
This is a repository copy of High-speed infrared radiation thermometer for the investigation
of early stage explosive development and fireball expansion.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190258/

Version: Published Version

Article:

Hobbs, M.J. orcid.org/0000-0003-4661-692X, Barr, A. orcid.org/0000-0002-8240-6412, 
Woolford, S. et al. (4 more authors) (2022) High-speed infrared radiation thermometer for 
the investigation of early stage explosive development and fireball expansion. Sensors, 22 
(16). 6143. 

https://doi.org/10.3390/s22166143

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Citation: Hobbs, M.J.; Barr, A.;

Woolford, S.; Farrimond, D.;

Clarke, S.D.; Tyas, A.; Willmott, J.R.

High-Speed Infrared Radiation

Thermometer for the Investigation of

Early Stage Explosive Development

and Fireball Expansion. Sensors 2022,

22, 6143. https://doi.org/10.3390/

s22166143

Academic Editors: Ki-Nam Joo,

Felipe Guzman and Young-Jin Kim

Received: 16 July 2022

Accepted: 16 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

High-Speed Infrared Radiation Thermometer for the
Investigation of Early Stage Explosive Development and
Fireball Expansion

Matthew J. Hobbs 1,* , Andrew Barr 2 , Scott Woolford 2, Dain Farrimond 2, Sam D. Clarke 2 , Andrew Tyas 2

and Jon R. Willmott 1,*

1 Sensor Systems Group, Electronic & Electrical Engineering Department, University of Sheffield,

Portobello Centre, Pitt Street, Sheffield S1 4ET, UK
2 Department of Civil & Structural Engineering, University of Sheffield, Sir Frederick Mappin Building,

Mappin Street, Sheffield S1 3JD, UK

* Correspondence: m.hobbs@sheffield.ac.uk (M.J.H.); j.r.willmott@sheffield.ac.uk (J.R.W.)

Abstract: The understanding of blast loads is critical for the development of infrastructure that

protects against explosions. However, the lack of high-quality experimental work on the character-

isation of such loads prevents a better understanding of many scenarios. Blast loads are typically

characterised by use of some form of pressure gauge, from which the temperature can be inferred

from a pressure measurement. However, such an approach to temperature measurement is limited;

it assumes ideal gas laws apply throughout, which may not be the case for high temperature and

pressure scenarios. In contrast, infrared radiation thermometers (IRTs) perform a measurement of

temperature based upon the emitted radiance from the target object. The IRTs can measure fast

changes in transient temperature, making them seemingly ideal for the measurement of a fireball’s

temperature. In this work, we present the use of a high-speed IRT for the measurement of early-

stage explosive development and fireball expansion within a confined blast, with the temperature

of the explosive fireball measured from its emitted radiance. The temperature measured by the

IRT was corroborated against the temperature inferred from a pressure gauge measurement; both

instruments measured the same temperature from the quasi-static pressure (QSP) point onwards.

Before the QSP point, it is deduced that the IRT measures the average temperature of the fireball

over a wide field-of-view (FOV), as opposed to that inferred from the singular shocks detected by

the pressure gauge. Therefore, use of an IRT, in tandem with a pressure gauge, provides a potential

invaluable measurement technique for the characterisation the early stages of a fireball as it develops

and expands.

Keywords: radiation thermometry; infrared radiation thermometer; blast loading; confined blast;

temperature measurements; fireball; afterburn

1. Introduction

Scientific characterisation of blast loads can be separated into three types of events:
far-field blasts, near-field blasts, and confined blasts. Far-field blasts involve the target
being sufficiently distant such that the loading is generated only by the impingement of the
propagating air shock [1–4]. In contrast, near-field blasts involve the explosive charge being
sufficiently close such that the explosive fireball impacts the target [1,5–7]. Finally, confined
blasts involve detonation within a confined space, leading to the shock waves generated
from the blast reflecting off its chamber walls and intermixing [5,8–10]. To elucidate more
knowledge about what is happening within the early post-detonation stages, high quality
experimental work is required. Whilst far-field loads are relatively well characterised, other
blast load scenarios are not [5,7,11].
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The scenario is particularly complex for confined explosions. Most high explosives
comprise C-H-N-O compounds, which, when shocked, decompose rapidly in exothermic
reactions, producing gaseous nitrogen, carbon dioxide and water. This sudden change of
state and energy release results in a high temperature and pressure “fireball” of detonation
products, which expands violently, compressing and displacing the atmosphere around
it and generating shock waves. In many high explosives, there is insufficient oxygen in
the compound to fully oxidise all the carbon. This means that the initial energy which
goes into the fireball expansion and shock wave is formed from only a part of the full
reaction energy, known as the heat of detonation. In a confined explosion, the shock waves
will reflect from the confining waves and may return to the fireball, churning it up with
the surrounding atmosphere. If there is sufficient oxygen and heat remaining, this may
lead to a secondary combustion of the partially oxidised carbon, in a process called “after-
burn”. In many explosives the heat of afterburn energy release is comparable to the heat of
detonation. Over time, the shock waves in the confined atmosphere will lose their iden-
tity and the chamber will experience a more or less stable, increased pressure, called the
“quasi-static pressure” or QSP. This will decay over time due to venting or heat losses to the
confining walls.

