UNIVERSITY OF LEEDS

This is a repository copy of Integrated conodont biostratigraphy and δ^{13} Ccarb records from end Permian to Early Triassic at Yiwagou Section, Gansu Province, northwestern China and their implications.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/190237/</u>

Version: Accepted Version

Article:

Li, H, Dong, H, Jiang, H et al. (8 more authors) (2022) Integrated conodont biostratigraphy and δ^{13} Ccarb records from end Permian to Early Triassic at Yiwagou Section, Gansu Province, northwestern China and their implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 601. 111079. ISSN 0031-0182

https://doi.org/10.1016/j.palaeo.2022.111079

© 2022 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Integrated conodont biostratigraphy and $\delta^{13}C_{carb}$ records from end
2	Permian to Early Triassic at Yiwagou Section, Gansu Province,
3	northwestern China and their implications
4	
5	Hanxiao Li ^{1, 2} , Hanxinshuo Dong ¹ , Haishui Jiang ^{1, 3} , Paul B. Wignall ² , Yanlong Chen ⁴ , Muhui
6	Zhang ^{1, 3} , Zhumin Ouyang ¹ , Xianlang Wu ¹ , Baojin Wu ⁵ , Zaitian Zhang ⁶ , Xulong Lai* ^{1, 3}
7	1. School of Earth Science, China University of Geosciences, Wuhan, Hubei 430074, China
8	2. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
9	3. State Key Laboratory of Biogeology and Environmental Geology, China University of
10	Geosciences, Wuhan Hubei 430074, China
11	4. Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental
12	Dynamics and Department of Geology, Northwest University, Xi'an, 710069, China
13	5. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of
14	Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266100, China
15	6. Wuhan Center of Geological Survey, Wuhan 430205, China
16	
17	Abstract
18	The South Qinling Belt is a key area for understanding the collisional history of the
19	South China and North China blocks during the Lopingian (late Permian) and Triassic.
20	This paper establishes the first integrated timescale based on conodont biostratigraphy
21	and $\delta^{13}C_{carb}$ records from a continuous end Permian to the end-Early Triassic
22	succession at Yiwagou, South Qinling Platform (SQP). Ten Early Triassic conodont

23	zones are established. They are, in ascending order, Hindeodus parvus, H.
24	postparvus, Neospathodus dieneri, Eurygnathodus costatus and E. hamadai,
25	Novispathodus waageni-Scythogondolella mosheri,
26	Pachycladina-Parachirognathus assemblage, Triassospathodus hungaricus, Ns.
27	<i>robustispinus</i> and <i>T</i> . <i>clinatus</i> zones. Our record of $\delta^{13}C_{carb}$ fluctuations shows close
28	correspondence to known Early Triassic carbon isotope fluctuations and, in
29	combination with the conodont data, helps achieve a high-resolution age model for
30	the region. The use of <i>E</i> . <i>costatus</i> as a good auxiliary marker for the
31	Induan-Olenekian boundary (IOB), within palaeolatitudes of 40°N-40°S, is supported
32	but it can not replace the use of Nv. waageni, because the former is absent in
33	higher-latitude and cooler regions. The conodont faunas from the Palaeo-Tethyan
34	Yiwagou section closely resemble those from the Northern Yangtze Platform (NYP),
35	but they differ somewhat from the contemporaneous Nanpanjiang Basin at species
36	level. Thus, the Qinling Sea was likely well connected with the NYP in the Early
37	Triassic, but was more isolated from the Nanpanjiang Basin. The remarkable
38	reappearance of <i>Hindeodus</i> fauna around the IOB at Yiwagou implies that the
39	shallow-water Qinling Sea was a refuge area for this genus long after its
40	disappearance elsewhere.
41	
_	
42	Key Words: Conodonts, Qinling, Permo-Triassic, Carbon isotope, Tethys

1. Introduction

The end Permian witnessed the most severe mass extinction in the history of life 45 with the subsequent aftermath in the Early Triassic marked by unfavourable 46 47 environmental conditions, including high temperatures and marine anoxia, and major perturbations of the carbon isotope record (e.g., Payne et al., 2004; Sun et al., 2012; 48 Wignall, 2015). Several smaller crises occurred in the Early Triassic, especially 49 around the Smithian-Spathian boundary (SSB) (e.g., Lyu et al., 2019; Song et al., 50 51 2019; Zhang et al., 2019a; Chen et al., 2021). During this period, conodonts are the most important index fossils for marine stratigraphic division and correlation, and 52 53 they can provide even higher resolution correlation when combined with carbon isotope records. The GSSP of the Induan-Olenekian boundary (IOB) in the Early 54 Triassic is not yet defined, however Novispathodus waageni sensu lato is a 55 promising candidate index taxon in two candidate sections, the West Pingdingshan 56 section in Chaohu of South China (Tong et al., 2003; Zhao et al., 2007, 2008a, 2008b, 57 2013; Tong and Zhao, 2011; Lyu et al., 2018) and the Mud section in Spiti of India 58 (Krystyn et al., 2005, 2007; Orchard, 2007; Orchard and Krystyn, 2007). The 59 widespread Eurygnathodus costatus is another possible index fossil for the IOB 60 (Lyu et al., 2020). As for the SSB, the first appearance datum (FAD) of Nv. 61 pingdingshanensis has been proposed as a marker at the West Pingdingshan section 62 in Chaohu (Liang et al., 2011). However, this species may have originated a little 63 earlier than the SSB and sometimes co-occurs with late Smithian ammonoids or 64 conodonts (e.g., Orchard and Zonneveld, 2009; Goudemand et al., 2018; Chen et al., 65 2021). Besides Nv. pingdingshanensis, other early Spathian conodonts, such as 66 Triassospathodus hungaricus, T. ex. gr. homeri, Neogondolella jubata and 67 *Icriospathodus collinsoni*, together with a sharp positive carbon isotope shift, can 68 also help constrain the SSB. 69

