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ARTICLE INFO ABSTRACT
Keywords: Background: COVID-19 infected millions of people and increased mortality worldwide. Patients with suspected
COVID-19

COVID-19 utilised emergency medical services (EMS) and attended emergency departments, resulting in
increased pressures and waiting times. Rapid and accurate decision-making is required to identify patients
at high-risk of clinical deterioration following COVID-19 infection, whilst also avoiding unnecessary hospital
admissions. Our study aimed to develop artificial intelligence models to predict adverse outcomes in suspected
COVID-19 patients attended by EMS clinicians.

Method: Linked ambulance service data were obtained for 7,549 adult patients with suspected COVID-19
infection attended by EMS clinicians in the Yorkshire and Humber region (England) from 18-03-2020 to 29-
06-2020. We used support vector machines (SVM), extreme gradient boosting, artificial neural network (ANN)
models, ensemble learning methods and logistic regression to predict the primary outcome (death or need
for organ support within 30 days). Models were compared with two baselines: the decision made by EMS
clinicians to convey patients to hospital, and the PRIEST clinical severity score.

Results: Of the 7,549 patients attended by EMS clinicians, 1,330 (17.6%) experienced the primary outcome.
Machine Learning methods showed slight improvements in sensitivity over baseline results. Further improve-
ments were obtained using stacking ensemble methods, the best geometric mean (GM) results were obtained
using SVM and ANN as base learners when maximising sensitivity and specificity.

Conclusions: These methods could potentially reduce the numbers of patients conveyed to hospital without a
concomitant increase in adverse outcomes. Further work is required to test the models externally and develop
an automated system for use in clinical settings.

Emergency services
Support vector machine
Extreme gradient boosting
Artificial neural networks
Stacking ensemble
Logistic regression

1. Introduction and background during such times, and to optimise the use of limited available health

care resources, risk assessment tools are required. These tools identify

Following the first occurrence of the SARS-CoV-2 virus in late 2019,
the virus spread quickly and led to the global COVID-19 pandemic,
threatening the health and lives of millions of people world-wide. Emer-

patients at greatest risk of adverse outcomes whilst simultaneously
avoiding overwhelming emergency and hospital services with patients

gency medical services (EMS) in the UK reported up to three times the
expected number of emergency calls during the first and second waves
of the pandemic, an increase also observed in other parts of Europe [1,
2]. Surges in demand led to some EMS in the UK declaring major
incidents and warning of care being compromised by overwhelming
demand. In order to manage and meet the demands on these services
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who will not deteriorate or require hospital treatment. Managing this
clinical risk for patients with COVID-19 infection is complex, and cur-
rently relies on rapid assessment by health care professionals: machine
learning (ML) and artificial intelligence (AI) have the potential to
support health care professions with their clinical decision-making.
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Advances in ML and Al methods have enabled more accurate predic-
tive models to be developed to improve decision-making relating to the
treatment and management of patients, as well as improving the organ-
isation and delivery of health services [3-5]. Developing and applying
such tools for use during the COVID-19 pandemic, as well as for future
pandemics, could help create better tools to support decision-making,
helping alleviate pressures on EMS and prioritise care requirements.
Early reviews of the use of Al for tackling COVID-19, by Nguyen et al.
[6] and Abd-Alrazaq et al. [7], identified five main uses of Al against
the disease: diagnosis, treatment and vaccines, epidemiology, patient
outcomes and infodemiology. ML and Al methods offer advantages over
traditional methods of analysis [8] that may be of particular benefit for
tackling the problems arising from the pandemic.

The rapid spread of the virus and dramatic increase in infections
around the world, generated a significant volume of patient-related
data. Al methods are particularly suited to handling and analysing large
datasets [7,8], and are adept at learning from patterns in data as they
emerge over time. In recent years, Al methods have been developed
and applied in a variety of clinical contexts to improve decision-making
when accuracy and speed of decision-making is vital: the COVID-19
pandemic also requires accurate and rapid decision making to reduce
the risk of complications and mortality in patients.

Jamshidi et al. [8] and Nguyen et al. [6] reviewed the use of Al
for medical diagnosis using imaging and value-based data. Whilst the
former paper discusses the potential of Al approaches for overcoming
COVID-19 related challenges using a variety of strategies, the latter
paper focused on the use of Al for analysing data from medical images,
text from public conversations (e.g., Twitter) and news feeds, and
smartphone-based data such as location.

In order to prioritise the treatment of COVID-19 patients by EMS,
efforts have been made to improve methods of diagnosing the condition
and of identifying patients at greatest risk of deterioration and adverse
health outcomes. Abd-Alrazaq et al. [7] identified 14 early studies
that had used AI for outcome-related functions, including assessing the
severity of the disease (n = 9), predicting progression to severe COVID-
19 (n = 4), predicting hospital length of stay (n = 1) and mortality (n
= 2) and identifying predictors of mortality (n = 1). Given the need for
prioritising EMS during the COVID-19 pandemic, we were interested in
developing models to predict adverse health outcomes, which could be
used to triage the need for hospitalisation, among patients for whom
suspected or confirmed COVID-19 infection had been recorded by EMS
clinicians.

Despite the work demonstrating the potential of Al in combating
the COVID-19 pandemic, there have been challenges in relation to
the available data. An important limitation of using Al for developing
predictive models in medicine is that many of these models are at high
risk of bias [9], due to the small size of the datasets that may be
available for training, and then testing, the classification models. For
example, in a recent review by [10], it was reported that the median
number of cases in datasets that use AI to make clinical scores was
214. The review of the use of Al for tackling COVID-19 by Abd-Alrazaq
et al. [7] reported that half of the datasets considered in their review
included fewer than 1000 patients. Training predictive models using
small numbers of cases makes the classification models more prone to
overfitting and leads to a high risk of bias. Studies utilising a greater
number of cases are therefore required in order to develop better
predictive models: our study utilised data from over 7500 patients,
based on a priori sample size calculations outlined below [11], to reduce
the risk of overfitting and bias.

