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ABSTRACT

One challenge in establishing an effective structural health monitoring (SHM) sys-

tem is the impact of environmental variability on damage identification. It is therefore,

advantageous to consider any environmental effects when conducting sensor placement

optimisation (SPO). One approach to this problem is to check the robustness of SPO

technique to environmental variations and consider whether it is necessary to take ac-

count of these environmental factors as part of the optimisation process.

This paper will study the robustness of an SPO method to variations in the ambient

temperature of the structure. Two kinds of data, including the mode shapes and the

Mahalanobis squared-distance (MSD), from tests on a glider wing structure are used

as features for SPO separately. This structure was set up and tested in different health

states across a series of controlled temperatures. The results show that the SPO results

obtained via the mode shapes are robust to the temperature variation, while the SPO

results corresponding to MSD are sensitive to temperature changes.

INTRODUCTION

Sensor placement optimisation (SPO) is an essential technique by which a sensor

system is optimised for a specific objective to provide an effective structural health mon-

itoring (SHM) system. This process includes the selection of the number of sensors

and the distribution of sensor spatial locations. The non-trivial step for this technique is

to select an appropriate optimisation objective to evaluate the performance of a sensor

system.

According to the type of data used in the SPO process, including the modal param-

eters, time-series data and frequency-domain data, SPO techniques and corresponding

optimisation objectives can be discussed as follows. SPO techniques combined with

modal parameters (such as natural frequency and the mode shape) have been developed

to maximise the observability of the target modes [1], or the estimation accuracy of the

target mode response [2]. SPO techniques combined with time-series data (such as the
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Figure 1. Labelled positions of significant points on the glider wing.

measured acceleration and strain) or frequency-domain data (such as the frequency re-

sponse function (FRF) or the transmissibility function) have been developed to maximise

the function of a statistical model [3, 4], or the accuracy of a structural parameter modi-

fication [5]. The robustness of optimal sensor placements obtained by two types of data,

including mode shapes and FRFs, will be studied in this paper.

Because distinguishing the impact of damage from the impact of environmental

changes is a major challenge in SHM, many studies in the literature have focussed on this

issue [6–10]. Considering the availability of environmental variables, the approaches to

dealing with the confounding effects can be divided into three types. When the measure-

ments of environmental variables are accessible, the behaviours of the structure under

each environmental condition can be explicitly modelled and the relationship between

them can be established, as demonstrated by [6] and [8]. In contrast, some approaches,

such as those developed by [7] and [9], can derive damage-sensitive features robust to

environmental variations without using environmental measurements. In the case when

the environmental measurements are partially available, how to make full use of data to

eliminate environmental effects was discussed in [10].

In this paper, rather than exploring the SPO methods considering environmental ef-

fects, the necessity of taking account of environmental variations into the SPO process

will be studied and discussed. The variation of one environmental parameter, tempera-

ture, is used as an example to specifically discuss its effect on the SPO results and an

experiment on a glider wing is specially designed to provide suitable data sets.

The rest of the paper is organised as follows: Section 2 describes the experimen-

tal setup and collected data. Section 3 introduces two optimisation objectives and cor-

responding approaches to search out the optimal results. The results are discussed in

Section 4, followed by the conclusions in Section 5.

EXPERIMENT SETUP AND DATA SET

A series of tests were performed on a glider wing to provide a data set suitable for

this research. 36 candidate sensor locations are available as shown in Figure 1, which are

drawn to scale. Damage is simulated by adding a mass block (60g) onto the structure. As

demonstrated in Figure 1, two damage cases are considered: mass addition at locations

M1 and M2.
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Figure 2. The first three mode shapes of the glider wing.

A Gaussian white-noise excitation was generated and applied to the wing at a point

between sensor 22 and sensor 23 using an ETS solutions VT100 electrodynamic shaker.

FRFs were measured using PCB resonant piezoelectric accelerometers. The frequency

range was 0-4096 Hz with frequency resolution 0.25 Hz. Six temperatures are consid-

ered: 0, 5, 10, 15, 20, 25 ◦C. At each temperature, one FRF, the average of 20 measure-

ments, was measured firstly, followed by 25 ‘one-shot’-measurements of FRFs, and then

another 20-averaged FRF.

Two types of data sets, including the mode shapes and the FRFs, were used to study

the robustness of the optimal sensor placement. For the mode shape data set, the first

three mode shapes were chosen and extracted from the 20-averaged FRFs to form the

target mode matrix for each temperature. These mode shapes and corresponding natural

frequencies at three different temperatures are shown in Figure 2.