70 A large number of palaeontological and palaeoenvironmental studies from Lopingian to Early Triassic strata have been undertaken in South China. These have 71 especially focused on the sections from the Northern Yangtze Platform (NYP) and 72 Nanpanjiang Basin (Fig. 1, e.g., Jiang et al., 2007; Chen et al., 2015; Yang et al., 2014, 73 2019). The NYP is mainly located in Hubei, Anhui, and Jiangsu provinces, and in 74 northeastern Sichuan Province and Chongqing City. The Nanpanjiang Basin is mostly 75 76 located in Guangxi, and parts of Hunan and Guizhou provinces. Studies have revealed some differences between the conodont faunas from two areas, for example, the 77 78 discovery of Scythogondolella at West Pingdingshan in Anhui, and at Longtan and Qinshan in Jiangsu (Liang et al., 2011; Liu et al., 2020), and Parafurnishus 79 xuanhanensis at Panlongdong in northeastern Sichuan (Yang et al., 2014), which are 80 not matched by any discoveries in the Nanpanjiang Basin. 81

Outcrops of Lower Triassic strata also occur in the South Qinling region and the 82 associated faunas have characteristics transitional between South China and North 83 84 China, although they become more comparable to South China in the Middle Triassic 85 (Lai et al., 1992, 1995). However, only a few studies have been undertaken on the Lopingian to Lower Triassic in the region because of the high altitude and poor access 86 87 (e.g., Lai et al., 1992, 1994; Li et al., 2019). Here we establish a high-resolution conodont biostratigraphy and the first carbon isotope record from the Yiwagou 88 section in the western South Qinling Belt (SQB), and compare these with sections in 89 South China and elsewhere (Fig. 1). The study interval encompasses the 90 Permo-Triassic mass extinction and the Smithian-Spathian crisis and therefore 91 92 provides insight into these times of environmental stress on the little-known, 93 north-western margin of the South China Block.

2. Geological setting and stratigraphy

96	The Qinling Orogenic Belt is located in the central part of China, and can be
97	subdivided into four tectonic units, the southern margin of the North China Block
98	(NCB), the North Qinling Belt (NQB), the South Qinling Belt (SQB), and the
99	northern margin of the Yangtze Block (Fig. 1, Bao et al., 2015). These terranes
100	amalgamated during the collision of SCB and NCB (e.g., Lai et al., 1995; Yang et al.,
101	2002) causing the closure of the Mianlue Ocean along the southern edge of the
102	Qinling belt. Ocean destruction occurred gradually from the Lopingian in the east to
103	the Late Triassic in the west according to fossil evidence (Li et al., 2021; Wu et al.,
104	2021) and detrital zircon ages (Zheng et al., 2021). The Yiwagou section is located in
105	Têwo County, Gansu Province, northwestern China, and lies in the western part of the
106	SQB (start point GPS 34°15'21"N, 103°12'14"E, Height 4060 m). From Lopingian to
107	Early Triassic times, it was situated in the South Qinling Carbonate Platform (Figs. 1,
108	2). The continuous section spans the Lopingian to Lower Triassic, and is composed of
109	the Yangu, Zhalishan and Maresongduo formations (Fig. 3). The Yangu Formation is
110	composed of grey, thick-bedded limestone, oolitic limestone and dolomite. The
111	Zhalishan Formation is mainly characterized by grey or red, thin- to medium-bedded
112	limestone, bioclastic limestone and lime mudstone. The Maresongduo Formation
113	consists of red or grey, thick-bedded crystalline dolomite, dolomitic limestone and
114	micritic limestone.

3. Materials and methods

117	A total of 162 conodont samples (each weighing 4–5 kg) were collected. Closest
118	spacing was around the Permian-Triassic interval (one sample every 0.5 m) with
119	wider spacing in the other intervals (one sample every 3 to 5 m). All samples were
120	crushed into small fragments, then completely dissolved in an 8% solution of acetic
121	acid, followed by heavy liquid separation. The residue was examined using a
122	stereoscopic binocular microscope to find conodonts. Finally, a scanning electron
123	microscope (SEM) was used for photography.
124	A total of 297 geochemical samples were collected every 2-3 m from
125	Changhsingian to early Spathian level. About 2–3 g powder was generated from each
126	sample using an electric drill whilst avoiding weathered surfaces, calcified veins,
127	fossils and recrystallized parts. The powders were reacted with 100% phosphoric acid
128	at 72 °C to produce CO_2 gas, which was analyzed using a MAT-253 mass
129	spectrometer with standard methodology (see Song et al., 2013) in the State Key
130	Laboratory of Biogeology and Environmental Geology, China University of
131	Geosciences (Wuhan). Isotopic values are showed as per mil relative to the Vienna
132	Pee Dee belemnite (V-PDB) standard and the analytical precision was better than \pm
133	0.1‰ for δ^{13} C and ± 0.2 ‰ for δ^{18} O for repeated samples.

4. Results

In total, about 6500 conodont specimens belonging to 30 species and 12 genera have been obtained (Figs. 3-6, Supplementary material 1), enabling us to construct 10 conodont zones in ascending order. A carbon isotope curve is plotted from the top of Yangu Formation to the bottom of Maresongduo Formation based on 297 $\delta^{13}C_{carb}$ values (Fig. 3).

141

142 **4.1 Conodont zonation**

143	In the Yangu Formation, <i>Clarkina orientalis</i> and <i>C</i> . sp. were recovered from the
144	grey, thick-bedded limestone of Bed -2 (Fig. 3). C. orientalis has a small cusp
145	separated from the carina, it can be distinguished from C. abadehensis by its
146	extremely wide posterior brim and a gap between the cusp and the posterior-most
147	denticle (Fig, 4.1). In addition, a previous study of the Yiwagou section has reported
148	C. changxingensis and C. subcarinata from Bed -5 and -6, and the fusulinid
149	Reichelina tenuissima, R. sp. from Bed -4 to Bed -6 (Lai et al., 1994). These
150	combined records indicate a Changhsingian (late Permian) age for the top of Yangu
151	Formation. In the overlying Zhalishan and Maresongduo formations ten conodont
152	zones have been recognized.
153	