The aim of our study was to use statistical and AI methods to de-
velop models that would help predict whether patients with suspected
COVID-19 would experience adverse health outcomes within 30 days of
an initial assessment by EMS staff, and compare these with decisions
made using an existing tool and by EMS staff. We propose a hybrid
model, which merges the benefits of: (a) statistical, (b) machine learn-
ing and (c) deep learning methods, using a stacking ensemble approach.
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The proposed approach was useful for predicting patients at high risk
and suggested that the performance of the stacking ensemble models
outperform the individual models. We utilised a data set containing
sufficient cases to develop appropriate predictive models. More specifi-
cally, the objectives were to use a range of Al and statistical approaches
to (i) predict which patients with suspected COVID-19 would require
in-hospital organ support or would die from COVID-19 within 30 days
of their initial assessment, (ii) identify which features/variables from
patient records would support this decision-making, and (iii) identify
which models/methods offer improved performances under different
operating points.

We applied the prediction model risk of bias assessment tool
(PROBAST, Moons et al. [12]) to assess the risk of bias and verify
that our proposed models were at low risk of bias. Additionally, the
TRIPOD guidelines [13] for reporting prediction models performance
were followed to evaluate the machine learning methods and logistic
regression. In summary, the main contributions and novel aspects of
this paper are that it describes:

+ The application of statistical and machine learning based models
to predict adverse outcomes in patients with suspected COVID-19,
using data from clinical assessments of patients by EMS clinicians.

 The integration of classical and deep learning models in an ensem-
ble framework to determine the benefit of both types of models
and demonstrate how the proposed framework helps in improving
the predictions of high risk patients.

» A comparative evaluation of the different proposed models, based
on TRIPOD guideline recommendations for model development.

+ The potential for these to models to be deployed and used by EMS
to aid rapid risk assessment of COVID-19 patients.

The remainder of this paper is organised as follows: the proposed
methods are presented in Section 2, including a description of the data
and the problem definition. This section discuss the data used in this
work and the prediction models used to build the proposed classifiers.
Model performance and feature importance are presented in Section 3
and discussed in Section 4. Finally, a summary of the work is provided
in Section 5.

2. Method

In this section we describe the methods used in the study. First,
we describe the data sources used (2.1), before presenting the problem
definition, i.e., the outcome of interest in our study (2.2). Section 2.3
briefly describes the range of methods of imputation for handling
missing data, before describing the method (Section 2.4). Details of
our sample size estimates and how predictor variables were selected
are presented in 2.5. Section 2.6 describes the prediction models we
developed for the analyses, including logistic regression (2.6.1), sup-
port vector machines (2.6.2), gradient boosted decision trees (2.6.3),
neural networks (2.6.4), and the stacking ensemble method (2.6.5).
The metrics used for evaluating the performance of the models are
described in Section 2.7. Details of ethical approval are provided in
Section 2.8.

2.1. Data

Access to anonymised patient-level data from electronic health care
records was provided by Yorkshire Ambulance Service (YAS) NHS Trust
in the UK. YAS serves a population of 5.5 million citizens in York-
shire and Humber and in 2020/2021 received more than 1,000,000
emergency (999) calls.

EMS clinicians complete an electronic patient care record (ePCR)
each time they attend an emergency call, which records presenting
patient characteristics and clinical care in a standardised manner.
YAS provided a dataset of ePCR data for EMS responses between the
26th March 2020 and 25th June 2020 where a clinical impression of
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suspected or confirmed COVID-19 infection had been recorded. The
dataset consisted of patient identifiers, demographic data, measured
physiological parameters and other available clinical information. In
order to measure outcomes (i.e., 30-day mortality/organ support) fol-
lowing the visits, EMS attendances were linked to routinely collected
COVID-related general practice (GP) records, emergency department
attendance and hospital inpatient admission, including critical care, by
the NHS Digital service in England. This service manages health and
social care data on behalf of the UK National Health Service (NHS)
(NHS Digital, 2022). Death registration data were obtained from the
UK Office of National Statistics (ONS). The final cohort consisted of
all adult patients (aged 16 years and over) at the time of first (index)
attendance by EMS during the study period with a clinical assessment
of suspected or confirmed COVID-19 infection, and who had been
successfully traced by NHS Digital. We purposively identified a cohort
of patients with suspected COVID-19 infection because, in the absence
of universal accurate rapid COVID-19 tests for patients with symptoms
indicating possible infection at that time, this is the population that
EMS clinicians had to clinically risk-stratify.

2.2. Outcome

In terms of the problem definition, we defined the primary outcome
as death, or requirement for renal, respiratory, or cardiovascular organ
support within 30 days of the index attendance. Information on out-
comes, y, was obtained from death registration and critical care data in
the patient record. The outcome prediction was modelled as a binary
classification problem, in which an event is to be predicted as either
an adverse outcome (y = 1) or no adverse outcome (y = 0). Prediction
of the outcome was undertaken using four algorithms, namely logis-
tic regression (LR), support vector machine (SVM), gradient boosting
decision trees (XGBoost) and artificial neural networks (ANNSs). Brief
descriptions of each of these algorithms are provided in Section 2.6.

2.3. Managing missing data

Clinical/medical data can be limited by the number within the
samples and/or the amount of data that are missing. Removing cases
from the sample due to there being missing values is not considered
good practice, because this further reduces the number of cases for
analysis. As an alternative, data imputation algorithms can be applied
to replace the missing values with reasonable values. Data imputation
methods can be generally grouped into three categories: statistical
methods, which estimate the underlying data distribution and replace
missing values by drawing values from the estimated distribution; ma-
chine learning based methods, which learn the data distribution from
the training samples in order to reconstruct the training samples; and
hybrid combinations of both statistical and machine learning methods.

Genetic algorithms (GA) [14] are optimisation algorithms, inspired
by biological evolution, to find a good approximation to search prob-
lems. They have been developed in the computational sciences and
used, in conjunction with imputation methods, to find optimal sets of
values to replace the missing data and have been used. In this study we
employed a standard approach within health/medical sciences for han-
dling missing data: Multiple imputation by chained equations (MICE).
Multiple imputation is considered superior to more basic methods
such as complete-case analysis, missing indicator and single imputation
methods [15]. The MICE approach uses the observed data to estimate
a set of plausible values for the missing data, reflecting the uncertainty
in missing value estimation, reducing bias and giving more accurate
standard errors. The approach relies on the correct specification of
imputation models and assumes data are missing at random.