The conventional genre of instrumentation used within blast measurements are pres-
sure gauges; instruments which can provide a measurement of pressure from the shock
waves produced by the blast. One common instrument used for the measurement of blasts
is the piezo-resistive pressure transducer [1,12,13], with another type of instrumentation
the Hopkinson Pressure Bar (HPB) [14,15]. Regardless of the type of pressure gauge used
within a blast measurement, such instruments generally only provide a measure of pressure
rather than temperature. Therefore, to extract temperature from these measurements, as-
sumptions about the behaviour of the blast need to be made based upon ideal gas laws. For
an accurate conversion of pressure to temperature using the ideal gas law, an assumption
is made that these laws apply for the full duration of the blast. This may not necessarily be
the case; ideal gas laws break down under high temperature and high pressure.

An alternative measurement approach is that of radiometry, an optical measurement
technique that involves the detection of light from the infrared and visible parts of the
electromagnetic spectrum. Such measurements are inherently non-contact; they do not
need to be in contact with the target to measure the optical signal. Infrared radiation
thermometers (IRTs) are one such instrument [16–18], which operate by measuring the
radiated emission from the target, relating this to temperature in accordance with Planck’s
Law [16–18]. When this radiance becomes incident upon the sensing element of the IRT,
the sensor generates an output; a typical sensing element is a photodiode, from which
photocurrent flows in proportion to the incident radiation. This photocurrent is amplified,
converted to a voltage, and is calibrated to a temperature related to the magnitude of the
radiated emission from the target in accordance with Planck’s Law.

Infrared radiation thermometers are used for a wide range of temperature measure-
ment applications, and are prominent within industrial processing applications, for exam-
ple, metals [19], glass [20] and petrochemicals [21]. They have also been used specifically
for the measurement of temperature within applications featuring fast transient events.
This facet makes them particularly attractive and suitable for the measurement of fireball
temperature, which inherently involves fast transients. The IRTs have been used for many
high-speed measurement applications, which we define as temperature transitions of faster
than 10 µs for the purposes of this work. Example applications include: temperature mea-
surement within dynamic compression [22], light emission signatures from ballistics [23],
scanning mirror based IRTs [24], measurement of thin films and coatings [25], high-speed
thermophysical property experiments [26] and thermal microscopes [27]. It should be
noted that all these example applications involved the development of custom solutions
for each specific temperature measurement application; commercial instruments are not
available for such fast transient applications.
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It should be noted that IRTs are distinct from another optical measurement technique,
that of imaging cameras—instruments that image the target over a larger area using an
array of pixels. High-speed video (HSV) cameras are used within the characterisation of
far-field blast loads [1,28], and enable both a spatial and temporal measurement of the
fireball as it develops and expands. Whilst HSVs are suited for use within far-field blast
load measurements, they are inherently positioned a distance from the target; they are
not suited to confined blast or near-field measurements. Within such close measurement
scenarios, the HSV would likely get damaged due to its proximity with the fireball.

In this work, we address the dearth of high-quality experimental data within the
measurement of confined blast loads using a new approach to their characterisation: the
development and application of a custom high-speed optical fibre based IRT. We present
our high-speed IRT for the measurement of temperature within the early-stage explosive
development and fireball expansion of a confined blast load. In turn, we demonstrate
its ability to measure the temperature based on the emitted radiance of a fireball; con-
fined blast loads have not previously been captured optically with such high temporal
resolution. Comparisons are made with a temperature measurement inferred from a pres-
sure measurement using a piezo-resistive pressure transducer-based pressure gauge. At
the peak QSP point, both the IRT and pressure gauge measured a temperature of circa
1700 K, hence corroborating the use of the IRT within this application. We take this further
by investigating the differences within the measurements from the two instruments prior
to the stable QSP. We deduce that the IRT provides an average temperature of the fireball
over a wider field-of-view (FOV), in contrast to the temperature inferred from the singu-
lar shock waves of the pressure gauge. Therefore, our IRT is shown to be an invaluable
new tool for the characterisation of blast loads, particularly when used in tandem with
pressure measurements.

The organisation of this paper is as follows. Section 2 covers the Materials and Methods
used within the paper, including: Section 2.1 Instrument Design, Section 2.2 Instrument
Characterisation and Section 2.3 the Explosion Test Rig. The experimental results are
presented within Section 3, including: Section 3.1 IRT characterisation and Section 3.2 the
Blast Measurement. Section 4 provides further discussion of the results, and Section 5
provides some conclusions.

2. Materials and Methods

2.1. Instrument Design

Figure 1 shows an overview of the IRT and its data acquisition system.

—

Figure 1. Overview of IRT and data acquisition system.

The IRT was built around a Hamamatsu K1713-09 Si-InGaAs two-colour photodiode,
although only the Si channel was used within this work. The Si photodiode utilised a
Texas Instruments OPA657 operational amplifier within a single-supply transimpedance
amplifier (TIA) configuration for conversion and amplification of photocurrent to voltage.
The transimpedance of the TIA was configured to enable the IRT to be calibrated for
measurement of target temperatures between 1200 K and 2650 K, accounting for coupling
losses within the optical fibre assembly. A transimpedance of 18 kΩ was chosen, with a
feedback capacitor of 10 pF used for stabilisation and filtering. With the addition of a 1st
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order RC filter (R = 1 kΩ, C = 270 pF) added to the output of the TIA, the response time for
the IRT was less than 1 µs. For reference, commercial IRTs typically have a response time
down to 1 ms [29].

