occur
climatologically (Table 1). The pattern in the present-day climate
models is similar but more extreme, with Twbmax heatwaves com-
mencing on wet days 56.5% of the time in P25 (compared to wet
days occurring 34.8% of the time in climatology) and on wet
days 35.0% of the time in CP4 (compared to wet days occurring
16.1% of the time in climatology). For both models, Twbmax heat-
waves commence about 20% more frequently on wet days than
wet days occur in the climatology. The differences in the absolute
percentages are due to the known differences in the distribution
of rainfall intensity in the convective-scale and parameterized
CP4 and P25 models, where parameterized models are known to
have more frequent but lower rainfall rates compared to observa-
tions (see Table S1 for more details; Kendon et al. 2021; Kendon
et al. 2014; Prein et al. 2015). Under climate change, the timing
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of the peak in wet anomaly stays the same (Fig. 9a) but a larger
percentage of Twbmax heatwaves commence on wet days (change
from 35.0% to 40.3% in CP4 and from 56.5% to 58.9% in P25),
even though wet days occur approximately the same amount or
even slightly less frequently in the climatology of the future simu-
lations (Table 1).

The same relationship between present-day heatwaves and
rainfall is not, however, apparent for Tmax heatwaves. More
than 5 days prior to heatwave onset there is a negative anomaly
in wet day occurrence compared to climatology, which peaks at
the onset of the heatwave (Fig. 9b). By day 5 (i.e., after most
heatwaves have finished), the wet day occurrence has returned
to the climatological value. In ERA5, 2.5% of Tmax heatwaves

commence on wet days, compared to wet days occurring on
11.1% of days climatologically (Table 1). Both CP4 and P25 are
in broad agreement with ERA5, in that 0.8% and 3.0% of Tmax

heatwaves, respectively, commence on wet days, compared to
wet days occurring 8.8% and 21.2% of the time, respectively, in
the climatology. There is only a very small change in these per-
centages with climate change.

We now compare the drivers of Twbmax and Tmax heatwaves
in ERA5. Figure 10 shows the mean anomalies of several key
variables averaged over the first 3 days of each Twbmax and
Tmax heatwave diagnosed in ERA5, relative to a weighted cli-
matology (see section 2e). For Twbmax heatwaves, the anomaly
in daily mean dry-bulb temperature is relatively small (10.328C)

FIG. 8. Mean present-day annual cycles over the African subregions, as defined in Fig. 2a: (a) dry-bulb temperature,
(b) wet-bulb temperature, (c), specific humidity from ERA5, and (d) rainfall from GPM. The dots and crosses
represent the three months of the year in each region with the highest occurrence of present-day Twbmax and
Tmax heatwaves, respectively.
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and there is a large (13.2 g kg21) anomaly in daily mean specific
humidity (blue bars, Figs. 10a,b). The anomaly in top of atmo-
sphere outgoing longwave radiation (OLR) is 212 W m22,
which indicates increased cloud occurs during Twbmax heatwaves
compared to climatology. Increased cloud and moisture lead
to a decrease in the surface net shortwave radiation flux,
SWnet, of 5 W m22 and an increase in the surface net longwave
radiation flux, LWnet, of 15 W m22. The sensible heat flux, H,
decreases by 8 W m22 but the latent heat flux, E, increases
by 18 W m22. The sum of the anomalies of the radiative
terms approximately balances the sum of anomalies in the
turbulent fluxes, both with a net anomaly of 110 W m22

(right-hand blue bars, Fig. 10d). Humidity advection is positive
(moistening) but small, at 10.025 g kg21 day21 (Fig. 10e) com-
pared to the anomaly in mean humidity of 13.2 g kg21.
Temperature advection is negative (cooling) and also small, at

20.0228C day21 (Fig. 10f), compared to the anomaly in mean
temperature of 0.328C of the opposite sign.