The MICE algorithm imputes missing values by modelling each
variable with missing values as a function of other variables in a round-
robin style, by which all variables with missing values are equally
chosen in a rotational order. This usually starts with the variable with
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the least number of missing values. Let the set of sorted variables be
U1, Uy, U3, ..., Ug_1, Uy; With vl and 02 complete variables and v3 having
the least number of missing values. Initially, all missing values are
randomly filled. The first variable with the least number of missing
values, v3, is then regressed on the other variables, and their values are
estimated from the posterior predictive distribution of v;. This process
is repeated in turn for all other variables with missing values in one
cycle. The imputation rounds are repeated for k rounds/cycle (in this
work k = 50), or until the stopping criterion is met (max(abs(v, —
v,_1))/max(abs(vlknown,g,,s1)) < tolerance,,,,). The Imputation pack-
age from SKlearn [16] and the Mice package in R [17] were used to
implement the MICE algorithm.

2.4. Predictor variables

Physiological parameters were extracted from the first set of clin-
ical observations recorded by the EMS clinicians. Comorbidities were
included if recorded within 12 months before the first EMS attendance.
Immunosuppressant drug prescriptions documented in GP records
within 30 days before the index attendance, contributed to the im-
munosuppression comorbidity variable. Frailty in patients older than
65 years was derived from the latest recorded Clinical Frailty Scale
(CFS) score [18] (where it was recorded) in the electronic GP records
prior to index attendance. Patients under the age of 65 years were not
given a CFS score since it this not validated in this age group.

2.5. Sample size estimate and variable selection

A priori, and for the original analyses [11], we assessed the required
sample size on the estimated precision of the area under the receiver
operating characteristic (AUC) curve based on a likely 5% event rate in
a cohort of 6000 patients [19].

A priori sample size estimation suggested around 30 predictors could
be assessed for inclusion. Candidate predictor variables were selected
using both statistical and clinical judgement. Expert clinicians within
the project team reviewed the list of candidate predictors for clinical
feasibility. Variables were excluded if they had a high proportion of
missing data (>50%) or high collinearity. Predictor selection for logistic
regression modelling was conducted using least absolute shrinkage
and selection operator (LASSO) analysis. The final set of predictors
corresponded to ~50 events per predictor parameter [20].

2.6. Prediction models

The aim of our research was to apply statistical and AI methods
to determine how they might improve the performance of predictive
models, both on their own and when the predictions are combined
using ensemble methods. We therefore employed the following estab-
lished statistical and machine learning methods to predict the adverse
outcome for patients: logistic regression, support vector machine, gra-
dient boosting decision trees and artificial neural networks. This section
briefly describes these classification techniques and how their predic-
tions are combined using a stacking ensemble framework. To enable us
to measure the performance of the models more reliably, we used 10
fold cross-validation with 50 rounds of imputations was employed to
develop the models discussed above. Finally, the average classification
performance metrics from all of the 10-fold cross-validations were
obtained.
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2.6.1. Logistic regression

Logistic regression (LR) models have been used frequently in pre-
diction and analysis for several clinical applications and injury sever-
ity [21]. They can estimate the probability of an adverse outcome event
as a prediction result (1, adverse outcome; 0, no adverse outcome).
Moreover, the coefficients of the logistic regression reflect the contri-
bution of each predictive feature to the adverse outcome event (the
target). Thus, one will be able to get an estimated prediction, and
identify the most important contributing factors related to the adverse
outcome. Logistic regression models can be presented as:

p(y) = f@X+c)

where p(y) is the probability of having an adverse outcome, y € {0, 1},
¢ is the model constant, X is the vector of the predictor variables
and a is the vector of the regression coefficient of these variables. In
this study 26 predictor parameters were used (Tables 1 and 2). The
probability, p(y;), should be close to either 0 or 1, therefore it is best to
use a sigmoid function. Thus the probability of adverse outcome and

no adverse outcome events can respectively be described by p,_; = =z
_ _ ec+ax
and p,_o =1 -z, where 7 = Troax

Logistic regression assumes linearity in the logit for continuous
predictors. Where this was not the case, fractional polynomial trans-
formations were used. The method also relies on low multicollinearity.
Where variables were highly correlated, clinical experts were consulted
and only the recommended variable was entered into the variable
selection process. In our implementation of LR, shrinkage and internal
bootstrap validation processes were employed to reduce the likelihood
of over-fitting.

2.6.2. Support vector machine

Support Vector Machine (SVM) [22] is one of the most commonly-
used machine learning models in supervised learning for classification
problems, due to its ability to handle non-linear data and its reduced
tendency for overfitting compared to other techniques [23]. To predict
the outcome, the algorithm classifies the data into the two classes
utilising the optimal hyperplane. The hyperplane is selected based on
the maximum margin from the nearest points. Let the training instances
be expressed as (x;,y;) where i = 1,2,..., N, y; denotes the class of
instance x;, and N indicates the number of instances. The algorithm
finds two parallel hyperplanes that can separate the data, and maximise
their distance. This distance is calculated by dual formulation using
Lagrange’s multiplier a:

! I
Minimise L = Z a; — % 2 o;0;y; Y k(X;X;)
i=1 ij=1

where k(x;x;) is the kernel function of SVM. Appropriate parameters
for the SVM, namely the kernel function, cost, and gamma were set for
this analysis based on the performance on a small development set. It
was observed that a linear kernel suits this application more than the
non-linear kernel and therefore it has been used in this work.

2.6.3. Gradient boosted decision trees

XGBoost (XGB, Chen and Guestrin [24]) is an improved version of
Gradient Boosted Decision Trees (GBDT), which is a machine learning
method that works by combining an ensemble of K weak models f (x)
from a space of regression trees F = {f(x) = wq(x)}, to create more
accurate models [25]. Each f; is a function with weight w € RT and
independent tree structure q with T leaves, such that ¢ : R™ < T maps
a set of features x into the corresponding leaf index. In particular, for
a set of data with m features, K additive functions are used to predict
the ith output:

K
5 =) = D S Sy € F.
k

where x; € R™, is the feature vector of the ith input. The core of the
algorithm is based on learning the set of functions with the objective
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that minimises the difference between the actual outcome y and the
predicted outcome y via the following loss function L:

LG = X 009+ 2, Qfe),
k

where Q(f,) is a regularisation term that helps smooth the learning of
the weights to prevent over-fitting.