In order to capture the fast transient output from the IRT, a field programmable gate
array (FPGA) based National Instruments (NI) CompactRIO 9030 controller incorporating
an NI 9223 high speed, 4-channel 16-bit analogue input module was used. By utilising
controlled sampling within Labview software, the instrument measured the IRT output
voltage every 4 µs. The measurement data was stored within the CompactRio memory,
prior to being extracted and converted to temperature. This data acquisition solution was
chosen due to its scalability; it would be relatively straightforward to add additional IRT
inputs whilst maintaining synchronous data acquisition at the same data acquisition rate.

The photodiode was optically coupled to a silica fibre-optic assembly using two N-BK7
Plano-Convex lenses in a symmetrical configuration within mechanical mounting. Ray
trace modelling was performed in Zemax OpticStudio software (Zemax, Kirkland, WA,
USA) to inform the design and dimensions, with the lenses positioned 30 mm apart; the
photodiode and optical fibre were both positioned 46.2 mm from their respective lenses.
No additional field or aperture stops were incorporated into the system. The optical fibre,
encased within stainless steel monocoil sheathing to ensure robustness, was multi-mode,
low hydroxyl ion (OH) type (operating wavelength range of 400–2200 nm), 6 m in length,
400 µm in diameter and had a numerical aperture (NA) of 0.22. A separate 50 mm long
“patch cable” was coupled to the end of the main fibre for insertion into the explosion test
rig. This “fibre probe”, with identical optical properties to the main cable, was gold coated
to help ensure durability when exposed to high temperature blasts, and was mounted
within a secure bolt, shown in Figure 2a, for attachment to the explosion test rig. The
fibre probe was sighted through a detachable 4 mm thick sapphire window (operating
wavelength range of 200–5500 nm), Figure 2b. This window was required to ensure the
fibre surface was not coated in debris from the explosion, rendering it unusable for future
tests. In contrast, the sapphire window could simply be removed and cleaned prior to
subsequent tests. The fibre probe, including all its internal components, was attached to the
main optical fibre prior to instrumentation calibration; this ensured that optical coupling
losses were factored into the calibration.

 

to produce the “shape” of the IRT output as a function of target temperature. T

source’s radiant power based upon a paraxial image of the optical system’s field stop. A 

of the IRT’s size

the IRT’s FOV, was also performed by increasing the target aperture diameter beyond this 

Figure 2. (a) Optical fibre probe within bolt for confined blast measurements. (b) Cross section of

bolt used for glass measurement, indicating sapphire window.
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2.2. Instrument Calibration

The central law governing blackbody radiation theory is Planck’s Law; IRTs are
typically calibrated based upon this law or some variation of it [30]. It represents the rela-
tionship between the radiant emittance of a blackbody object as a function of temperature
and wavelength, as shown in Equation (1).

L(λ, T) =
c1

λ5

1

exp
( c2

λT

)

− 1
(1)

where L represents the spectral radiance of a perfect blackbody emitter, whilst c1 and c2 rep-
resent the first and second radiation constants, respectively. Wavelength and temperature
are represented by λ and T, respectively. The photocurrent generated from the photodiode,
Iph, is proportional to L and, therefore, so is the IRT’s output voltage, V.

To calibrate the IRT in this work, a simple model using Equation (1), incorporating the
wavelength dependent responsivity and optical system transmission, was first created to
produce the “shape” of the IRT output as a function of target temperature. The IRT was
subsequently sighted 20 mm from a target aperture placed in front of a Landcal R1500T
furnace [31], with the output voltage corresponding to three calibration temperatures
recorded. Using these three calibrations points, the calibration model was scaled to create a
final calibration lookup table mapping V to T. To ensure traceability to ITS-90 [32] within the
calibration, the temperature of the furnace was measured using an Ametek Land Cyclops
C100L [33]. The nominal field-of-view (FOV) of the IRT was established using a series of
decreasing diameter target apertures, which were placed in front of the furnace. In this
work, we define the nominal FOV at the point which contains 98% of the target source’s
radiant power based upon a paraxial image of the optical system’s field stop. A target
aperture of 20 mm in diameter was used for the aforementioned instrument calibration;
this represents the twice nominal FOV of the IRT. An assessment of the IRT’s size-of-source
effect (SSE) [34], i.e., the impact of measuring a target which is larger in size than the IRT’s
FOV, was also performed by increasing the target aperture diameter beyond this twice
nominal point.