Conversely, Tmax heatwaves occur during much larger daily
mean dry-bulb temperature anomalies of13.28C and dry specific
humidity anomalies of 21.4 g kg21, compared to climatology.
The OLR anomaly is 113 W m22, indicating lower, warmer
cloud or a lower cloud fraction compared to climatology. SWnet

increases by 13Wm22 and LWnet decreases by a similar amount;
H increases by 3.5 W m22 and E decreases by 8.6 W m22.
Humidity advection is negative (drying) but small, at
20.063 g kg21 day21 (Fig. 10e), compared to the anomaly in
mean humidity of 21.4 g kg21 (Fig. 10b). Temperature ad-
vection is positive (warming) but small, at 10.018C day21

(Fig. 10f), compared to the positive anomaly in mean tem-
perature of 3.28C (Fig. 10a).

In summary, in a pan-African sense, the main drivers of
Twbmax heatwaves are increased atmospheric moisture, cloud,
and rainfall and a low Bowen ratio (high surface latent heat
flux), leading to higher humidity and increased absorption of
longwave radiation within the atmospheric column (i.e., the
water vapor and cloud greenhouse effect). In contrast, Tmax

heatwaves are driven by decreased cloud cover, increased
surface SWnet, and a high Bowen ratio (high surface sensible
heat flux). These results are based on reanalysis, which is
itself a model with parameterized convection. It is likely
that reanalysis is a better representation of dry-bulb heat-
waves because they occur at times without cloud and rainfall
because moist processes are more challenging to represent
in models, especially those with parameterized convection
(Fiedler et al. 2020).

Given the key role of moist processes in Twbmax heatwaves,
their importance for human health (Armstrong et al. 2019), the
fact that the model difference between P25 and CP4 in the future
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FIG. 9. Composite of wet day (.1 mm day21) occurrence during
heatwaves minus wet day occurrence in the weighted climatology
for (a) Twbmax and (b) Tmax heatwaves over the pan-African region.
Day 0 is the first day of each heatwave. The climatological values
take into account the fact that heatwaves do not occur uniformly in
time or space. The climatology is computed by finding a mean of
the frequency of occurrence of wet days in each rainfall category
15 days before and after each heatwave (day 215 and day 15). For
ERA5 and the four climate model simulations, when considering
the full datasets, the heatwave rainfall distributions from days
25 to 5 are all statistically significantly different to climatology
(Wilcoxon matched-pairs signed rank test, p ,, 0.01; see section 2f),
which shows that the rainfall distributions do not come from the
same population. The days marked with a dot are when .90% of
the Wilcoxon tests performed 10 000 times on 1000 randomly
selected difference pairs have a p value of p , 0.001.

TABLE 1. Percentage of Twbmax and Tmax heatwaves associated
with wet days (defined as daily rainfall accumulations of .1 mm).
Data are presented for the first day of each heatwave and a
climatological value for comparison, which is weighted for the
months and locations in which the heatwaves occur: it is a mean
of the rainfall 15 days prior to and 15 days after the first day of
each heatwave. For all heatwave–climatology rainfall pairs the
Wilcoxon matched pairs signed rank test shows that the rainfall
distributions do not come from the same population (p ,, 0.01;
see section 2f). An expanded version of this table, showing, for
each model, the distribution of rainfall daily accumulations on the
first day of each heatwave and the difference between the rainfall
climatologies 15 days prior to and after the first day of each
heatwave is presented in Table S1.

Twbmax (%) Tmax (%)

First day of
heatwave Climatology

First day of
heatwave Climatology

ERA5-GPM 32.3 22.9 2.5 11.1
CP4 35.0 16.1 0.8 8.8
CP4FUT 40.3 14.1 0.9 9.3
P25 56.5 34.8 3.0 21.2
P25FUT 58.9 34.1 2.7 23.8
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FIG. 10. Anomalies relative to climatology of key ERA5 variables over the pan-Africa region during Twbmax

and Tmax heatwaves diagnosed in ERA5: (a) near-surface daily mean dry bulb temperature; (b) near-surface
daily mean specific humidity; (c) outgoing longwave radiation; (d) surface net shortwave radiation, longwave ra-
diation, sensible heat flux, latent heat flux, and the sum of the radiative and turbulent terms; (e) 850-hPa mois-
ture advection; and (f) 850-hPa temperature advection. All variables are averaged over the first 3 days of each
heatwave. All variables are presented as anomalies from the climatological annual cycle (see section 2e), apart
from qadv and Tqdv, which for ease of interpretation are the absolute values. The data for ERA5 are for heat-
waves during the period 2001–19 to align with the availability of GPM rainfall data plotted in Fig. 9. The error
bars represent the standard error.