2.6.4. Artificial neural networks (ANNs)

Artificial Neural networks (ANNs), often referred to as “neural
networks” or “networks”, are well known for their self-learning, using
self-error correction mechanisms and nonlinear mapping abilities, to
achieve high performance. They can potentially improve the prediction
of adverse outcomes by learning and exploiting non-linear relationships
between the various patient characteristics and the adverse outcome. In
our neural network implementation, four-layer feed-forward networks,
was used, with a back-propagation supervised learning algorithm [26].
The training parameters included a batch size of 80 and 100 epochs.
Batch size indicates the total number of training samples processed in
a single batch and the number of epochs indicates the number of times
all of the training data have been used to train the neural network.
The patient characteristics were fed into the input layer of the neural
network, where a collection of neurons processed it and passed it to
the next hidden layer sequentially, until it reached the output layer. As
such, the neural network implements a mapping between our input vec-
tors and output vectors, with layers of intermediate nodes. During the
training process, at the output layer, the processed data were compared
with the ground truth outcomes (i.e., the actual observations) and the
error was fed back to the network to update its weights/parameters.
This is the process of back-propagation, which fine-tunes the weights
of the neural network based on the error rate obtained in the previous
epoch, with the ultimate aim of minimising the error, E, in achieving
the target values.

E=ZEM =Z(t7—o;‘) ¢))
H M.j

where o}‘ is the output of the jth node when a set of input vectors s;’
and target values ¢ are introduced into the neural network. The initial
set of weights used in back-propagation (w;;) are randomly selected,
and hence, there is a risk of reaching a locally optimal set of weights.
In addition to this risk, neural networks also have other limitations,
the primary ones being the need for very large volumes of data and
the computing resources required. In our specific applied scenario,
resource limitations did not have an impact on the performance of our
model, as we used a dedicated high performance machine. However, a
discussion of the impact of different sizes of data sets on our model
performance is outside the scope of this paper. In our model, there
were four layers, the input layer, two dense-ReLU hidden layers and an
output layer. The input layer contained 26 nodes corresponding for the
26 patient characteristics features, while the output layer had one node,
to represent whether the output was an adverse case or not. The overall
network therefore had a 26:128:64:1 architecture, i.e., that it had 26
input nodes for the independent variables, 128 and 64 nodes in the
first and second hidden layers respectively, and one output, Sigmoid-
activated, node in the final layer for the dependent variable. The neural
network was implemented in Python, using the Keras library [27].

2.6.5. Stacking ensemble method

Ensemble learning is a mechanism for collaborative decision-making
that aggregates the decisions (predictions) of multiple models to pro-
duce new (probably better) predictions. There are several ensemble
learning techniques in literature however, the most common ones are:
(a) Bagging [28], (b) Boosting [29], Stacking [30] and Mixture of
Experts [31-33]. Despite of several ensemble methods are presented
in literature, finding a good ensemble configuration is still not a trivial
task and depends on the target application. In this work, the stacking
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Fig. 1. A sketch of stacking ensemble framework.

ensemble learning technique is used. Stacking, also called stacking
generalisation, was first proposed by Wolpert [30], and is a hierarchical
ensemble technique that aims to combine the strengths of multiple
prediction methods to boost the prediction accuracy. In particular, the
predictions of multiple models, referred to as base-models, are fed into
a second-level model, referred to as a meta-learner. The meta-learner
is then trained to optimally combine the predictions of base-learners,
to form a final set of predictions. An example of its use in medical
research is to predict occurrences of major adverse cardiovascular
events in patients with acute coronary syndromes [34]. A simplified
diagram of stacking is shown in Fig. 1. With regards to selecting the
meta-learner, Wolpert [30] stated that a simple linear model could do
very well since all the classification efforts were completed by the
base-learners.

In this study, a logistic regression model was used as the meta-
learner, and different combinations of SVM, XGB and ANNs were used
as base-learners, resulting in four different instances of stacking ensem-
ble models.

2.7. Evaluation metrics

The accuracy of the predictions of the adverse outcome was as-
sessed using the AUC, also referred to as the c-statistic, a measure of
the goodness fit of the model. This gives the probability of a model
correctly predicting the patients with higher risk. Unlike other metrics,
it does not require a particular threshold value. However, the AUC
is not enough on its own to evaluate performance on imbalanced
data [35,36]. Thus, typically, the negative predictive value (NPV) and
positive predictive value (PPV) measures are also reported together
with the sensitivity (the % of true positive cases [i.e., that experienced
an adverse outcome] that were correctly identified by each method),
and specificity (the % of true negative cases [i.e., that did not observe
the adverse outcome] that were correctly identified as false cases), and
the geometric mean, GM, of the sensitivity and specificity:

TP
SENSITIVITY = ——————
TP+ FN
TN
SPECIFICITY = ——————
FP+TN
GM = \/ SENSITIVITY X  SPECIFICITY
NPV = __IN__
TN+ FN
ppy =_ 1P
TP+ FP

where TN (the number of true negatives), FN (the number of false
negatives), TP (the number of true positives) and FP (the number of
false positives) were calculated for a particular operating point (also
referred to as cut-off point) on the AUC curve. The operating point can
be adjusted to alter the sensitivity, and this is usually set by clinical
experts based on the requirements of the application. Choosing an

operating point that has a high sensitivity is common practice in several
clinical applications [37-39], as this minimises the number of false
negatives. This is particularly desirable for the COVID-19 pandemic,
because cases treated earlier were more likely to survive. However,
there is inevitably a trade-off between increasing the sensitivity, which
is typically associated with a decrease in specificity. We therefore used
two operating points in separate models for each algorithm, the first to
maximise the sensitivity and the second to maximise the specificity.