The root-mean-squared (RMS) noise of commercial IRTs, calculated by taking the stan-
dard deviation of the calibrated temperature measurement, have a typical specification of
±0.5 K [29]. This RMS noise specification helps to specify the minimum target temperature
which the IRT is capable of measuring; ±0.5 K is deemed the maximum level of acceptable
RMS noise within a measurement. However, commercial IRTs typically state this noise
performance applies for measurements with a response time of 1 ms or greater [29]; a
longer response, or integration, time allows for a greater degree of averaging within the
measurement, enabling the RMS noise to be reduced. Therefore, to enable IRTs to operate
at the speeds required to capture fast transient events, such as confined blasts, some com-
promise in the RMS noise performance, in terms of the minimum target temperature for an
RMS noise of ±0.5 K, would be expected. In this work, the noise was assessed by recording
the output voltage from the IRT with the CompactRio acquisition system at its raw 4 µs
sampling rate over a 1 s period. This was calibrated to temperature, with the RMS noise,
in K, calculated by taking the standard deviation of this calibrated data. By incorporating
various degrees of centred averaging filters to the raw data, the noise equating to response
times of 100 µs, 2 ms and 50 ms could also be assessed in the same way.

An 870 nm light emitting diode (LED) (Thorlabs LED870L) was used to verify the
response time of the IRT and was positioned in front of the optical fibre. The LED was
pulsed with a square wave generated from an Agilent 33210A function generator (frequency
of 1 kHz, rise and fall times of 20 ns), with the resultant output voltage of the IRT circuit
recorded using both a Keysight DSOX2002A oscilloscope and the CompactRio acquisition
system. The final response time of the IRT is defined to be the duration between the 10%
and 90% points upon the recorded square-wave step response.

The weakness of using IRTs for measuring temperature is the requirement to have a
priori knowledge of the measurand emissivity [35]. According to blackbody theory [36],
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cavities enhance emissivity, with tubular and spherical cavities used as approximate black-
body calibration furnaces. The geometry of the enclosed blast chamber would suggest that
the blast can be measured with the assumption that the measurand is a blackbody and
emissivity can be ignored.

2.3. Explosion Test Rig

Figure 3 shows an overview of the measurement system used for blast measurements,
showing both the IRT and pressure gauge instrumentation.

raw 4 μs sampling rate over a 1

s of 100 μs, 2 ms and 50 ms could also be assessed in the same way.

Figure 3. Test setup for blast measurement, incorporating IRT and pressure gauges instrumentation.

The pressure measurement was conducted using two Kulite piezo-resistive pressure
sensors, each with a natural frequency of greater than 400 kHz; one 17 bar rated HKM-375
pressure gauge, and one 35 bar rated HEM-375M pressure gauge. These gauges were
positioned off the main chamber in bolts, such as those described by Walter [37], hence
ensuring their protection against the high temperature of the confined explosive event. This
involved the pressure sensor being, as far as possible, isolated from direct contact with the
detonation products; it was effectively mounted within a small air reservoir connected to
the main blast chamber. Prior to conducting any tests, each gauge was first validated using
a static pressure pump; a known pressure was applied to the gauge to check that it resulted
in a rise in output voltage. An assessment of whether this voltage rise coincided with the
calibration factors provided by the manufacturer, in units of mV/BAR, was performed.

The output voltages from the pressure gauges were captured using a Tie-Pie Handyscope
HS6 data logging oscilloscope. Such an approach enables data to be recorded at either 14-
or 16-bit resolution, depending on the desired measurement precision or overall required
measurement duration. The oscilloscopes were set to trigger upon detection of a voltage
larger than the background noise, with data logging commencing at time zero when the
gauge experiences a rise in pressure within the chamber, and a concomitant rise in voltage.
Although the oscilloscope constantly measured the voltage from the pressure gauges, data
logging only commenced upon detection of a voltage rise. A 10% pre-trigger was applied
to the system to ensure all the credible information from the test was recorded.

The captured data was converted to pressure using the gauge calibration factor and
an average of the baseline data, as per Equation (2), where P is pressure, V is voltage, Vo is
the pre-event datum voltage and CalF is the calibration factor of the gauge.

P = (V − Vo)× CalF (2)

In order to extract temperature from the pressure measurement, the ideal gas law is
assumed, as per Equation (3), where P is absolute pressure, V is volume, n is the amount of
substance, R is the gas constant (8.314 J/(mol.K) and T is the temperature.

PV = nRT (3)
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In this work, a blast load of 50 g of a plastic-based explosive known as Plastic Explosive
No. 4 (PE-4) [38] was detonated within an air environment. The volume of the chamber
was 275 L, whilst the value of n used was calculated as follows: (i) the number of moles of
air in the chamber prior to the test was determined via Equation (3), using measurements
of the ambient atmospheric pressure and temperature. (ii) The number of moles of gas
produced by the complete reaction of the explosive charge was determined and added to
this value. (iii) Finally, the number of moles of oxygen from the air in the chamber required
to facilitate the complete reaction of the explosive charge was deducted. Via this approach,
n was found to be 11.5 mol pre-test and 13.0 mol after the detonation.

3. Results

3.1. IRT Characterisation

To radiometrically validate the use of the IRT for the measurement of temperature
within confined blasts, the IRT was calibrated and characterised using the methods de-
scribed in Section 2.2. The response time of the IRT to an LED pulsed with a square wave,
with its output connected to an oscilloscope, is shown in Figure 4a. Rise and fall times were
found to be less than 1 µs, indicating that the response time of the analogue electronics
was sufficiently faster than the 4 µs logging rate of the digital CompactRio acquisition
system. Figure 4b shows the equivalent measurement, with the output of the IRT this time
connected to the CompactRio acquisition system.