J OURNAL OF CL IMATE VOLUME 355994

Brought to you by UNIVERSITY OF LEEDS | Unauthenticated | Downloaded 09/13/22 12:50 PM UTC



change in Twbmax heatwaves is much larger than for Tmax

heatwaves (Fig. 7), and the known differences in the repre-
sentation of moist processes in convective-scale and convec-
tion-parameterized models, the remainder of the paper will
focus on Twbmax heatwaves. It will examine the heatwave
metrics and drivers on a regional basis and the reasons why
the convective-scale climate model projects a larger future
change in Twbmax heatwaves.

d. Regional analysis of Twbmax heatwaves

1) SPATIAL VARIABILITY OF TWBMAX HEATWAVES

Figure 11 shows maps of the present-day Twbmax heatwave
metrics in ERA5, P25, and CP4. The white speckling in the
intensity and duration plots illustrates regions where no
heatwaves are diagnosed in the entire 10-yr period. A diag-
nosis of no heatwaves is possible at locations where there
are no occurrences of 3 consecutive hot days. No present-
day heatwaves were diagnosed in 0.4% of ERA5 grid boxes,
4.4% of P25 grid boxes, and 1.0% of CP4 grid boxes. Inten-
sity is fairly uniform to the south of the equator in all three
datasets (Figs. 11a–c). ERA5 produces intensity hotspots in
the Sahel and Sahara, whereas there are many grid boxes in
P25 over the Sahel where no heatwaves are diagnosed over
the 10-yr period. CP4 produces a spatial distribution of intensity
closer to that in ERA5, with an intensity hotspot between
108 and 308N, although it is not as intense as in ERA5. Hotspots
of mean heatwave duration of five or more days and frequency
of four or more heatwave days per year are apparent in ERA5
across the Sahel and Sahara, in East Africa, and along the
southern African west coast (Figs. 11d,h). The spatial distribu-
tion in CP4 is again closer to the distribution in ERA5 than
P25. The hot spot between 108 and 308N in ERA5 is not appar-
ent in P25; rather, it is a region of short duration or no heat-
waves (Figs. 11e,f,i,j).

Maps of the future change in the three heatwave metrics in
P25 and CP4, and the difference in the future change (P25 future
change minus CP4 future change), are shown in Fig. 12. In both
climate models there are hot spots in the future change of
intensity along the equatorial belt between 208S and 58N,
with particularly high values along the GoG coast (Figs. 12a,b).
The highest values, of 13 or more, extend across most of sub-
Saharan North Africa in CP4. Overall, the future change in in-
tensity is larger almost everywhere in CP4 than P25 (mean
changes of 13.67 in CP4 compared with 12.35 in P25; Fig. 7d),
with the largest differences between the two model simulations
58–158N and 108–208S. There are some small patches near the
equator where the change in P25 is greater than in CP4, consis-
tent with the fact that P25 has a greater increase in total column
water vapor nearer the equator, linked to model differences in
the changing Hadley circulation (Jackson et al. 2020; see also
Fig. 5g showing specific humidity).

There is a clear hotspot in the future change in frequency
and duration over equatorial Africa (108S–108N) in both
P25 and CP4, which tends to be larger in the more humid
West African coast and central Africa/Congo rather than
the drier East African region. The future change in duration out-
side this region is up to approximately120 days; however, within

the equatorial belt both models simulate values of greater than
180 days (Figs. 12d,e). The future change in duration in CP4 is
larger overall compared to that in P25 (121 and 115 days,
respectively; Fig. 7e). The change is larger north of ∼78N in
CP4, whereas the change is larger in P25 over GoG and parts
of central Africa. The measure of duration does, however,
break down under climate change as the number of heatwave
days per year increases so much; therefore, it is better to focus
on the intensity and frequency metrics.