In the research literature, setting the operating points is varied
according to the application. For example, Abramoff et al. [38] chose
a pre-selected set point on the AUC at which a sensitivity of 96.8%
was reported for detecting referable diabetic retinopathy on the pub-
licly available Messidor-2 data set. This point was associated with a
specificity of 59.4%, PPV of 39.8% and NPV of 98.5%. Valente et al.
[40] considered a cut-off threshold that achieved a sensitivity of 80%
in predicting the level of mortality risk after acute coronary syndrome.
This cut-off was associated with NPV and PPV values of 99% and 17%
respectively. In developing the PRIEST tool, Marincowitz et al. [41]
selected a predicted probability threshold that led to high NPV (this
also implies high sensitivity), but with a relatively high PPV (i.e., at
least 96.5% NPV and a minimum PPV of 28%). These restrictions were
associated with a sensitivity of 99% but the specificity was reduced to
7%.

Other studies have selected operating points at which the F1 mea-
sure (the harmonic mean of sensitivity and precision) was maximum, as
used by Vaid et al. [42], and where the cut-off was calculated separately
for each folder to maximise the F1 measure. The threshold for the final
model was then computed as the median of those per-fold thresholds.

Using the baseline PRIEST scoring tool [11], the best performance
achieved on the same data set used in this study was: sensitivity 97%,
specificity 41%, NPV 98%, PPV 26%. In this study, a cut-off that
achieved an NPV of at least 98% and a PPV of at least 26% was
used as the operating point for the developed classification models for
predicting adverse outcomes.

2.8. Ethical approval

The North West-Haydock Research Ethics Committee gave a
favourable opinion on the PAINTED study on 25th June 2012 (refer-
ence 12/NW/0303) and on the updated PRIEST study on 23rd March
2020, including the analysis presented here. The Confidentiality Advi-
sory Group of the NHS Health Research Authority granted approval
to collect data without patient consent in line with Section 251 of
the National Health Service Act 2006. Access to data collected by
NHS Digital was recommended for approval by its Independent Group
Advising on the Release of Data (IGARD) on 11th September 2021
having received additional recommendation for access to GP records
from the Profession Advisory Group (PAG) on 19th August 2021.
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Table 1
Patient characteristics.
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Characteristic Statistic/level Adverse No adverse Total,
outcome, n (%) outcome, n (%) n (%)
N 1330 (17.6)* 6220 (82.4)° 7549
Age (years)® Mean (SD) 74.5 (15.4) 56.9 (19.4) 60 (20)
Median (IQR) 78 (65,86) 56 (42,73) 59 (45,77)
Range 19 to 103 16 to 105 16 to 105
Gender® Male 760 (57.3) 2825 (45.4) 3590 (47.5)
Female 570 (42.7) 3390 (54.6) 3960 (52.5)
Number of N 1330 6220 7549
current Mean (SD) 4.5 (3.3) 3.2 (3.3) 3.4 (3.3)
medications?® Median (IQR) 4(2,7) 2 (0,5) 3 (0,6)
Range 0 to 19 0 tol9 0 tol19
Comorbidities® Cardiovascular disease 95 (7) 290 (4.6) 380 (5.1)
Chronic respiratory disease 375 (28) 1855 (29.8) 2230 (29.5)
Diabetes 390 (29.2) 995 (16) 1380 (18.3)
Hypertension 610 (45.8) 1765 (28.4) 2375 (31.4)
Immunosuppression 280 (21.1) 930 (15) 1215 (16.1)
Active malignancy 60 (4.6) 115 (1.9) 180 (2.3)
Renal impairment 55 (4.1) 125 (2) 180 (2.4)
Stroke 30 (2.3) 85 (1.4) 115 (1.5)
Clinical frailty® N/A (age <65 years) 330 (47.5) 3985 (86.4) 4310 (81.3)
Missing 645 1605 2250
1-3 20 (4.7) 40 (6.4) 60 (5.8)
4-6 75 (20.5) 240 (37.7) 310 (31.4)
7-9 270 (74.8) 350 (55.9) 620 (62.8)
Glasgow Coma N 1297 6085 7382
Scale Mean (SD) 13.7 (2.4) 14.8 (0.8) 14.6 (1.3)
Median (IQR) 15 (14,15) 15 (15,15) 15 (15,15)
Range 3 to 15 3to 15 3 to 15

aTo comply with NHS digital disclosure guidance totals for these variables are rounded to the nearest 5,

which may result in apparent disparities in the overall totals.

3. Results
3.1. Sample characteristics

The study cohort derivation and the characteristics of the 7549 adult
patients are summarised in Tables 1 and 2, for the overall sample and
according to whether the patients experienced the adverse outcome or
not. The sample is described in further detail elsewhere. Marincowitz
et al. [11]. In brief, the mean age of patients was 60 years (SD =
20) and 52.5% of the sample was female (n = 3960). The mean
number of medications being taken was 3.4 (SD = 3.3). In total, 1330
patients (17.6%, 95% CL:16.8% to 18.5%) experienced one or more
of the primary outcomes (i.e., death or organ support). Patients who
experienced adverse outcomes were generally older than those who
did not, and were taking higher numbers of medications. A higher
proportion of those who experienced an adverse outcome were males
(57.3%; n = 760).

The variables listed in Tables 1 and 2 form the predictors (e.g., gen-
der, number of current medications, comorbidities and clinical frailty
scores, etc.) used in the proposed prediction models. All reported results
are based on the average of ten cycles of ten-fold cross-validation
experiments.

3.2. Model performance

Table 3 presents the results for the four separate prediction methods
in comparison with the baseline results, i.e., EMS clinician and PRIEST
clinical severity score [11], at the two different operating points, i.e., to
maximise sensitivity (3a) and specificity (3b), whilst also restricting
the region of performance to have NPV and PPV values of at least
0.98 and 0.26 respectively. Three of the methods (LR, SVM and XGB)
showed slight improvements in sensitivity over the study baseline
results reported previously [11] with no major differences among
these methods: they all achieved AUC scores between 0.86-0.87 and
geometric means (GM) of sensitivity and specificity between 0.62-0.65.