𝑃 = (𝑉 − 𝑉𝑜) × 𝐶𝑎𝑙𝐹
𝑃𝑉 = 𝑛𝑅𝑇

were found to be less than 1 μs, indicating that the response time of the analogue electron-
ics was sufficiently faster than the 4 μs logging rate of the digital CompactRio acquisition 

Figure 4. Response time assessment of the IRT with a 870 nm LED pulsed with a 1 kHz square wave,

measured by (a) the oscilloscope (b) the CompactRio acquisition system.

Figure 5 shows the output voltage of the IRT as a function of blackbody temperature,
showing the three calibration points along with the resultant calibration curve mapping
output voltage to temperature. The calibration was carried out at temperatures of 1265 K,
1463 K and 1705 K, producing a calibration curve between 1200 K and 2650 K; the IRT was
able to measure temperatures of the confined blast of up to this maximum temperature.

The FOV of the IRT was measured, as shown in Figure 6a, with the nominal FOV
found to be approximately 2:1. This means that the diameter of the target area in which
the IRT is sighted upon is half the distance at which the IRT is positioned away from the
target. It can be assumed that, if the fireball is larger than twice this nominal FOV, the
calibration to temperature is valid; the fireball diameter needs to have grown to equal the
distance at which the IRT is positioned away from the target. The SSE was found to be
minimal, indicating that further increase in fireball size beyond this twice nominal FOV
has negligible impact upon the temperature measurement; the temperature of the fireball
will continue to be accurately measured.

The RMS noise as a function of furnace temperature for the IRT is shown in Figure 6b.
The ±0.5 K noise specification was found at a furnace temperature of approximately 1600 K
for the raw 4 µs response time of the IRT. Whilst this minimum measurement temperature
is relatively high compared to commercial IRTs, a response time of 4 µs is significantly
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faster, further integration of the measurement data leads to a significant improvement in
the RMS noise performance. For example, this minimum temperature is reduced to values
of less than 1400 K, 1350 K and 1250 K for integration times of 100 µs, 2 ms and 50 ms,
respectively, as shown in Figure 6b. However, given that the typical temperatures expected
from a blast event such as those investigated in this work are higher than the ±0.5 K noise
specification temperature of 1600 K, the noise within the blast measurements is low.

Figure 5. Output voltage as a function of temperature for calibrated IRT. Red crosses represent the

calibration points at temperatures of 1265, 1463 and 1705 K.

Figure 6. (a) FOV and SSE for the IRT and (b) RMS noise as a function of target temperature for

integration times of 4 µs, 100 µs, 2 ms and 50 ms.

3.2. Blast Measurement

An explosive charge of 50 g PE-4 was detonated within an air atmosphere using the
setup shown in Figure 3. The raw data captured from the respective gauges was converted
to temperature, using the aforementioned calibration techniques, as shown in Figure 7.
Note, Figure 7a shows the first 500 ms of the blast, with a 2 ms centred average filter applied
to both sets of measurements. In contrast, Figure 7b shows the first 50 ms of the blast, with
the 2 ms filter removed.

The temperature inferred from the pressure measurement follows the trend expected
from such a blast load; the temperature rises due to a build-up in pressure, with the fireball
filling the chamber. A brief plateau in this inferred temperature reading is found at around
1800 K; this is the temperature inferred when peak QSP is reached, which occurs between
10 ms and 20 ms. The temperature at QSP is consistent with that which would be expected
for a load of this type, corresponding to a pressure of circa 600–700 kPa. There is a
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subsequent fall in the maximum QSP, with the temperature concomitantly decreasing due
to thermal losses to the chamber walls.

integration times of 4 μs, 100 μs, 2 ms and 50 ms.

1600 K for the raw 4 μs response time of the IRT. Whilst this minimum measurement 
ture is relatively high compared to commercial IRTs, a response time of 4 μs is 

ced to values of less than 1400 K, 1350 K and 1250 K for integration times of 100 μs, 2 

–

Figure 7. Temperature measurement of the confined blast for the (a) first 500 ms of the fireball, with

2 ms filter, and (b) first 50 ms of the fireball, without 2 ms filter.

The trend observed by the IRT temperature measurement is similar: increase in
temperature with the initial onset of the fireball, followed by a drop-off following the
decrease in pressure inside the chamber. However, during the first 10 ms of the blast, the
measurements from the two instruments differ. Whilst the pressure gauge indicates that
the pressure within the chamber is still increasing, the IRT measures a temperature several
100 K higher, as shown for the filtered data within Figure 7a. Observation of the non-filtered
IRT measurement within Figure 7b suggests a peak temperature reading of circa 2600 K,
staying above 1800 K over the first 10 ms, before levelling off from 10 ms to 20 ms at QSP.
For the remainder of the blast’s duration beyond QSP, the IRT measurement follows that of
the pressure gauge measurement; a steady drop-off in temperature following the reduction
in pressure within the chamber. This strongly implies that the assumption of ideal gas
behaviour is reasonable over the medium term, but the early post-detonation discrepancies
demand further attention.