There is good agreement between CP4 and P25 in the
spatial distribution of the future change in frequency,
with both models simulating future increases of more than
1200 days yr21 in the equatorial belt, with largest changes
in humid regions, and values of more than 1100 days yr21

elsewhere (Figs. 12h,i). CP4 simulates larger future changes
in frequency than P25 (means of 1178 days yr21 compared
to 1148 days yr21; Fig. 7f) everywhere apart from a small
region in central Africa (Fig. 12j), again consistent with the
greater total column water vapor increase seen in P25 in this
region (Jackson et al. 2020).

In summary, the simulations show that by 2100 under
RCP8.5, conditions experienced on the present-day wet-bulb
heatwave days will be experienced consistently throughout
the hottest/wettest three months of the year and over the
equatorial belt, and these conditions will be experienced up to
50% of the time. The hot spot in the future change in Twbmax

heatwave frequency over equatorial Africa is consistent with
previous global studies (Coffel et al. 2017; Mora et al. 2017)
and is collocated with the area of largest future change in
mean humidity, where humidity increases by more than
2 g kg21 (compared to pan-African increases of ,10.5 g kg21;
Figs. 5a,c).

2) TWBMAX HEATWAVES AND RAINFALL

Figure 13 shows composites of wet day (.1 mm day21)
occurrence relative to climatology around the time of the
onset of Twbmax heatwaves. There are larger, more statisti-
cally significant wet day anomalies over the relatively arid
regions of the Sahara, Sahel, East Africa (EAfrica), and
southern Africa (SAfrica). In the Sahara the peak in wet
day anomaly coincides with the first day of the Twbmax heatwave
in all four datasets. ERA5-GPM wet days occur 23.6% of the
time on the first day of a Twbmax heatwave, compared to wet
days occurring 4.3% of the time in the weighted climatology
(the day 0 percentages for all models and regions are shown
in Table S2). In the Sahel, EAfrica, and SAfrica the picture
is less clear with wet day anomalies peaking between day 21
and day 1 depending on the dataset.

GoG and central Africa (CAfrica) have different behav-
ior, with smaller positive wet day anomalies in the four cli-
mate model simulations and negative anomalies in ERA5-
GPM between day 21 and day 1. GoG and CAfrica can be
considered as moist equatorial regions, and experience a
relatively low-amplitude annual cycle of humidity and wet-
bulb temperature and a relatively high mean annual rainfall
(Figs. 8b–d). Although EAfrica is also within the equatorial
belt, it is generally more arid than GoG and CAfrica, with a
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lower-amplitude mean annual cycle of humidity but more
moderate rainfall.

Apart from in the Sahara, the percentage of Twbmax

heatwaves associated with wet days decreases or stays al-
most the same under climate change in all regions and
both climate models (Fig. 13 and Table S2). Climatologi-
cally, the number of wet days decreases in both P25 and
CP4 (Table S2). The exceptions are in the Sahara, where
wet days increase in both P25 and CP4 and in EAfrica,
where they increase in P25. A broad decrease in wet days
is consistent with Kendon et al. (2019), who report future

increases in dry spell length in the same set of climate model
simulations.