For the FRF data set consisting of 25 single-averaged FRFs for each structural state

at each temperature, the Mahalanobis squared-distance (MSD) was calculated for a se-

lected frequency range to form a feature matrix, which can naturally eliminate the noise

effect when all data have a similar noise level [11]. The adopted frequency range was 10

Hz to 50 Hz, covering the three natural frequencies corresponding to the three selected

mode shapes. The equation to calculate MSD-based features is [12],

D2
M = (x− µ̄)⊤S−1(x− µ̄) (1)

where x is a vector referring to an observation, µ̄ and S are the sample mean value and

covariance matrix for a set of baseline observations respectively. ⊤ indicates transpose.

A feature-bagging method is also used to avoid the singular covariance used in the MSD

calculation by sampling spectral lines with repetition among a relatively-broad frequency

range and averaging the features calculated from M sample data sets of spectral lines
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Figure 3. MSD-based features extracted from three sensors 5, 14 and 31

[11]. Features from three sensors 5, 14 and 31 collected at three temperatures are given

as examples, as plotted in Figure 3.

OPTIMISATION TECHNIQUES

For the SPO using mode shapes as features, a trace-based criterion (introduced in

Section 3.1) combined with an iterative technique is adopted to find a sub-optimal result

under different temperatures. For the SPO using MSD-based features, another criterion

based on the canonical correlation coefficient (CCC) is applied, which will be introduced

in Section 3.2. A fast calculation approach for this criterion, combined with a greedy

search is used to find the sub-optimal solution for different temperatures.

These two SPO technologies may sacrifice the performance of the designed sensor

system to a certain extent, but they have higher computational efficiency. This means

they are still practical when the size of search space is large, which is common in prac-

tice. In the following part, the word sub-optimal is replaced with optimal, keeping in

mind the greedy nature of the algorithms.

Effective independence

One trace-based criterion used for the SPO based on mode shapes is referred to as

effective independence (EI). Assume that there are limited candidate sensor locations

and J modes to be identified. Suppose I sensors will be selected from the candidate

sensors. For the sth combination of the I sensor locations, the outputs of these chosen

sensors are described by a vector y ∈ RI×1, which is given by,

ys = Φsqs + ϵs (2)

where Φs ∈ RI×J is the sth target modal matrix, qs ∈ RJ×1 is the vector of the target

modal coordinates and ϵs ∈ RI×1 is the vector of measurement noise at these selected

sensors, which is assumed to be zero-mean Gaussian noise and of equal variance σ2. The

least-squares estimation of the target modal coordinates for the sth sensor combination

can be expressed as [1],

q̂s = (Φ⊤

s Φs)
−1Φ⊤

s ys (3)



The covariance matrix of the estimation error of the q̂s is given by [1],

Fq̂s
= σ2(Φ⊤

s Φs)
−1 (4)

where Φ⊤

s Φs is termed as the Fisher information matrix (FIM). According to the Gauss–Markov

theorem [13], minimisation of this covariance matrix can help to obtain the best linear

unbiased estimator of q̂s. Referring to (4), it can be realised by maximising the FIM.

Considering the contribution of each senor location, the FIM can be written as,

Φ⊤

s Φs =
I

∑

i=1

Φi⊤
s Φi

s (5)

where Φi
s is the ith row of the target modal matrix Φs corresponding to the ith sensor

location. It can be seen that each sensor location contributes some information to the

FIM. In order to quantitatively evaluate the contribution of each location, the following

eigenvalue equation can be solved,

(Φ⊤

s Φs − λsI)Ψs = 0 (6)

where I is an identity matrix. A relationship between the sensor locations and each

eigenvalue can then be acquired by calculating the square of Φi
s in terms of the basis

formed by the columns Ψs, which can be expressed as,

G = (ΦsΨs)⊗ (ΦsΨs) (7)

where the symbol ⊗ represents the element-wise product and the summation of jth col-

umn of G is equal to the jth eigenvalue of Φ⊤

s Φs. To make it possible to compare the

contribution of each sensor location to the identification of J selected modes, the ma-

trix G is right-multiplied by the inverse of the diagonal matrix λs = Ψ⊤

s (Φ
⊤

s Φs)Ψs to

rescale the columns, and then written as,

FE = (ΦsΨs)⊗ (ΦsΨs)λ
−1
s (8)

The sum of each column of FE is equal to 1, which means that the contribution of one

sensor location to identifying any selected mode can be quantitatively evaluated on the

same scale, that is, within a range from 0 to 1. Thus, the sum of the ith row can be used

to evaluate the contribution of the ith sensor location to the identification of J mode

shapes.