Over the first 10 ms of the blast, the IRT measures a temperature of over 1800 K, whilst
the pressure gauge measures multiple, spaced peaks and troughs. These peaks and troughs
are associated with the multiple reflections of the confined shock waves. It is possible
that the IRT is essentially providing an average temperature reading over its entire FOV,
whilst the pressure gauge is measuring individual shock waves. Whilst these peaks within
the pressure gauge temperature measurement may be of a similar, albeit noisier, order
to the IRT, the filtered temperature measurement is lower. During the first 10 ms, the
pressure gauge is effectively only measuring individual spaced shocks; once averaged, the
final measured temperature will be lower. Alternatively, it may be that the IRT is directly
measuring the flame temperatures of the secondary afterburn reactions as the shock waves
churn up the still fuel-rich fireball with the oxygen in the chamber atmosphere. These
temperatures would not be proportional to the chamber pressure, as they are due to a
chemical reaction rather than a compression of the gas, and hence would not be picked up
by the temperature inferred from the pressure gauge. Work is continuing to determine the
cause of this early-stage discrepancy.

The nominal FOV of the IRT was measured to be 2:1, as shown in Figure 6a, with
the measurement deemed valid at twice this nominal FOV. Therefore, the diameter of the
fireball needs to be equivalent to the distance that the IRT is away from the fireball. Based
upon the charge used and the dimensions of the setup, the fireball was estimated to grow
to a size of approximately 600 mm after 0.18 ms from the point of detonation. At this point,
the FOV of the IRT is filled, and quantitative temperature measurements deemed valid.
Given that this occurs at an early point within the lifetime of the fireball, all the results
shown in Figure 7 are deemed valid.
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4. Discussion

The correlation in the temperatures measured by the two instruments at and beyond
QSP validates the use of the IRT for the measurement of temperature within a confined
blast. This demonstrates it is a useful tool for the measurement of such blasts, especially
due to the fast response time and lower noise performance offered by its 4 µs acquisition
speed in comparison to the pressure measurement. However, the inherent nature of its
optical measurement, in contrast to a pressure measurement, provides additional infor-
mation about what may be happening during the very early stages of a fireball. The IRT
measurement within Figure 7 suggests that the temperature of the fireball is higher over
the first 10 ms of the blast compared to the filtered pressure gauge measurement. The IRT
effectively measures an average temperature reading over the surface of the fireball, in
contrast to the individual shock waves detected by the pressure gauge. By combining this
approach to measuring the surface temperature of the fireball, along with the lower level of
noise within the data, a more accurate measure of temperature can be deduced within the
early stages of the fireball by using the IRT.

In order to perform an accurate temporal investigation into the very early stages
of the fireball, it is important for the IRT and pressure gauge outputs to be accurately
synched together; any discrepancy in the temporal synchronisation will lead to inaccurate
conclusions when such short timeframes are concerned. To enable this, the IRT output was
connected to the Tie-Pie Handyscope along with the pressure gauge, and another explosive
charge of 50 g PE-4 within air was detonated. Figure 8 shows the normalised outputs of the
two sensors over the first 5 ms of the blast, with no centred average filter added to either
set of results. For reference, 0 ms on the time-axis represents the initial point at which the
pressure gauge registered an initial increase of pressure within the chamber, in according
with the configuration of the setup described in Section 2.3.

e rising approximately 200 μs later; this trend is repeated over the first 5 ms of the 

confined blast load. The IRT’s temperature measurement was compared aga

Figure 8. Comparison of the normalised sensor outputs of the confined blast for the first 5 ms of the

fireball with both sensors connected to the same data logger.

A sharp increase in signal is observed from the IRT reading, with the pressure gauge
response rising approximately 200 µs later; this trend is repeated over the first 5 ms of the
blast. Whilst this might suggest a rise in temperature before a rise in pressure, the reality is
likely more nuanced. It is likely that the IRT registers data sooner due to a combination of
the IRT measuring over the aforementioned larger FOV, compared to individual shocks
detected by the pressure gauge, and the fact that light travels faster than shock waves. The
IRT essentially detects the presence of the fireball before the pressure gauge does, therefore
providing a sooner measure of temperature. This ultimately makes it possible for the IRT
to gather more information about what might be happening in the early stages of a fireball
as it develops and expands. It would also be feasible, with the use of further photodiode
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circuit optimisation combined with a faster data acquisition system, for an even faster IRT
temperature measurement. This would enable sub-microsecond temperature information
within the fireball to be acquired, enabling further exploration of what may be happening
within the early stages of a fireball as it develops and expands, as well as at other stages
within its lifetime.

5. Conclusions

We have demonstrated the use of a high-speed IRT for the optical measurement of
temperature within a confined blast. The IRT was radiometrically characterised using
a pulsed LED and blackbody furnace, before being demonstrated for the measurement
of a confined blast load. The IRT’s temperature measurement was compared against a
measurement of temperature inferred from a piezo-resistive pressure transducer, with both
instruments producing the same temperature reading from the QSP point onwards. The
differences between the two readings before the QSP point were analysed, with results
suggesting that the IRT provides an average temperature measurement of the fireball over
a wider FOV, in contrast to the temperature inferred from the singular shock waves of the
pressure gauge. Therefore, by using the IRT, especially in tandem with a pressure gauge,
we can provide a more accurate, high-speed temporal investigation into what may be
happening in terms of temperature within the very early stages of a fireball as it develops
and expands. Our work directly addresses the dearth of high-quality experimental data
within the measurement of confined blast loads, by demonstrating a new, high-speed
optical approach to their characterisation.