3) DRIVERS OF TWBMAX HEATWAVES

Figure 14 shows the anomalies of key variables averaged
over the first 3 days of each Twbmax heatwave, separately for
each subregion and for ERA5 only. Unlike the equivalent
plot for Tmax heatwaves (Fig. S2), there are large regional dif-
ferences in the sign of the anomalies in the Twbmax heatwave
plot. The Sahel experiences negative dry-bulb temperature

FIG. 11. Present-day Twbmax heatwave metrics: (a)–(c) intensity, (d)–(f) duration, and (h)–(j) frequency for (left) ERA5, (center)
P25, and (right) CP4. The boxes in (a) show the analyzed subregions. The white speckled pixels are regions where no heatwaves in
10 years were diagnosed.
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anomalies (i.e., cooler than climatology), whereas the equatorial
regions of GoG and CAfrica experience positive dry-bulb
temperature anomalies during Twbmax heatwaves (Fig. 14a).
Dry-bulb temperature anomalies in the other regions are small.
There are positive anomalies in specific humidity in all six re-
gions; however, the magnitude is smaller over the already
humid GoG and CAfrica.

Equatorial GoG and CAfrica also behave differently from the
other regions in terms of the anomalies in OLR and the surface
energy budget terms (Fig. 14c). GoG and CAfrica experience
small positive anomalies in OLR (i.e., decreased cloud), which
leads to positive anomalies in SWnet, near-zero anomalies in

LWnet, near-zero anomalies in H, and a small positive anomaly
in E. Conversely, the other regions experience large negative
anomalies in OLR (i.e., increased cloud), which drives negative
SWnet anomalies, positive LWnet anomalies, negative H anoma-
lies, and large positive E anomalies. Moisture and temperature
advection (shown as absolute values, rather than anomalies, for
ease of interpretation in Figs. 14e and 14f) are small in all five
regions.

In summary, the key Twbmax heatwave drivers in the Sahara,
Sahel, EAfrica, and SAfrica are broadly the same as the pan-
African mean in Fig. 10, where high humidity, increased cloud,
increased rainfall, latent heat flux, and longwave warming in the

FIG. 12. Future change in Twbmax heatwave metrics: (a)–(c) intensity, (d)–(f) duration, and (h)–(j) frequency for (left) P25, (center) CP4,
and (right) the difference in the future change (left minus center). The boxes in (a) show the analyzed subregions.
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atmospheric column are important. In the equatorial regions of
GoG and CAfrica, where humidity is climatologically the highest,
Twbmax heatwaves are driven by a mixture of high temperature
and humidity, with decreased cloud and increased shortwave
warming.

4) FUTURE CHANGE IN HEATWAVE DRIVERS

Now we examine the future change in Twbmax heatwave
drivers in P25 and CP4 in order to understand why CP4 simu-
lates a larger future change in Twbmax heatwaves over almost
all parts of Africa. We examine two regions: the Sahel, a re-
gion outside of the equatorial belt, where CP4 simulates a
much larger future change in heatwave intensity and frequency

than P25 (Fig. 15), and CAfrica, a region within the equatorial
belt (i.e., within the future change “hotspot”), where the simu-
lated future change in P25 and CP4 is more similar (Fig. 16).
Plots of the other regions are shown in Figs. S3–S5, where GoG
behaves broadly like CAfrica, and the Sahara, SAfrica, and
EAfrica behave broadly like the Sahel. In Figs. 15 and 16, the
future Twbmax heatwaves are diagnosed using a future climate
(rather than present day) baseline (see section 2c) and the
anomalies are relative to present-day climatology.