These three methods also showed improved performance compared
to the baseline when maximising specificity (3b). However, the ANN
model performed better overall when compared to these methods at
both operating points with much a higher specificity, geometric mean
and AUC. It achieved GMs of 0.83 and 0.86 at the first and second
operating points respectively, and AUC of 0.90 and 0.86, albeit with
greater variability at both operating points. Fig. 2 shows the Receiver
Operating Characteristic (ROC) curves for the individual LR, SVM, XGB
and ANN models.

In order to improve the prediction of patients with high risk of
adverse outcome, we combined the predictions of these classifiers to
produce optimal predictive models using the stacking ensemble method
(as discussed in Section 2.6.5). Table 4 shows the results for the four
ensemble methods in comparison with the baseline results (i.e., EMS
clinician assessment and PRIEST clinical severity score). Overall, the
ensemble models showed clear improvements and consistent increase
in the prediction measures when compared to the individual models,
with AUC values of 0.95 for three of the four stacked ensemble models
at both operating points. The best GM results were obtained when
stacking SVM and ANN as base learners at both operating points. The
best GM was achieved at the second operating point for this ensemble
with a relative difference of 4%, compared to the performance of the
same model operating at the first operating point. Fig. 3 shows the ROC
curves for the ensembled models presented in Table 4.

3.3. Feature importance

Feature importance ranking is important to help develop under-
standable and interpretable ML models. However, this is very chal-
lenging for deep learning methods due to the nature of combinatorial
optimisation and the nested non-linear structure within these methods.
Although recently several attempts have been made to understand the
importance of features within deep learning methods [43,44], they are
still in their initial stages of development and beyond the scope of this
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Table 2
Patient characteristics (continued).
Characteristic Statistic/level Adverse No adverse Total,
outcome, n (%) outcome, n (%) n (%)
ACVPU Missing 13 58 71
Alert 1002 (76) 5860 (95.1) 6862 (91.8)
Confusion 125 (9.5) 188 (3.1) 313 (4.2)
Voice 100 (7.6) 84 (1.4) 184 (2.5)
Pain 64 (4.9) 21 (0.3) 85 (1.1)
Unresponsive 27 (2) 7 (0.1) 34 (0.5)
Diastolic BP N 1278 6029 7307
(mmHg) Mean (SD) 76.7 (17.7) 84.5 (15.9) 83.1 (16.5)
Median (IQR) 76 (65,87) 84 (74,94) 83 (72,93)
Range 0 to 193 22 to 167 0 to 193
Systolic BP N 1277 6032 7309
(mmHg) Mean (SD) 133.2 (25.8) 140.2 (23.2) 139 (23.9)
Median (IQR) 132 (116,148) 139 (124,153) 138 (123,152)
Range 65 to 238 33 to 237 33 to 238
Pulse rate N 1303 6130 7433
(beats/min) Mean (SD) 100.2 (22.5) 96 (19.5) 96.7 (20.1)
Median (IQR) 99 (84,115) 94 (82,109) 95 (82,110)
Range 38 to 194 7 to 190 7 to 194
Respiratory rate N 1315 6145 7460
(breaths/min) Mean (SD) 30.1 (10) 23.1 (6.9) 24.4 (8)
Median (IQR) 28 (22,36) 20 (18,26) 22 (18,28)
Range 0 to 76 0 to 84 0 to 84
Oxygen saturation Missing 36 109 145
>95 on air 142 (11) 3532 (57.8) 3674 (49.6)
94-95 on air 134 (10.3) 854 (14) 988 (13.3)
92%-93% on air 109 (8.4) 449 (7.3) 558 (7.5)
<92% on air or O, given 910 (70.3) 1274 (20.9) 2184 (29.5)
Blood glucose N 982 4021 5003
(mmol/L) Mean (SD) 8.1 (4) 6.9 (3.2) 7.2 (3.4)
Median (IQR) 6.8 (5.6,9) 6 (5.2,7.3) 6.2 (5.2,7.7)
Range 0.9 to 35 1.1 to 33.8 0.9 to 35
Temperature (°C) N 1301 6115 7416
Mean (SD) 38.1 (1.2) 37.8 (1.1) 37.8 (1.1)
Median (IQR) 38.2 (37.4,38.9) 37.7 (37,38.5) 37.8 (37,38.6)
Range 32 to 42 34 to 41.7

Table 3

Performance of individual algorithms using the first (high sensitivity) and second (high specificity) operating points. The baseline models were
the decision by the EMS clinicians whether to convey the patient to hospital or not and the recommendation arising from the use of the PRIEST

clinical severity score [11].

Model Sensitivity Specificity npv PPV GM AUC
Baseline EMS clinician 0.84 0.39 0.92 0.23 0.57 NA
PRIEST score 0.97 0.41 0.98 0.26 0.63 0.83 + 0.01
LR 0.98 0.43 0.99 0.27 0.65 0.87 + 0.01
(@ High sensitivit XGB 0.98 0.39 0.99 0.26 0.62 0.86 + 0.02
8 y SVM 0.98 0.41 0.99 0.26 0.63 0.86 + 0.01
ANN 0.96 0.72 0.99 0.43 0.80 0.90 + 0.09
LR 0.93 0.64 0.98 0.37 0.77 0.87 + 0.01
(b) High specifici XGB 0.95 0.56 0.98 0.31 0.72 0.86 + 0.02
gh specificity SVM 0.94 0.60 0.98 0.33 0.75 0.86 + 0.01
ANN 0.95 0.77 0.98 0.48 0.86 0.90 + 0.09

Table 4

Performance of stacked ensemble algorithms using the first (high sensitivity) and second (high specificity) operating points. The baseline models
were the decision by the EMS clinician whether to convey the patient to hospital or not and the recommendation arising from the use of the
PRIEST clinical severity score [11].