- 154 4.1.1 *Hindeodus parvus* Zone

155 Lower limit: first occurrence of *H. parvus*.

156 Upper limit: first occurrence of *H. postparvus*.

157	Hindeodus parvus first occurs in the grey micritic limestone of the upper part of
158	Bed 1 (at 0.7 m height), and ranges into the grey or red micritic limestone of the lower
159	part of Bed 3. Surprisingly, it reappears again around the Induan-Olenekian boundary
160	in grey or red limestone within the Ns. dieneri and E. costatus zones (Figs. 3, 4.
161	13-14). Yin et al. (1988) proposed the FAD of <i>H. parvus</i> to be the marker for the
162	base of the Triassic at the Meishan section. This level is widely accepted and has been
163	reported from numerous Tethyan and Panthalassan regions (Table 1, e.g., Jiang et al.,
164	2007; Chen et al., 2015; Yuan et al., 2014).
165	
166	4.1.2 Hindeodus postparvus Zone
167	Lower limit: first occurrence of <i>H</i> . postparvus.
168	Upper limit: undefined.
169	Hindeodus parvus and H. praeparvus co-occur in this zone. H. postparvus is
170	found in three samples of grey and red limestones in lower part of Bed 3, and like H.
171	parvus, it reappears around the Induan-Olenekian boundary (Fig. 3). H. postparvus
172	was named by Kozur (1989) based on a specimen originally assigned to Hindeodus
173	parvus (Fig. 1c in Kozur and Pjatakova, 1976) in the Achura section of Azerbaijan.
174	In contrast to <i>H</i> . <i>parvus</i> , it has strongly diverging denticles that develop a curved line
175	of tips. The species sometimes has a reduced anterior bar with one or two small
176	denticles. H. postparvus is widespread during the Griesbachian in Tethyan and
177	Panthalassan regions, including South China, India, Oman, Tibet, Japan, Southern
178	Armenia and Slovenia (e.g., Orchard and Krystyn, 1998; Kolar-Jurkovšek and

¹⁷⁹ Jurkovšek, 2015; Zhang et al., 2019b, Table 1).

¹⁸¹ 4.1.3 *Neospathodus dieneri* Zone

¹⁸² Lower limit: undefined.

¹⁸³ Upper limit: first occurrence of *E. costatus*.

Hindeodus parvus, H. postparvus, H. aff. sosioensis, H. sp., Neospathodus
aff. pakistanensis, Pachycladina spp. and Parafurnishus xuanhanensis co-occur
in this zone. Ns. dieneri appears in the red limestone at the base of Bed 11, and it was
also found and illustrated in Lai (1992) from Bed 10 at Yiwagou. Three Morphotypes
of Ns. dieneri have been distinguished and corresponding subzones are established in
Chaohu (Table 1, Zhao et al., 2007). The specimen (Fig. 4. 24) has a broad cusp and a
short denticle posterior to the cusp, typical of Neospathodus dieneri Morphotype 3.

191 Ns. dieneri is widely distributed in eastern Palaeo-Tethys, the southern margin 192 of Neo-Tethys, Panthalassa and Boreal realms from the Dienerian to Smithian (Table 193 1), although it has not been found from western Palaeo-Tethys (Kolar-Jurkovšek and 194 Jurkovšek, 2015). We correlate this zone at Yiwagou is correlated with the same zone 195 from the west Pingdingshan (Zhao et al., 2007) and Guandao sections of the 196 Nanpanjiang Basin (Lehrmann et al., 2015) in South China, and also from the Spiti 197 area, India (Krystyn et al., 2004, 2007; Sun et al., 2021), British Columbia, Canada 198 (Orchard and Tozer, 1997; Orchard, 2008) and Kamura, Japan (Zhang et al., 2019b).

199

200 4.1.4 *Eurygnathodus costatus* Zone

201 Lower limit: first occurrence of *E*. *costatus*

202 Upper limit: first occurrence of *E. hamadai*

Parafurnishus xuanhanensis, H. parvus, H. postparvus and H. aff.
sosioensis co-occur in this zone. *E. costatus* was recovered from grey limestone of
Bed 12 and the base of Bed 13. It mainly occurs from the latest Dienerian to the early

Smithian within 40°N-40°S (Fig. 2, see discussion below), but it has also been found
in middle or late Smithian strata in the Three Gorges area in Hubei, South China
(Zhao et al., 2013). This widespread zone can also be found in Slovenia (Chen et al.,
209 2016), the Lichuan area of Hubei, South China (Wang and Cao, 1981), the
Palaeo-Tethyan Spiti area, India, the southern margin of Neo-Tethys (Sun et al., 2021)
and a Panthalassa terrane in southwest Japan (Koike, 1988).

- 212
- 213 4.1.5 Eurygnathodus hamadai Zone
- Lower limit: first occurrence of *E. hamadai*,
- 215 Upper limit: first occurrence of *Nv. waageni* and *Sc. mosheri*.
- 216 Parafurnishus xuanhanensis co-occurs in this zone. E. hamadai occurrs with
- *E. costatus* in grey limestone at the base of Bed 13. It is a Smithian species that
- usually appears a little after *E*. *costatus* and may have evolved from the latter (Chen
- et al., 2016; Lyu et al., 2020). This zone is known from Tethyan regions and
- 220 Panthalassa, and correlates with the *E. hamadai* zone in Slovenia (Chen et al., 2016),
- 221 Spiti, India (Krystyn et al., 2007) and southwest Japan (Koike, 1988).
- 222

4.1.6 Novispathodus waageni–Scythogondolella mosheri Assemblage Zone

- Lower limit: first occurrence of Nv. waageni and Sc. mosheri.
- 225 Upper limit: first occurrence of *Pc. obliqua*.
- 226 Scythogondolella phryna and Sc. cf. milleri co-occur in this zone. They occur
- in grey, thin-bedded limestone at the lower part of Bed 14. Nv. waageni is a
- widespread species reported from many locations (e.g., Zhao et al., 2008a, 2008b;
- 229 Orchard and Krystyn, 2007; Orchard, 2008, fig. 2), although it has never been found
- in central southern Europe (Chen et al., 2016). The genus *Scythogondolella* is the

- only widespread gondolellid in the Smithian, and Sc. mosheri was found in
- 232 Panthalassa, Boreal realms and higher-latitude Tethyan regions, but not in
- low-latitude Tethyan regions (Fig. 2, Li et al., 2019).
- 234
- 4.1.7 Pachycladina–Parachirognathus Assemblage Zone
- 236 Lower limit: first occurrence of *Pc. obliqua*.
- 237 Upper limit: last occurrence of *Pc. qinlingensis*.