In the Sahel, the dry-bulb temperature during Twbmax heat-
waves relative to present-day climatology increases by 6.38
and 5.08C in P25 and CP4, respectively, under climate change
(Fig. 15a). The specific humidity anomaly also increases in
both models but to a larger extent in CP4 (9.3 g kg21 in P25
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FIG. 13. Composites of wet day (.1 mm day21) occurrence during heatwaves minus wet day occurrence in the
weighted climatology for Twbmax heatwaves only of the six subregions. Day 0 is the first day of each heatwave. The
dots represent the days with the largest differences between the heatwave and climatological rainfall distributions
(see the caption of Fig. 9 for more details). The rainfall climatologies are computed in the same way as in Fig. 9.
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FIG. 14. Anomalies relative to climatology of key ERA5 variables by subregion during present-day ERA5
Twbmax heatwaves: (a) near-surface daily mean dry-bulb temperature; (b) near-surface daily mean specific humidity;
(c) outgoing longwave radiation; (d) surface net shortwave radiation, longwave radiation, sensible heat flux, latent
heat flux, and the sum of the radiative and turbulent terms; (e) 850-hPa moisture advection; and (f) 850-hPa tem-
perature advection. All variables are averaged over the first 3 days of each heatwave. All variables are presented
as anomalies from the climatological annual cycle (see section 2e), apart from qadv and Tqdv, which for ease of
interpretation are the absolute values. The data for ERA5 are for heatwaves during the period 2001–19 to align
with the availability of the GPM rainfall data plotted in Fig. 13. The error bars represent the standard error.
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compared to 12.6 g kg21 in CP4; Fig. 15b). Cloud during
Twbmax heatwaves decreases slightly in the future in both P25
and CP4; that is, the future heatwaves occur over slightly less
cloudy skies (Fig. 15c). The main difference between P25 and
CP4 is the increase in LWnet warming and the increase in la-
tent heat flux (Fig. 15d). The future increase in LWnet

warming is 9.2 W m22 in P25 and 21.2 W m22 in CP4 and
the future increase in latent heat flux is 6.1 W m22 in P25 and
28.8 W m22 in CP4; both of these increases are much larger in
CP4 than P25. For the present-day anomalies, P25 is generally
in better agreement with ERA5 than CP4. However, given that
ERA5 is also produced from a model with parameterized con-
vection, in a region with limited in situ observations, it is not

possible to determine whether P25 or CP4 is a better represen-
tation of reality.

In CAfrica, the future increases in the dry-bulb temperature
and specific humidity anomalies are similar in P25 and CP4
and are on the order of158–68C and17–8 g kg21, respectively
(Figs. 16a and 16b). Cloud cover becomes even less prevalent
during Twbmax heatwaves in the future (i.e., the heatwaves
occur over clearer skies), and this change is larger in P25
(110.9 W m22) than CP4 (15.68 W m22). The P25 2 CP4
difference in the future change in the anomalies in Fig. 16d
is much smaller in CAfrica than the Sahel. For example, the
future change in LWnet anomaly is 19.2 and 110.4 W m22

for P25 and CP4, respectively, in CAfrica, compared to

FIG. 15. Mean anomalies of key variables averaged over the first 3 days of each Twbmax heatwave over the Sahel, relative to a representative
mean annual cycle (see section 2e) for ERA5 and the four climate model simulations. The bars for P25FUT and CP4FUT represent heat-
waves diagnosed using the future climate baseline (see section 2c) and are anomalies from the present-day annual cycle. The numbers under
the P25 and CP4 present-day/future climate bar pairs show the future change in the anomaly of each variable. The error bars represent the
standard error.
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19.1 and 121.1 W m22 in the Sahel. This is also the case
for the latent heat flux, where the values in CAfrica are
18.1 and 18.2 W m22 for P25 and CP4, respectively, com-
pared to 16.1 and 128.8 W m22 in the Sahel.

4. Discussion and conclusions

The present-day and future wet- and dry-bulb heatwaves are
assessed in 10-yr convective-scale (CP4; 4.5 km) and parameter-
ized convection (P25, 25km) simulations over the entire African
continent. Compared to reanalysis, CP4 better reproduces the
intensity and frequency of wet-bulb heatwaves (and their spatial
distribution) than P25. For dry-bulb heatwaves, the difference
between the two climate model simulations is much smaller,
with both in good agreement with reanalysis and observations.

Both CP4 and P25 show large increases in the intensity, dura-
tion, and frequency of dry- (Tmax) and wet-bulb (Twbmax)

heatwaves by 2100 under RCP8.5. Present-day conditions that
occur on 3–6 heatwave days per year are expected to be normal
by 2100, occurring on 150–180 days per year. Huge future in-
creases such as this are consistent with previous global and re-
gional studies (Coffel et al. 2017; Mora et al. 2017; Russo et al.
2017).