Author Contributions: This paper was written by M.J.H., A.B., S.W., D.F., S.D.C., A.T. and J.R.W. The

IRT was developed by M.J.H. and J.R.W. The explosion test setup was developed by A.B., S.W., D.F.,

S.D.C. and A.T. The experimental investigation and instrument testing were completed by M.J.H.,

A.B., S.W., D.F. and A.T. Project supervision was provided by S.D.C., A.T. and J.R.W. All authors have

read and agreed to the published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council

(EPSRC) as part of the Mechanisms and Characterisation of Explosions (MaCE) project, grant number

EP/R045240/1.

Data Availability Statement: All relevant data are shown in the paper or could be recreated by

following the methodology in the paper.

Acknowledgments: The authors wish to thank the technical staff at Blastech Ltd. for their assistance

in conducting the experimental work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tyas, A. Experimental measurement of pressure loading from near-field blast events: Techniques, findings and future challenges.

Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 471.

2. Tyas, A.; Warren, J.A.; Bennett, T.; Fay, S. Prediction of clearing effects in far-field blast loading of finite targets. Shock Waves 2011,

21, 111–119. [CrossRef]

3. Cheval, K.; Loiseau, O.; Vala, V. Laboratory scale tests for the assessment of solid explosive blast effects. Part I: Free-field test

campaign. J. Loss Prev. Process Ind. 2010, 23, 613–621. [CrossRef]

4. Cheval, K.; Loiseau, O.; Vala, V. Laboratory scale tests for the assessment of solid explosive blast effects. Part II: Reflected blast

series of tests. J. Loss Prev. Process Ind. 2012, 25, 436–442. [CrossRef]

5. Tyas, A.; Reay, J.J.; Fay, S.D.; Clarke, S.D.; Rigby, S.E.; Warren, J.A.; Pope, D.J. Experimental studies of the effect of rapid afterburn

on shock development of near-field explosions. Int. J. Prot. Struct. 2016, 7, 452–465. [CrossRef]

6. Shin, J.; Whittaker, A.S.; Cormie, D.; Wilkinson, W. Numerical modeling of close-in detonations of high explosives. Eng. Struct.

2014, 81, 88–97. [CrossRef]

7. Rigby, S.E.; Tyas, A.; Clarke, S.D.; Fay, S.D.; Reay, J.J.; Warren, J.A.; Gant, M.; Elgy, I. Observations from preliminary experiments

on spatial and temporal pressure measurements from near-field free air explosions. Int. J. Prot. Struct. 2015, 6, 175–190. [CrossRef]

8. Edri, I.E.; Grisaro, H.Y.; Yankelevsky, D.Z. TNT equivalency in an internal explosion event. J. Hazard. Mater. 2019, 374, 248–257.

[CrossRef]



Sensors 2022, 22, 6143 12 of 12

9. Dragos, J.; Wu, C.; Oehlers, D.J. Simplification of fully confined blasts for structural response analysis. Eng. Struct. 2013, 56,

312–326. [CrossRef]

10. Hu, Y.; Wu, C.; Lukaszewicz, M.; Dragos, J.; Ren, J.; Haskett, M. Characteristics of confined blast loading in unvented structures.

Int. J. Prot. Struct. 2011, 2, 21–43. [CrossRef]

11. Langran-Wheeler, C.; Rigby, S.E.; Clarke, S.D.; Tyas, A.; Stephens, C.; Walker, R. Near-field spatial and temporal blast pressure

distributions from non-spherical charges: Horizontally-aligned cylinders. Int. J. Prot. Struct. 2021, 12, 492–516. [CrossRef]

12. Stoner, R.G.; Bleakney, W. The attenuation of spherical shock waves in air. J. Appl. Phys. 1948, 19, 670–678. [CrossRef]

13. Neuwald, P.; Reichenbach, H.; Kuhl, A. After-Burning of Nitropenta Products in a Calorimeter. In Proceedings of the 17th

International Colloquium on the Dynamics of Explosion and Reactive Systems, Heidelberg, Germany, 25–30 July 1999.

14. Hopkinson, B.X. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets.

Philos. Trans. R. Soc. London Ser. A Contain. Pap. A Math. Phys. Character 1914, 213, 437–456.

15. Tyas, A.; Ozdemir, Z. On backward dispersion correction of Hopkinson pressure bar signals. Philos. Trans. R. Soc. A Math. Phys.

Eng. Sci. 2014, 372, 20130291. [CrossRef]

16. Dixon, J. Radiation thermometry. J. Phys. E Sci. Instrum. 1988, 21, 425–436. [CrossRef]

17. Saunders, P. Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry; SPIE Press: Bellingham, WA, USA,

2007; Volume 78.