Large number of Pachycladina obligua, Pc. ginlingensis, Parachirognathus 238 239 delicatulus, Pg. semicircnelus and Hadrodontina anceps co-occur in this zone. They were recovered from red and grey limestone, grey micritic limestone and red 240 oolitic limestone from the upper part of Bed 14 to the middle part of Bed 18. 241 Pachycladina and Parachirognathus are widely distributed in low-latitude 242 Palaeo-Tethys, Panthalassa and western USA in the Smithian and are typically 243 encountered in shallow, high energy facies (Duan et al., 1989; Sun et al., 2012; Wu et 244 al., 2021). The constituent taxa of this Smithian zone disappeared before Spathian 245 (Zhang et al., 2019a). 246

247

- 248 4.1.8 Triassospathodus hungaricus Zone
- 249 Lower limit: first occurrence of *T*. *hungaricus*.

250 Upper limit: first occurrence of *Ns. robustispinus.*

Triassospathodus qinlingensis sp. nov. co-occurs in this zone. *T. hungaricus*was recovered from thick-bedded, crystalline dolomite of Bed 20. It was originally
reported from Hungary (Kozur and Mostler, 1970), later from Sichuan, China (Tian et
al., 1983), and more recently from Slovenia (Chen et al., 2016; Kolar-Jurkovšek et al.,
2017) and Bosnia Herzegovina (Kolar-Jurkovšek et al., 2014; Kolar-Jurkovšek et al.

2021). "Neospathodus" cf. hungaricus has also been reported from Nevada (Lucas
and Orchard, 2007), but the specimen is not well-preserved and is unlikely to be
related to *T. hungaricus*, because it is about four times larger than the average size of *T. hungaricus* in Palaeo-Tethyan regions. In addition, the Nevadan specimen has no
obvious senile characteristics (e.g. more denticles (4-5) or strongly folded basal cavity)
suggesting that it is not a gerontic specimen. The *T. hungaricus* Zone is also known
from Slovenia (Chen et al., 2016, Table 1) and is of Spathian age.

263

264 4.1.9 Neospathodus robustispinus Zone

265 Lower limit: first occurrence of *Ns. robustispinus*.

266 Upper limit: first occurrence of *T. clinatus*.

Triassospathodus ginlingensis sp. nov., T. sp. indet and Icriospathodus zaksi 267 co-occur in this zone. Ns. robustispinus was recovered from light grey, thick-bedded 268 269 dolomicrite of Bed 21. It was first reported from the lower Spathian of the West Pingdingshan section, Chaohu, South China (Zhao et al., 2008b). In Slovenia, a T. 270 homeri - Ns. robustispinus Assemblage Zone or Ns. robustispinus Zone was 271 established, from above the T. hungaricus and T. symmetricus zones 272 (Kolar-Jurkovšek and Jurkovšek, 2015; Chen et al., 2016). The associated species I. 273 zaksi is an inappropriate zonal species because it has also been reported from latest 274 Smithian strata (where it co-occurs with Sc. milleri or Nv. pingdingshanensis) in 275 Oman (Chen et al., 2019), southwest Japan (Maekawa et al., 2021) and Russia (Buryi, 276 277 1979). This zone is of Spathian age.

278

4.1.10 *Triassospathodus clinatus* Zone

280 Lower limit: first occurrence of *T. clinatus.*

281 Upper limit: undefined.

Triassospathodus clinatus was recovered from red, thick-bedded, dolomitic 282 limestone in Bed 24 from the Maresongduo Formation. Orchard (1995) distinguished 283 T. clinatus from T. triangularis by the former's more uniformly reclined denticles 284 and less conspicuously folded basal cavity. T. clinatus was first founded in the early 285 Anisian Chiosella timorensis Zone in Pakistan (type sample in Sweet, 1970; 286 illustrated in Orchard, 1995, pl.3, figs. 5-7), and then in the Spathian-age, Marble 287 Canyon Formation in Nevada (Orchard and Bucher, 1992, pl.1, fig. 16). Later, in the 288 289 Nanpanjiang Basin, it was reported from the Anisian-age, Wantou section (Yan et al., 2015, fig. 3. 25) and the Spathian-age Mingtang section (Liang et al., 2016, pl.4, figs. 290 6-7, 12, 17). Ns. triangularis reported from Spathian strata in Jiangsu, China (Duan, 291 1987, only pl.3, fig. 5) possibly belongs to this species. Because some typical 292 Spathian *T. hungaricus* were reported from Bed 27 at Yiwagou (Lai, 1992), this zone 293 probably begins in the Spathian. 294

295

296 4. 2 Carbon isotope stratigraphy

The average values of $\delta^{13}C_{carb}$ are +2.6‰ (ranging from -1.4‰ to +7.3‰), and 297 $\delta^{18}O_{carb}$ are -6.6% (ranging from -14.5% to -1.4%). The two sets of values show 298 almost no correlation ($R^2 = 0.0967$, supplementary material 2) suggesting that there 299 has been little diagenetic change. The colour alteration index (CAI) of the conodont 300 specimens is lower than 5 at the section, except for one sample (M-24) from 301 thick-bedded crystalline dolomite in the lowermost Maresomgduo Formation (Bed 302 20). Some of the isotopic values in the Yangu Formation and lowermost Maresongduo 303 Formation derive from dolomitic samples that have potentially had their primary 304

 $\delta^{13}C_{carb}$ records altered. However, the carbon isotope composition of the dolomitic samples follows the same trends as the associated carbonate samples suggesting they are primary values. This conclusion is also supported by the close correspondence of carbon isotope profile from Yiwagou to other Permian-Triassic isotope records (e.g., Payne et al., 2004; Tong et al., 2007; Song et al., 2013; Sun et al., 2021). These show a series of high-amplitude, negative and positive excursions that have been labelled N1–N4 and P1–P4 (Song et al., 2013).