P25 and CP4 simulate similar future changes in Tmax heat-
waves; however, the future change in Twbmax heatwaves is larger
in CP4 than P25: future changes in intensity are13.67 compared
to 12.35 and future changes in frequency are 1178 days yr21

compared to1148 days yr21. The difference in the future change
between the two model simulations occurs despite very similar
future increases in the mean specific humidity and dry-bulb
temperature. Both CP4 and P25 have a cold and dry bias in
their mean climate, which is common for climate models in the
tropics (Zhao et al. 2015). These biases in the mean climate
will cause absolute values of wet-bulb temperature to be

FIG. 16. As in Fig. 15, but for CAfrica.
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biased too low, which is not an issue for the percentile-based
heatwave metric used in this study but is an issue for measures
of humid heatwaves that use absolute thresholds, such as the
survivability threshold of 358C in wet-bulb temperature, where
sweating becomes ineffective (Sherwood and Huber 2010).
Bias correction may not be possible due to the lack of routine
humidity observations over Africa.

This study uses reanalysis to document the differences in the
present-day drivers of Tmax and Twbmax heatwaves over the entire
African continent. The timing of Tmax and Twbmax heatwave
events within the annual cycle is different. The Tmax heatwaves
occur in the warm and dry premonsoon months, such as
March–May in the Sahel, consistent with previous literature
(Barbier et al. 2018; Fontaine et al. 2013; Guigma et al. 2020),
whereas Twbmax heatwaves tend to occur at the start and/or dur-
ing the rainy season (July–September in the Sahel), when tem-
peratures remain reasonably high but humidity increases.

African Tmax heatwaves are associated with low rainfall (only
2.5% of Tmax heatwaves commence on wet days), decreased
humidity and cloud, higher shortwave surface warming, and a
high sensible heat flux. This is in broad agreement with Bouniol
et al. (2021) and Hong et al. (2018), who both found similar
drivers from observations for Tmax heatwaves over the Sahel
and the Korean Peninsula, respectively. In contrast, African
Twbmax heatwaves are associated with much larger humidity
anomalies than dry-bulb temperature anomalies. They are
associated with rainfall, increased cloud and humidity, increased
evaporation, and increased longwave warming within the atmo-
spheric column (i.e., the greenhouse warming effect). In ERA5,
32% of Twbmax heatwaves commence on wet days, compared to
wet days occurring 23% of the time in a weighted climatology.
Through the process of evaporation, soil moisture could be a key
driver of African humid heatwaves during the wet season and
should be a focus of future research. In a pan-African sense,
moisture and temperature advection appear to play only a
limited role in both types of heatwaves.

The Twbmax heatwave drivers documented here, which are as-
sociated with moist processes, are similar to those diagnosed by
Bouniol et al. (2021) for daily minimum dry-bulb temperature
(Tmin) heatwaves. Given that both Tmin and Twbmax heatwaves
are associated with increases in humidity, it is possible that the
differences between P25 and CP4 for Tmin heatwaves would be
the similar to those documented here for Twbmax heatwaves.
Bouniol et al. (2021) also found reduced and increased aerosol
load during Tmax and Tmin heatwaves, respectively. Dust and
aerosol are not considered in this study, but their impact on
Twbmax heatwaves should be explored in future work.

Both P25 and CP4 simulate a hot spot of large future change
in Twbmax heatwaves over the equatorial regions of Africa, con-
sistent with previous research on humid heatwaves (Coffel et al.
2017; Mora et al. 2017). This hotspot is collocated with a large
future increase in mean specific humidity over the equator in
both models. This study, for the first time, compares the drivers
of present day Twbmax heatwaves over different regions of
Africa. Outside the equatorial belt, the drivers of Twbmax

heatwaves are similar to the pan-African mean described
above. The equatorial belt is climatologically moister and
experiences higher rainfall than elsewhere. In contrast to

elsewhere, Twbmax heatwaves here are driven by both tempera-
ture and humidity anomalies (rather than predominantly by hu-
midity). The heatwaves occur under increased shortwave surface
heating at the same time as increased evaporation from rainfall.
Large regional variations in the drivers of African humid heat-
waves (relative to the more consistent drivers of Tmax heatwaves)
is consistent with the findings of Raymond et al. (2021), who
studied a number of different regions around the world.