On this basis, the vector composed of the sum of each row of FE can be defined as

the independence distribution vector Ed, which can be formulated as the diagonal of an

idempotent matrix,

E = ΦsΨsλ
−1
s Ψ⊤

s Φ
⊤

s

= Φs(Φ
⊤

s Φs)
−1Φ⊤

s

(9)

where E is known as the projection matrix. Because the trace of an idempotent matrix

is equal to its rank [14], the diagonal terms of the projection matrix E represent the

contributions of the corresponding sensor locations to the linear independence of its

columns or the mode shapes.



The values in the independence distribution vector Ed corresponding to sensor loca-

tions will be updated for each iteration of the SPO, which can indicate the importance

of a sensor location to the independent information. Locations with small values in Ed

can be removed at each iteration until a desired number of sensors are left. In this paper,

only one sensor is removed at each iteration.

Furthermore, because sensor locations with low signal strength can be selected in the

EI method, in this paper, the average driving-point residue (ADPR) is combined with the

independence distribution vector Ed to overcome this issue by constructing the vector

EEI−DPR
d [15]. One entry in EEI−DPR

d for the ith degree of freedom is given by,

EEI−DPR
di

= Edi

J
∑

j=1

φ2
ij

ωj

(10)

where Edi is the ith entry in Ed. φij is the entry corresponding to the ith degree of

freedom of the jth target mode in a target modal matrix. ωj is the natural frequency

corresponding to the jth target mode.

Sum of squared canonical correlation coefficients

For the features extracted from the frequency domain data, the objective function

adopted here is based on the CCC; This coefficient is designed to measure the maximal

linear association between a set of independent variables X and a set of other variables Y

dependent on X [16]. It can be realised by finding L pairs of projection directions αl and

βl, so that the Pearson’s correlation coefficient between XCαl and YCβl is maximised,

i.e.,

R(X,Y) ≜ max
αl,βl

r(Xαl,Yβl)

≜ max
αl,βl

α⊤

l X
⊤

CYCβl
√

α⊤

l X
⊤

CXCαl

√

β⊤

l Y
⊤

CYCβl

(11)

where XC = X − X and YC = Y − Y. X and Y are the means of columns of X

and Y respectively. R(·) refers to the CCC and r(·) refers to the Pearson’s correlation

coefficient. In this paper, a matrix X ∈ R
K×N represents the K observations with

N independent features. A matrix Y ∈ R
K×M represents labels associated with each

observation. If the Xαl and Yβl are standardised to have unit variance, (11) can be

expressed as,

max
αl,βl

α⊤

l X
⊤

CYCβl, s.t. α⊤

l X
⊤

CXCαl = 1, β⊤

l Y
⊤

CYCβl = 1 (12)

This equation is similar to (5) and the corresponding projection directions αl ∈ R
N×1

and βl ∈ R
M×1 can be obtained by solving the eigenvalue equations given by [17],

[

(X⊤

CXC)
−1X⊤

CYC(Y
⊤

CYC)
−1Y⊤

CXC − λlI
]

αl = 0 (13a)

[

(Y⊤

CYC)
−1Y⊤

CXC(X
⊤

CXC)
−1X⊤

CYC − λlI
]

βl = 0 (13b)

where the eigenvalue λl equals to the R2
l (X,Y) and the maximum number of non-zero

eigenvalues is not more than min(N, M), that is, L is not more than min(N, M).



On this basis, the sum of non-zero eigenvalues, i.e., the sum of squared canonical

correlation coefficients (SSC), is adopted as a criterion for evaluating the effectiveness

of a feature set from a sensor set to infer the structural state.

According to [18], the calculation speed of this criterion can be accelerated by the

orthogonalisation of the feature matrix XC and the label matrix YC. Here, W ∈ R
K×N

and V ∈ R
K×M are orthogonal bases for the column space of XC and the column space

of YC respectively. The SSC can be calculated by,

min(N,M)
∑

l=1

R2
l (X,Y) =

min(N,M)
∑

l=1

R2
l (W,V) =

N
∑

n=1

M
∑

m=1

r2(wn,vm) (14)

where,

W = (w1, . . . ,wN), V = (v1, . . . ,vM)

By combining with a greedy search, the calculation of this criterion at each iteration is

given by,

min((p+q),M)
∑

l=1

R2
l ((Xs,Xr),Y) =

min(p,M)
∑

l=1

R2
l (Ws,V) +

min(q,M)
∑

l=1

R2
l (Wr,V) (15)

where Xs is composed of the p selected features in the previous steps and Xr represents

the features to be selected at the current step. Ws ∈ R
K×p and Wr ∈ R

K×q are orthog-

onal bases for the column space of Xs and the column space of Xr respectively. Wr is

orthogonal to Ws.

The iterative calculation is also applied in this part but one sensor is added rather

than reduced at each iteration of a greedy search, i.e., q = 1 in (15). Thus, the matrix

Wr ∈ R
K×q in (15) degenerates to the vector wr ∈ R

K×1 and wr is orthogonal to Ws.