312

313 5. Discussions

314 5.1 Intercalibrated conodont– $\delta^{13}C_{carb}$ correlation framework

The Yiwagou results enable us to establish an integrated conodont biostratigraphy 315 and $\delta^{13}C_{carb}$ records from latest Permian to the Early Triassic. Carbon isotope values 316 show a small negative shift from late Changhsingian to around the base of the H. 317 parvus Zone. A negative shift beginning slightly prior to the PTB has been noted in 318 many regions and coincides with the end Permian mass extinction (Fig. 7; e.g., Cao et 319 al., 2009; Korte and Kozur, 2010; Song et al., 2013), although the magnitude of the 320 excursion is relatively small (~-1.8‰) at Yiwagou. The more negative values seen 321 322 elsewhere may be absent at Yiwagou because of the presence of a hiatus around the level of an oolitic limestone (Bed -1) although no obvious weathering surface was 323 observed at this level in the field. 324

Above the Permian-Triassic boundary $\delta^{13}C_{carb}$ values increase upwards (~+7.0‰) for ~200 m and define a major positive (P2) excursion which is composed of double

327	peaks around the IOB, with the second peak having higher values (Fig. 3). In
328	Palaeo-Tethyan regions, this P2 excursion is also known from the West Pingdingshan
329	(Tong et al., 2007) and Guandao sections (Lehrmann et al., 2015) in South China, and
330	the Žiri area of Slovenia (Chen et al., 2016). It is also known in Neo-Tethyan regions,
331	such as Musandam (Clarkson et al., 2013), Oman (Richoz, 2006), Spiti (Sun et al.,
332	2021) and Iran (southern margin, Horacek et al., 2007). In most sections in the world,
333	the IOB is defined by the first occurrence of Nv. waageni sensu lato around P2.
334	However, at Yiwagou, Nv. waageni sensu lato only occurs in one sample of Bed 14,
335	which is much a higher level than the level of P2. But <i>E</i> . costatus first occurs in the
336	lower part of Bed 12, just between the double peaks of P2, which can be well
337	correlated with the first occurrence of this species at two IOB candidate sections, the
338	West Pingdingshan and the Mud sections (Fig. 7). Hence the IOB can be placed in the
339	lower part of Bed 12.
340	Above the P2 excursion, there is an ~8.5‰ negative shift in the $\delta^{13}C_{carb}$ curve
341	from the IOB into the middle-late Smithian, followed by a quick rebound across the
342	SSB to P3 (~+6.5‰) in the earliest Spathian. The peak values of both P2 (~+7.3‰)
343	and P3 (~+6.5‰) are considerably heavier than the values seen in South China at this
344	time (Fig. 7, e.g., Payne et al., 2004; Tong and Zhao, 2011; Song et al., 2013, 2019;
345	Lyu et al., 2019). The typical Spathian species - T. hungaricus first occurs at the base
346	of Maresongduo Formation, leaving a 60-m thick interval that is barren of conodonts
347	below this level. The <i>T. hungaricus</i> Zone, which can be equivalent to the ammonoid
348	Tirolites cassianus Zone (Kozur, 2003; Kolar-Jurkovšek et al. 2021), is not the first
349	conodont zone in Spathian. In the Idrija–Žiri area, Slovenia, the early Spathian Ns.

robustus, Platyvillosus corniger and Pl. regularis zones were found lower than *T*. hungaricus Zone (Chen et al., 2016, table 1). Hence the SSB should be somewhere within the 60-m barren interval. Zhang et al. (2019a) suggested SSB to be around the midpoint between N3 and P3 of δ^{13} C curve; using this criterion, the SSB would lie in the upper part of Bed 18.

355

356 5.2 The conodont marker for the IOB: *Nv. waageni* or *E. costatus*?

Novispathodus waageni sensu lato and Eurynathodus costatus are both 357 potential index fossils to define the base of Olenekian (e.g., Tong et al., 2003; Lyu et 358 al., 2018, 2020). Here we compare their attibutes. Firstly, Nv. waageni has a wider 359 distribution than *E. costatus* which is restricted to palaeolatitudes within 40°N – 360 40°S (Fig. 2). In comparison, Nv. waageni is globally distributed (although not 361 known from western Palaeo-Tethyan regions), and is also common in northern 362 high-latitude regions, Middle Sikhote Alin (Klets, 1995), Canadian Arctic (Orchard, 363 2008), Svalbard (Nakrem et al., 2008) and Siberia (Eastern Laptev Sea coast and 364 Kotelny Island (Dagys, 1984; Klets and Yadrenkin, 2001; Klets and Kopylova, 2006; 365 Konstantinov et al., 2013), Lena River lower reaches of the Western Verkhovansk 366 region (Klets and Kopylova, 2006), Shevlya River basin (Kuz'min and Klets, 1990), 367 and Churki Ridge (Klets, 2008)). It also occurs in southern high-latitude regions, 368 Nepal (Hatleberg and Clark, 1984), South Tibet (Wang, 1995) and Western Australia 369 (Metcalfe et al., 2013). Secondly, *Eurygnathodus* has lighter δ^{18} O_{apatite} values than 370 coeval neospathodids (Neospathodus and Novispathodus), which suggests it 371 prefers shallower and warmer waters than the neospathodids (Sun et al., 2012; Chen 372

373	et al., 2021). This likely explains the abundance of <i>Eurygnathodus</i> in shallow,
374	epeiric ramp settings in Europe where Nv. waageni is absent (e.g., Chen et al., 2016,
375	2021). Thirdly, <i>E. costatus</i> has shorter stratigraphic range around the IOB, whilst the
376	Nv. waageni group can range up into Spathian (Zhao et al., 2008a; Liang et al., 2011),
377	so that the occurrence of <i>E. costatus</i> often corresponds to a P2 positive $\delta^{13}C_{carb}$
378	excursion, but Nv. waageni does not (Fig. 7). In summary, E. costatus provides an
379	auxiliary marker for the IOB within 40°N-40°S, but cannot replace the more
380	widespread Nv. waageni.
381	
501	
382	5.3 The surprisingly long-range of <i>Hindeodus</i> in South Qinling
383	An abundant <i>Hindeodus</i> fauna, including <i>H. parvus</i> , <i>H. postparvus</i> , <i>H.</i> aff.
384	sosioensis and H. sp., appears around the IOB at Yiwagou, and co-occurs with
385	Parafurnishus xuanhanensis and E. costatus. Because this Hindeodus fauna

appears about 200 m above the earliest Griebachian *Hindeodus* occurrences but not
in the intervening strata it is unlikely that this reappearance is due to reworking.
Furthermore, the *Hindeodus* specimens do not show evidence of abrasion suggesting
they have not been transported any distance which again suggests they are unlikely to

have been reworked from old strata (Figs. 4. 13-14). The genus *Hindeodus* occurred