The results from this study highlight the potential for an
increase in co-occurring or consecutive events (“compound
hazards”) of African heatwaves, heavy rainfall, and flood-
ing, as has been observed in other regions such as China and
the United States (Liao et al. 2021; Raghavendra et al. 2019;
You and Wang 2021). Both P25 and CP4 simulate future in-
creases in the percentage of Twbmax heatwaves that occur on
days with .10 mm daily rainfall accumulations. In CP4 this in-
crease extends to days with.50 mm daily rainfall accumulations
(Table S1). Humid heat events occurring at the same time as
heavy rainfall and flooding could potentially overwhelm road,
hospital, and power infrastructure and lead to a higher number
of fatalities and more economic damage than if these events oc-
curred in isolation (Zhang and Villarini 2020).

The Twbmax heatwaves are driven by moist processes. The
fundamental difference between CP4 and P25 model configura-
tions is the representation of convection, so the reason for the
larger future change in humid heatwaves in CP4 must originate
from its representation of moist processes. CP4 simulates larger
anomalies than P25 in almost all the key Twbmax heatwave drivers
(temperature, humidity, cloud, rainfall, radiation, turbulent fluxes)
in the future compared to the present day. This is true in all the
sub regions apart from the equatorial regions of central Africa
and the Gulf of Guinea, where the difference in the future change
in Twbmax heatwaves in P25 and CP4 is much smaller. Previous
studies show that convective-scale climate models are better able
to represent extremes and respond realistically to environmental
controls, giving a greater intensification of rainfall under climate
change (Ban et al. 2020; Birch et al. 2014a; Chan et al. 2016;
Finney et al. 2020; Finney et al. 2019; Fitzpatrick et al. 2020b;
Jackson et al. 2020; Prein et al. 2015).

Climate models with parameterized convection, such as those
used in the Coupled Model Intercomparison Project (CMIP),
have similar issues with moist processes as P25 (Fiedler et al.
2020), so CMIP projections may also underestimate the fu-
ture change in humid heatwaves. This heightens the need
for mitigation and adaptation strategies and also indicates
that, if anything, there is even less time available to imple-
ment such changes to avoid catastrophic future heat condi-
tions than previously thought.

The analysis in this study has highlighted that it is critical to ac-
count for the fact that the mean diurnal cycle of humidity is out
of phase with the mean diurnal cycle of dry-bulb temperature:
specific humidity peaks overnight but dry-bulb temperature
peaks during the day. Previous studies using CMIP5 models
(Coffel et al. 2017; Russo et al. 2017), for example, necessarily
use daily mean specific humidity to convert daily maximum
dry-bulb temperature to daily maximum wet-bulb temperature,
because subdaily diagnostics are generally unavailable. Analysis
in this study shows that the values of daily maximum wet-bulb
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temperature and the subsequent heatwave diagnostics that are
computed can be very sensitive to the way the daily maximum
wet-bulb temperature is computed. Climate model simulations
that are run in the future should, if practical, output hourly tem-
perature and humidity data, or implement the computation of
heat stress metrics within the model simulation, as recom-
mended by Buzan et al. (2015).
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Banizoumbou, Niamey, Niger are freely available from
AMMA-CATCH at http://bd.amma-catch.org/ as cited in
Lebel et al. (2009), and the data from Skukuza, South Africa,
are available from https://fluxnet.org/. The daily satellite rain-
fall retrievals used in this study are freely available from God-
dard Earth Sciences Data and Information Services Centre at

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary,
as cited in Huffman et al. (2014). The ERA5 reanalysis data are
also freely available from the Copernicus Climate Change Service
(C3S) Climate Data Store at https://doi.org/10.24381/cds.adbb2d47
and https://doi.org/10.24381/cds.bd0915c6 as cited in Hersbach
et al. (2020).

REFERENCES
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