At each iteration, the sensor which can provide a feature to maximise R2
l (wr,V) will be

selected until the required number of sensors is reached.

Note that the labels can usually be represented by a vector, i.e., M = 1. In this

situation, the applied criterion reduces to the squared multiple correlation coefficient

R2(X,y). However, M > 1 may happen, for example, when the responses are multi-

class categorical labels, which do not have an inherent order. This is the situation in

this paper. These labels can be dummy encoded to a matrix Y, in which each category

is transformed into a set of binary variables to use M variables to represent (M + 1)
categories. One advantage of the dummy encoding is that it can make the label matrix

Y remain full column rank after subtracting its column mean.

RESULTS AND DISCUSSION

Three to ten sensors are selected in all cases. The optimal results for the SPO based

on mode shapes are shown in Figure 4. It can be seen that the obtained sensor distri-

butions with a fixed number of sensors always contain the same sensor at all controlled

temperatures. When considering all the optimal sensor distributions, two sensors, in-

cluding sensors 10 and 36, will always be selected at all temperatures.

The signal strength is then taken into account in the optimisation process by using

the modified distribution vector EEI−DPR
d . The optimal results are visualised in Figure
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Figure 4. Histogram of the EI-based optimal sensor distributions.
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Figure 5. Histogram of the EI-DPR-based optimal sensor distributions.

5. It was found that there is a significant increase in the number of the same sensors

contained in the optimal sensor distributions corresponding to different temperatures.

When considering all the optimal sensor distributions, although there are still two sensors

(12 and 36) selected at all temperatures, the total number of selected sensors decreases

from 16 to 13.

Compared with the EI optimisation results, the results corresponding to EI-DRP are

more robust to temperature variations. This phenomenon is reasonable considering the

effect of the signal-to-noise ratio. A sensor combination composed of sensors with a low
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Figure 6. Histogram of the SSC-based optimal sensor distributions for M1 detection.

3 sensors

1 8 15 22 29 36
0

2

4

6
4 sensors

1 8 15 22 29 36
0

2

4

6
5 sensors

1 8 15 22 29 36
0

2

4

6

6 sensors

1 8 15 22 29 36
0

2

4

6
7 sensors

1 8 15 22 29 36
0

2

4

6
8 sensors

1 8 15 22 29 36
0

2

4

6

9 sensors

1 8 15 22 29 36
0

2

4

6
10 sensors

1 8 15 22 29 36
0

2

4

6
3 to 10 sensors

1 8 15 22 29 36

Sensor number

0

20

40

S
e
le

c
ti
o
n
 t
im

e
s

0°C 5°C 10°C 15°C 20°C 25°C

Figure 7. Histogram of the SSC-based optimal sensor distributions for M1M2 detection.

signal-to-noise ratio can provide a modal data set that is more robust to the changes of

temperature. In summary, it is acceptable to ignore the temperature factor in the SPO

based on the mode shapes, especially for the case with the signal strength considered.

The optimal results of the MSD-based SPO designed for M1 detection are shown in

Figure 6. The results optimised for the detection of M1 and M2 are shown in Figure

7. When considering all the optimal sensor distributions with the number of sensors

from three to ten, there are 32 and 31 sensors contained in these optimal distributions

designed for the two mentioned tasks respectively. The number of the sensors contained



in these optimal results is obviously larger that that obtained by the SPO based on the

mode shapes. Furthermore, no sensor is always selected at all temperatures for any

cases. Therefore, for the SPO with MSD-based features, the temperature effect should

obviously be considered in the optimisation process.

CONCLUSIONS

This paper analyses the robustness of two SPO techniques to environmental varia-

tions, to illustrate the effect of an environmental parameter in the optimisation process.

Two commonly-used data types are considered, i.e., mode shapes and MSD-based fea-

tures; the entire process is demonstrated in detail with temperature as an example.

Data of a glider wing collected at different temperatures are used for a case study.

Mode shapes are combined with EI and EI-DRP technologies to optimise the sensor

combinations for modal identification. In addition, MSD-based features are combined

with a greedy search to optimise the sensor deployments for damage identification. A

fast calculation of the optimisation objective, SSC, is adopted to speed up the calculation.

The results mainly show that the modal features from the candidate sensors have a

more consistent relationship at different temperatures, especially when the signal am-

plitude is considered. Hence, the participation of temperature is avoidable for the SPO

based on mode shapes. In contrast, the relationship of MSD features for different struc-

tural states is greatly affected by temperature. Therefore, SPO using MSD-based features

inevitably must take this environmental factor into consideration.
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