391 globally in the Griesbachian, and was considered to either become extinct in late

392 Griesbachian (Kozur, 1998) or to have perhaps extended into the earliest Dienerian

393 (Orchard, 2007). Based on oxygen isotope analysis, *Clarkina* and *Hindeodus*

inhabited similar water depths in the Lopingian, but separated into different water

depth in the earliest Triassic when *Hindeodus* lived in shallower waters than

Clarkina (Joachimski et al., 2012). *Hindeodus*' widespread distribution in the
Griesbachian at a time of widespread anoxic bottom waters also suggests a
surface-dwelling life site (Lai et al., 2001). Compared with its global Griesbachian
distribution, the restriction of *Hindeodus* to Yiwagou in the IOB interval marks a
major contraction in its range. Presumably the shallow water environments of this
western-most South China location provided a final refuge area for this long-lived
genus.

403

404 5.4 Comparison of conodont faunas in Palaeo-Tethys

The conodont faunas from the SQP reported here have their greatest similarity 405 with conodonts from the NYP both in terms of genera and species, but have less 406 similarity with those from the Nanpanjiang Basin at species level (Table 2). In the 407 Induan, Parafurnishus xuanhanensis is known from Panlongdong, Sichuan, and 408 from Yiwagou, but it has not been found in the Nanpanjiang Basin or Europe. 409 Scythogondolella, a cosmopolitan Smithian genus, is represented at Yiwagou by Sc. 410 mosheri, Sc. phryna and Sc. cf. milleri, whilst in the NYP, Sc. milleri, Sc. milleri 411 412 parva, Sc. aff. mosheri, Sc. ellesmerensis and Sc. aff. lachymiformis occur in the Longtan and Qingshan sections, Jiangsu (Liu et al., 2020; Sun et al., 2020) and Sc. 413 milleri (Neogondolella sp., fig. 3, 10 in Liang et al., 2011) occurs at West 414 Pingdingshan, Anhui. However, Scythogondolella is not known from either the 415 Nanpanjiang Basin nor in Europe. During the Spathian, T. hungaricus occurs at 416 417 Yiwagou and NYP sections: Wangcang, Sichuan (Tian et al., 1983) and Xiejiacao, Chongqing (our unpublished materials), and in Europe (e.g., Hungary (Kozur and 418 Mostler, 1970), Slovenia (Chen et al., 2016; Kolar-Jurkovšek et al., 2017) and Bosnia 419

420 Herzegovina (Kolar-Jurkovšek et al., 2014; Kolar-Jurkovšek et al. 2021)). Ns.

robustispinus is found at Yiwagou and West Pingdingshan (Zhao et al., 2008b), and 421

also in Slovenia (Kolar-Jurkovšek and Jurkovšek, 2015; Chen et al., 2016). All these 422

423 species mentioned above have not been found in the Nanpanjiang Basin so far. It can

be inferred that the NYP was well connected with the SQP in the Early Triassic, based 424

on the near-identical conodont biota, whilst the Nanpanjiang Basin was partly isolated 425

from this region perhaps because of a series of intervening barriers (e.g., small 426

islands). The differences of conodont faunas between eastern and western 427

428 Palaeo-Tethys was likely due to the long distance separation and different

environments. 429

430

431	6. Systematic palaeontology
432	
433	Class: Conodonta Eichenberg, 1930
434	Order Ozarkodinida Dzik, 1976
435	Family Gondolellidae Lindström, 1970
436	Subfamily Novispathodinae Orchard, 2005
437	Genus Triassospathodus Kozur, 1998
438	Type species: Triassospathodus homeri (Bender, 1970)
439	
440	Remarks: according to the multielement conodont apparatus, Triassospathodus and
441	Neospathodus belong to different subfamilies with different $S_{0,}$ S_2 - S_4 elements
442	(Orchard, 2005). In terms of morphology, the lower side of basal cavity is upward
443	curved in the P_1 element of <i>Neospathodus</i> , but straight or downward curved in
144	Triassospathodus (Kozur et al., 1998). A folded basal cavity (triangular or
445	heart-shaped) is more common in Triassospathodus than Neospathodus or
146	Novispathodus.

448	Triassospathodus qinlingensis sp. nov. Li and Lai
449	Figures 6. 8-14
450	
451	Holotype: Fig. 6. 14 from sample M-21 (Bed 20), in the <i>T. hungaricus</i> Zone, about
452	582 m above the P-T boundary at the Yiwagou section, Têwo, Gansu Province,
453	China.
454	
455	Paratypes: Fig, 6. 9 from sample M-20 (Bed 20), 6. 13 from sample M-21 (Bed 20) in
456	the <i>T. hungaricus</i> Zone.
457	
458	Derivation of name: from the South Qinling belt, the type locality.
459	
460	Diagnosis: P1 element generally bears 5-7 largely fused denticles with increasing
461	inclination toward the posterior end. The terminal cusp is prominent and most
462	strongly reclined. The expanded subtriangular or heart-shaped basal cavity occupies
463	1/2 to $2/3$ of the lower side.
464	
465	Description: This species has a ratio of length: height about 1.3: 1. It bears 5-7 largely
466	fused, posteriorly inclined denticles, with increasing inclination toward the posterior
467	end. The denticle on the posterior end (cusp) is inclined most strongly and always
468	projects beyond the posterior margin of basal cavity. The length of denticles increases
469	from anterior end to posterior end. The expanded basal cavity occupies $1/2$ to $2/3$ of
470	the element's length, is subtriangular or heart-shaped, and usually widest at the
471	posterior end. The lower margin of the basal cavity is slightly downward curved.
472	
473	Remarks: This species is similar to Ns. robustispinus and T. brevissimus, but can
474	be distinguished from them by its more posteriorly inclined denticles (especially the
475	cusp) and the slightly folded basal cavity. Compared with T. hungaricus, it has
476	different dimensions with more denticles. In comparison with Ns. planus, this

478 one from posterior end, whereas it is the first one (cusp) in *Ns. planus* (Chen et al.,

species has a less inflated basal cavity, and its highest denticle is the second or third

479

2016).