18. Coates, P.; Lowe, S. The Fundamentals of Radiation Thermometers; CRC Press: Boca Raton, FL, USA, 2019.

19. Oshige, T.; Koshihara, T.; Hirota, S.; Isobe, T.; Kemmochi, M. Emissivity-free radiation thermometry based on multivariate

analysis of spectral radiance applied to steel making process. Meas. Sci. Technol. 2021, 32. [CrossRef]

20. Viskanta, R. Infrared radiation techniques for glass surface and temperature distribution measurements. IEEE Trans. Ind. Appl.

1975, IA-11, 494–505. [CrossRef]

21. Martinez, I.; Otamendi, U.; Olaizola, I.G.; Solsona, R.; Maiza, M.; Viles, E.; Fernandez, A.; Arzua, I. A novel method for error

analysis in radiation thermometry with application to industrial furnaces. Measurement 2022, 190, 110646. [CrossRef]

22. Wu, J.; Li, J.; Li, J.; Zhou, X.; Weng, J.; Liu, S.; Tao, T.; Ma, H.; Tang, L.; Gao, Z. A sub-nanosecond pyrometer with broadband

spectral channels for temperature measurement of dynamic compression experiments. Measurement 2022, 195, 111147. [CrossRef]

23. Idrici, D.; Goroshin, S.; Soo, M.J.; Frost, D.L. Light emission signatures from ballistic impact of reactive metal projectiles. Int. J.

Impact Eng. 2021, 150, 103814. [CrossRef]

24. Sun, B.; Sun, X.; Luan, M.; Dai, J.; Cui, S. Development of a Pyrometer That Measures the True Temperature Field of the

Two-Dimensional Array. Appl. Sci. 2020, 10, 2888. [CrossRef]

25. Ishii, J.; Shimizu, Y.; Shinzato, K.; Baba, T. High-speed infrared radiation thermometry for microscale thermophysical property

measurements. Int. J. Thermophys. 2005, 26, 1861–1872. [CrossRef]

26. Coslovi, L.; Righini, F.; Rosso, A. Accurate pyrometry with microsecond time resolution. J. Phys. E Sci. Instrum. 1979, 12, 216.

[CrossRef]

27. Korneff, T. Optical Pyrometer with Microsecond Resolution Time. Rev. Sci. Instrum. 1971, 42, 1561–1565. [CrossRef]

28. Farrimond, D.G.; Rigby, S.E.; Clarke, S.D.; Tyas, A. Time of arrival as a diagnostic for far-field high explosive blast waves. Int. J.

Prot. Struct. 2022, 13, 379–402. [CrossRef]

29. Land Instruments International. SPOT—High Precision Pyrometers. Available online: https://www.ametek-land.com/-/media/

ameteklandinstruments/documentation/products/fixedspotnoncontactthermometers/spot/ametek_land_spot_brochure_

marcom0355_rev_15.pdf (accessed on 15 August 2022).

30. Saunders, P. General interpolation equations for the calibration of radiation thermometers. Metrologia 1997, 34, 201. [CrossRef]

31. Land Instruments International. Landcal Blackbody Source—Type R1500T. Available online: https://www.ametek-

land.cn/-/media/ameteklandinstruments/documentation/products/calibrationsources/ametekland198033landcalr150

0tuserguideissue623022012en.pdf?la=zh-cn&revision=a40361a3-4e7d-4239-8824-00d9deba234b (accessed on 15 August 2022).

32. Preston-Thomas, H. The International Temperature Scale of 1990(ITS-90). Metrologia 1990, 27, 3–10. [CrossRef]

33. Land Instruments International. Cyclops L—A Family of High Precision Portable Non-Contact Pyrometers. Available online:

https://www.ametek-land.com/-/media/ameteklandinstruments/documentation/products/portablenoncontactthermometers/

cyclops/ametek_land_cyclops_l__brochure_rev_10_en.pdf?la=en&revision=6adf8dca-523f-428c-85bc-7eeb5cd9b6ab (accessed on

15 August 2022).

34. Saunders, P.; Edgar, H. On the characterization and correction of the size-of-source effect in radiation thermometers. Metrologia

2008, 46, 62. [CrossRef]

35. Madding, R.P. Emissivity measurement and temperature correction accuracy considerations. In Proceedings of the Thermosense

XXI, Orlando, FL, USA, 5–8 April 1999; pp. 393–401.

36. Howell, J.R.; Mengüç, M.P.; Daun, K.; Siegel, R. Thermal Radiation Heat Transfer; CRC Press: Boca Raton, FL, USA, 2020.

37. Walter, P.L. Air-blast and the science of dynamic pressure measurements. Sound Vib. 2004, 38, 10–17.

38. Mahoney, C.M.; Fahey, A.J.; Steffens, K.L.; Benner, B.A., Jr.; Lareau, R.T. Characterization of composition C4 explosives using

time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Anal. Chem. 2010, 82, 7237–7248. [CrossRef]


	Introduction 
	Materials and Methods 
	Instrument Design 
	Instrument Calibration 
	Explosion Test Rig 

	Results 
	IRT Characterisation 
	Blast Measurement 

	Discussion 
	Conclusions 
	References