Model Sensitivity Specificity npv PPV GM AUC
Baseline EMS clinician 0.84 0.39 0.92 0.23 0.57 NA
PRIEST score 0.97 0.41 0.98 0.26 0.63 0.83 + 0.01
SVM,XGB 0.98 0.42 0.99 0.26 0.64 0.86 + 0.01
(@ High sensitivit ANN,SVM 0.96 0.73 0.99 0.45 0.84 0.95 + 0.01
J Y ANN,XGB 0.95 073 0.98 0.43 0.83 0.95 + 0.01
ANN,SVM,XGB 0.99 0.47 0.99 0.29 0.68 0.95 + 0.01
SVM,XGB 0.93 0.60 0.98 0.33 0.74 0.86 + 0.01
(b High specifici ANN,SVM 0.92 0.83 0.98 0.57 0.88 0.95 + 0.01
gh specificity ANN,XGB 0.90 0.83 0.98 0.53 0.86 0.95 + 0.01
ANN,SVM,XGB 0.90 0.83 0.98 0.53 0.86 0.95 + 0.01
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Fig. 2. The ROC curves of the individual models.
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Fig. 3. The ROC curves of the stacking models.

study. In this section, we therefore only discuss the feature importance
of the linear models.

Table 5 lists the coefficients/weights considered by the linear mod-
els LR, SVM and XGB. The LR coefficients are exponentiated standard-
ised coefficients. The weights given for the different features by the
SVM classifier are normalised by the largest weight, to reduce the effect
of the high variation among those weights. The coefficients of the XGB,
however, are normalised by their count and multiplied by a 100, such
that the column sum is 100%.

It can clearly be seen from Table 5 that the distribution of feature
relevance varies considerably according to the three different classifiers
and is unbalanced across the individual features. While SVM mainly
considered the patient’s level of consciousness (ACVPU), XGB gave
most weight to oxygen saturation, with much lower weights to other
variables, including age and severe frailty. Overall, while the XGB
selected all features, the SVM classifier selected (in a descending order)
ACVPU, oxygen saturation, frailty, comorbidity and sex. Logistic regres-
sion (LR) highlighted oxygen saturation, level of consciousness and age

as the most important features. The importance of these features was
also reported by the papers reviewed in [9].

4. Discussion

The aim of this study was to develop and improve prediction models
for identifying adverse health outcomes for patients with suspected
COVID-19 in a pre-hospital setting. A cohort of patients with suspected,
as opposed to confirmed, infection was used as this reflects the pop-
ulation that EMS clinicians had to risk stratify clinically. We used a
composite health outcome measure of in-hospital organ support or
death within 30 days of initial assessment by EMS clinicians. While
predicting inpatient admission or oxygen therapy is likely to vary in
different settings, developing more accurate predictive models using
Al methods could help ensure necessary care is provided for those
most at risk of serious adverse outcomes, whilst reducing unnecessary
transfers and the risk of hospitals and EMS services being overwhelmed
by demand, which was an important problem during the COVID-19
pandemic. To the best of our knowledge, this is the first study of its kind
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Table 5
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Feature importance for LR, SVM and XGB Models (the higher levels of importance within each model are highlighted in green

for emphasis).

Feature LR SVM XGB

Value Rank Value Rank Value Rank
Age 6.11 3 0.00 - 5.24 2
Number of medications 0.88 21 0.00 - 1.55 17=
Temperature 0.98 20 0.00 - 1.52 19
Pulse rate (manual) 1.42 13 0.00 - 1.34 21=
Blood sugar level 1.23 14 0.00 - 1.55 17=
Systolic blood pressure 0.63 25 0.00 - 1.58 14=
Respiratory rate 2.10 7 0.00 - 2.70 5
Cardiovascular Disease 0.68 24 0.08 6= 1.80 12=
Chronic respiratory disease 0.86 22 0.01 12= 2.03 9
Diabetes 1.63 10 0.08 6= 1.80 12=
Hypertension comorbidity 1.15 16 0.00 - 1.34 21=
Immunosuppression (including steroid use) 1.03 18 0.01 12= 1.34 21=
Malignancy 2.61 5 0.05 9 1.24 25
Renal impairment 1.20 15 0.03 10= 1.58 14=
Smoker 0.72 23 0.00 - 1.28 24
Previous Stroke 1.64 9 0.00 - 1.03 26
Sex 1.58 11 0.03 10= 2.09 8
Moderate frailty 0.42 26 0.06 = 1.91 11
Severe frailty 1.01 19 0.11 5 3.03 4
ACVPU - confusion 1.11 17 0.06 8= 1.50 20
ACVPU - voice 1.47 12 73.5 3 2.63 6
ACVPU - pain 3.77 4 89.1 2 3.35 3
ACVPU - unresponsive 6.18 2 100.0 1 2.62 7
0, 94%-95% on air 1.94 8 0.00 - 1.56 16
0, 92%-93% on air 2.44 6 0.01 12= 1.93 10
0, <92% on air or O, given 7.71 1 0.31 4 50.47 1

to investigate applying ML methods to enhance the predictive ability of
decision-making by EMS clinicians for patients with suspected COVID-
19. Our use of ensemble methods in this respect is novel and adds to the
knowledge base on using ML methods for decision-making in clinical
practice.

The use of risk prediction models in clinical decision-making re-
quires trade-offs. The first is between overall accuracy, sensitivity and
specificity. Given the serious consequence of not transporting a patient
with suspected COVID-19 to hospital, e.g., who subsequently dies or
requires intensive care support, we aimed for our machine learning
models to achieve the same sensitivity (0.97) as the PRIEST clinical
severity score [11] for decision-making alone and corresponded to a
non-conveyed patient having a 1/50 (NPV 0.98) risk of subsequent
deterioration, without sacrificing the specificity of current practice and
leading to large increase in patients transported to hospital. Although
a useful comparator for performance of developed predictive models,
EMS decision-making to transfer patients to hospital is not made solely
on the basis of the risk of deterioration. Decisions may need to account
for clinical best interest decisions not to convey patients to hospital who
subsequently deteriorate, especially at the end-of-life, when palliation
may be appropriate, or the patient wishes not to be conveyed.

XGB, LR and SVM models could achieve theoretical gains in the
sensitivity of prediction, whilst maintaining specificity, leading to over-
all gains in discrimination. Stacking of methods led to further gains in
accuracy and their use in clinical settings could lead to reductions in
hospital conveyance with a reduced risk of non-conveyed patients de-
teriorating. Stacking of ANN, SVM and XGB achieved a sensitivity 0.99,
specificity of 0.47 and an AUC of 0.95. However, increased accuracy of
these methods comes at the cost of increased complexity and reduced
interpretability. The PRIEST clinical severity score can be manually
calculated and is based on physiological parameters already used by
EMS clinicians to risk assess patients as part of the National Early
Warning Score (NEWS2), alongside age, sex and performance. Logistic
regression modelling used to develop the PRIEST clinical severity score
achieved similar measures of accuracy and calibration to LR, SVM and
XGB modelling in this study [45]. However, following consultation with
clinical stakeholders, a simplified scoring system based on NEWS2 was
derived in order to improve clinical usability at the cost of accuracy.