477

481 Materials: 39 specimens from sample M-21, M-20, M-19 in Bed 20, M-9, M-5 in Bed
482 21, Maresongduo Formation.

483

484 Age: Spathian

485

486 **Conclusions**

487	A detailed conodont biostratigraphic and chemostratigraphic study was carried
488	out at the Yiwagou section from the western part of the South Qinling Belt,

- 489 northwestern China. A total of ~6500 specimens were obtained and these have been
- 490 assigned to 30 species of 12 genera in strata spanning the end Permian to Early

491 Triassic interval. One new species *Triassospathodus qinlingensis* sp. nov. is

492 introduced. Ten conodont zones have been recognized in the Early Triassic at

493 Yiwagou. They are, in ascending order, *H. parvus* Zone, *H. postparvus* Zone, *Ns*.

494 dieneri Zone, E. costatus Zone, E. hamadai Zone, Nv. waageni-Sc. mosheri

495 Assemblage Zone, *Pachycladina-Parachirognathus* Assemblage Zone, *T*.

496 *hungaricus* Zone, *Ns. robustispinus* Zone and *T. clinatus* Zone. Based on a

497 combination of conodont zonation and carbon isotope records, the PTB, IOB and SSB

498 are all clearly defined at Yiwagou.

The $\delta^{13}C_{carb}$ curve is comparable to that seen elsewhere. It shows a negative shift from the late Changhsingian to the PTB followed by a positive trend that culminates in the double peak positive excursion around the IOB, the P2 excursion of Song et al. (2013). A negative into the late Smithian, is followed by a quick rebound to the P3 positive peak in the earliest Spathian. The peak values of both P2 (\sim +7.3‰) and P3

 $(\sim+6.5\%)$ are considerably heavier than the values seen in South China.

The conodont faunas of South Qinling Sea are closely similar to those of the 505 North Yangtze Platform. In contrast, the conodonts from the Nanpanjiang Basin in 506 Early Triassic are somewhat different at species level pointing to the isolation of this 507 basin. The difference between Yiwagou assemblages and those of more distant 508 Western Tethyan realms are likely due to the long distance and different environments 509 in the regions. *Hindeodus*, which was thought to have gone extinct in the late 510 Griesbachian, has an unexpected final reappearance around the IOB at Yiwagou 511 suggesting the South Qinling region provided the final refuge for this long-lived 512 genus. 513

514 Our study also provides new data for supporting the contention that *E. costatus* 515 can be used as an auxiliary marker for the IOB within palaeolatitudes of 40°N-40°S, 516 although *Nv. waageni* is widespread at all latitudes at this time and is therefore a 517 more useful marker for this level.

518

519 **Declaration of competing interest**

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this
paper.

524 Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers 41830320, 45172002, 41661134047] and China Scholarship Council. We thank Kang Li, Ye Qian, Niu Xiaohong, Song Hong, He Pengfei, Li Linfeng, Ma Haiyuan, Ma Zujun, Li Yongchao, Wang Miaoyan, Yi Zhaoyang and Chen Yan for their great help during fieldwork or the experiments. We also thank two anonymous reviewers for their helpful comments and valuable suggestions.

531

532 Figure and Table Captions

533 Figure 1. Early Triassic palaeogeography of Qinling and South China (modified after

Lai and Yin, 1992; Feng et al., 1997), and simplified tectonic map of the Qinling

orogen (modified after Bao et al., 2015). MLSZ = Mianlue suture zone.

536

537 Figure 2. Global palaeogeographic map (modified after

538 http://www.scotese.com/newpage5.htm) and selected conodont distributions. *E*.

costatus is seen to be restricted to within $40^{\circ}N - 40^{\circ}S$ whilst *Nv. waageni* is

540 globally distributed (except for western Palaeo-Tethyan regions). Scythogondolella

is the only widespread gondolellid in the Smithian. Locations: 1. Yiwagou, South

542 Qinling; 2. Chaohu, South China; 3. Nanpanjiang Basin, South China; 4. Northeastern

- 543 Vietnam; 5. Japan; 6. Timor; 7. Malay Peninsula; 8. West Malaysia; 9. South
- Primorye, Russia; 10. Middle Sikhote Alin (Klets, 1995); 11. Qinghai, China; 12.
- Lhasa Terrane, Tibet, China; 13. Afghanistan; 14. United Arab Emirates; 15. Oman;
- 16. Salt Range, Pakistan; 17. India; 18. Nepal ; 19. Himalaya Terrane, Tibet; 20.

547	Western Australia; 21. South Tyrol, Italy; 22. Slovenia and Croatia; 23. Bosnia and
548	Herzegovina (Kolar-Jurkovšek et al. 2021); 24. Serbia; 25. Western USA; 26. British
549	Columbia, Canada; 27. Alberta, Canada; 28. Canadian Arctic; 29. Svalbard, Norway.
550	1-9, 12-22, 24-29 Nv. waageni and E. costatus (after Lyu et al., 2020 and its
551	references), Scythogondolella and other gondolellids (after Li et al., 2019 and its
552	references). Siberia: 30. Eastern Laptev Sea coast and Kotelny Island (Dagys, 1984;
553	Klets and Yadrenkin, 2001; Klets and Kopylova, 2006; Konstantinov et al., 2013); 31.
554	Lena River lower reaches, Western Verkhoyansk region (Klets and Kopylova, 2006);
555	32. Shevlya River basin (Kuz'min and Klets, 1990); 33. Churki Ridge (Klets, 2008).
556	
557	Figure 3. Conodont distributions and carbon isotopes from Lopingian to Lower
558	Triassic strata at Yiwagou, Têwo, northwestern China.
559	