ANN and stacked prediction methods offer significant gains in accuracy,
but use a greater number of variables and the prediction methods are
not transparent and would require automation of individual prediction
to allow implementation. The ‘black box’ nature of prediction may
have implications for acceptability for both patients and clinicians.
In addition, the PRIEST clinical severity score has been externally
validated in different settings [11,46]. Our machine learning models
would require both the ability to be practically implemented by EMS
clinicians and external validation before they could be used clinically.

A strength of our study is in the relatively large numbers of cases
(>7500) available for the analyses, including 1330 cases with adverse
outcomes (17.6%). This compares favourably with other studies devel-
oping prediction models for COVID-19 using AI methods. In a recent
review, Abd-Alrazaq et al. [7] reported that half of the included studies
had fewer than 1000 patients. Having small numbers of cases can
lead to overfitting and increased risk of bias. Our a priori sample size
calculations were based on an estimated precision of the area under
the ROC curve based on a likely 5% event rate in a cohort of 6000
patients [19]. The sample size estimation suggested 30 predictors could
be assessed for inclusion in the models (we included 26). The number
of included variables were reduced on the basis of clinical feasibility,
the level of missing data or high collinearity.

However, our machine learning models have only been internally
validated and due to (potential) over-fitting, may not perform as well
when applied to new datasets. The data we obtained were from a
single region in the UK (Yorkshire and Humber) and features used by
the models may be less applicable to other settings. Further testing
of our models on other data would therefore be required to vali-
date the models externally, and to assess the clinical impact of using
these methods for triage alongside clinical judgement. Additionally,
these data were collected during the first lockdown period in the UK
(March—June 2020), a period before the COVID-19 virus had mutated
significantly, and before vaccinations and universal reliable COVID
tests were available. Further testing of the models on data collected
from patients in more recent phases of the pandemic is required to test
the durability of our models in the light of changes in the virus and the
pandemic.

As described previously, our study used a combined adverse out-
come of a patient dying or requiring organ support within 30 days of
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their initial visit by the EMS. It is possible that the model performance
and feature importance may have differed if these outcomes had been
assessed separately: however, our aim was to develop models that pre-
dicted an outcome which identified patients in definite need of hospital
care. This would prioritise care for those who need it most and help to
minimise the risk of hospitals and EMS being overwhelmed during the
pandemic. Further research could develop predictive models for these
separate outcomes and compare the features (variables) contributing to
the predictions.

Our study focused on the effectiveness of the machine learning
models and compared these with clinical decision-making and exist-
ing triage tools: our aim was not to examine the efficiency of these
methods, and clearly this would require further work, i.e., to compare
the computation times of the developed approaches. Further work is
required for these ML models to be implemented into routine practice,
and more research would be needed to demonstrate how such models
can be operationalised effectively and efficiently. A robust prospective
evaluation would be needed to demonstrate the effectiveness and safety
in a pre-hospital clinical setting.

Further work could also usefully explore what other forms of data
collected by EMS might help improve the effectiveness of these algo-
rithms. For example, the textual notes that EMS clinicians record could
potentially be a rich source of data, as well as other patient details.
These records might yield insights into the possibilities of patients
developing complications that require hospital admission, the need for
organ support, as well as risk of death during COVID-19 infection. The
use of text mining methods, such as Natural Language Processing (NLP),
could be used to extract features to refine predictive models further.

5. Conclusion

This study provides new evidence regarding the potential of ma-
chine learning methods to develop models for prediction of adverse
health outcomes in patients with suspected COVID-19 within 30 days
of being assessed by an EMS clinician. When compared with transfer
decisions made by EMS clinicians at the time of assessment, and the
previously reported PRIEST tool [11], the proposed models performed
better at predicting who was at risk of requiring organ support and/or
dying, and therefore who was in most need of hospital care. Compared
with the PRIEST tool, the XGB method demonstrated a relative im-
provement in performance by 3.6%, SVM by 3.5%, ANNs by 8.4% and
LR by 4.8%. When the models were stacked, there was further improve-
ment in performance: the best overall performance was obtained when
stacking the ANN and SVM models, which showed an improved relative
performance over the PRIEST tool by 14.5%.

The work demonstrates the potential of ML methods to support the
decision-making of front-line EMS clinicians in assessing the severity
of patients with suspected COVID-19. The proposed ML methods could
be applied to help clinicians in identifying patients at high risk of
adverse outcomes using data gathered from patients with high PPV
rates (ranging from 31%-48%), considerably higher than the PRIEST
tool or the EMS clinicians.

The developed models could therefore help both identify patients
most likely to need treatment in hospital whilst avoiding overwhelming
hospital and emergency services with large numbers of patients. In
other words, these models could potentially lead to reductions in
the numbers of patients conveyed to hospital without a concomitant
increase in adverse outcomes. The research is also important in that
it provides an understanding of the relative importance of specific
patient features in the decision-making process within the predictive
models, overcoming the problems traditionally associated with ‘black
box’ technologies. Across the methods for which the importance of
these features could be ranked, oxygen saturation, the patient’s level
of consciousness, their level of frailty and age appeared the most
important. These features concurred with those previously identified
in [9] and those in the PRIEST tool [11].
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Further research is required to validate the findings externally, and
to develop and test a tool to automate the prediction of the risk of
adverse outcome, so that the methods can be utilised by EMS clinicians
in practice. This would also require the computational efficiency of
the algorithms to be compared, and optimised, in order to balance
both accurate and timely decision-making. Further work could also
investigate the use of NLP for extracting features from the textual notes
of EMS clinicians within electronic records and to investigate other
methods (e.g., genetic algorithms) for dealing with missing data, a
common problem when utilising data from clinical records.
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