- Figure 4. SEM photos of conodonts from Yiwagou: 1. Clarkina orientalis, sample 560
- 2YG-1; 2-8. Hindeodus praeparvus, 2-4, sample ZLSO-21, 5-8, sample ZLSO-22; 561
- 9-14. H. parvus, 9-10, sample ZLSO-22, 11, sample ZLSO-23, 12, sample ZLSO-22, 562
- 13, sample ZLS-2, 14, sample ZLS-5; 15-23. *H. postparvus*, 15-16, sample 563
- ZLSO-21, 17-18, 22-23, sample ZLS-5, 19-21, sample ZLS-2; 24. Neospathodus 564
- 565 dieneri M3, sample ZLS-C2-8; 25. Neospathodus aff. pakistanensis, sample
- ZLS-C2-8; 26-27. Pachycladina spp., sample ZLS-C2-8. Scale bar = 100 μm. 566
- Numbers in red denote Hindeodus around the IOB. 567

568

Figure 5. SEM photos of conodonts from Yiwagou: 1. Eurygnathodus costatus, 569

570	sample ZLS-9 (after figs. 4. 34-36 in Li et al., 2019); 2. Eurygnathodus hamadai,
571	sample ZLS-9 (after figs. 4. 40-42 in Li et al., 2019); 3. Parafurnishius
572	xuanhanensis, sample ZLS-13 (after figs. 4. 13-15 in Li et al., 2019); 4-5.
573	Scythogondolella mosheri, sample ZLS-30 (after figs. 5. 4-6, 16-18 in Li et al.,
574	2019); 6. Scythogondolella cf. milleri, sample ZLS-30 (after figs. 5. 22-23 in Li et
575	al., 2019); 7. Scythogondolella phryna, sample ZLS-30 (after figs. 5. 24-26 in Li et
576	al., 2019); 8-9. Novispathodus waageni waageni, sample ZLS-30 (after figs. 6. 1-2,
577	5-6 in Li et al., 2019); 10. Novispathodus waageni eowaageni, sample ZLS-30
578	(after figs. 6. 7-8 in Li et al., 2019); 11–13. Pachycladina qinlingensis, 11. P ₂
579	element, sample ZLS-88 (after fig. 6. 14 in Li et al., 2019), 12. P2 element, sample
580	ZLS-74 (after fig. 6. 16 in Li et al., 2019), 13. S ₂ element, sample ZLS-67 (after fig. 6.
581	19 in Li et al., 2019); 14. Pachycladina obliqua, S2 element, sample ZLS-42 (after
582	fig. 6. 13 in Li et al., 2019); 15-16. Parachirognathus semicircnelus, 15. S_1
583	elements, sample ZLS-88 (after fig. 6. 22 in Li et al., 2019), 16. S ₂ element, sample
584	ZLS-88 (after fig. 6. 20 in Li et al., 2019). Scale bar = $100 \ \mu m$.
585	
586	Figure 6. SEM photos of conodonts from Yiwagou: 1-2. Hindeodus aff. sosioensis,
587	1, sample ZLS-2, 2, sample ZLS-5. 3-7. Triassospathodus hungaricus, 3, 7, sample

588 M-20, 4-6, sample M-21; 8-14. Triassospathodus qinlingensis sp. nov., holotype

589 (14), paratypes (9 and 13), 8, sample M-19, 9, sample M-20, 10, sample M-5, 11, 13,

- sample M-21, 12, sample M-9, 14, sample M-21; 15. *Novispathodus robustispinus*,
- sample M-5; 16. Icriospathodus zaksi, sample M-2; 17-19. Triassospathodus
- 592 *clinatus*, 18, sample MRSD-1, 17, 19, sample MRSD-2. Scale bar = $100 \mu m$.

594	Figure 7. Comparison of latest Permian – Early Triassic carbon isotope records from
595	South China and Mud, Spiti with the Yiwagou section. Meishan Section, Changxing
596	(Cao et al., 2009); Guandao Section, Nanpanjiang Basin (Payne et al., 2004); West
597	Pingdingshan Section, Chaohu (black from Tong and Zhao, 2011; blue from Lyu et al.,
598	2019), Mud Spiti (black from Sun et al., 2021; blue from Krystyn et al., 2007). Red
599	lines denote the first occurrence of <i>E. costatus</i> , purple lines denote the first occurrence
600	of E. hamadai.
601	
602	Table 1. Correlation of the Lower Triassic conodont zones around the world.
603	Abbreviations: B. = Borinalla, C. = Clarkina, D. = Discretalla, E. = Eurynathodus,
604	H. = Hindeodus, Ha. = Hadrodontina, I. = Isarcicella, Ic. = Icriospathodus, Nc. =
605	Neoclarkina, Ng. = Neogondolella, Ns. = Neospathodus, Nv. = Novispathodus,
606	Pu. = Paullella, Pl. = Platyvillosus, Sc. = Scythogondolella, Sw. =
607	Sweetospathodus, T. = Triassospathodus.

- 608
- Table 2. Comparison of conodont faunas in Palaeo-Tethys. The faunas from the SQP
- strongly resemble those in the NYP, but shows less similarity with those from the
- 611 Nanpanjiang Basin at species level or Europe at both genus and species level.
- 612
- 613 Supplementary materials
- 614 1. Statistics and distribution of conodont species at the Yiwagou section.
- 615 2. Data of carbonate carbon isotope and oxygen values from the Yiwagou section.
- 616

617 **References**

618	Bao, Z.W., Wang, C.Y., Zeng, L.J., Sun, W.D., Yao, J.M., 2015, Slab break-off
619	model for the Triassic syn-collisional granites in the Qinling orogenic belt,
620	Central China: Zircon U-Pb age and Hf isotope constraints, International
621	Geology Review, http://dx.doi.org/10.1080/00206814.2015.1017777
622	Bender, H., 1970. Zur Gliederung der Mediterranen Trias II. Die
623	Conodontenchronologie der mediterranen Trias. Annales Géologiques des
624	Pays Helléniques. 19, 465–540.
625	Buryi, G.I., 1979, Lower Triassic Conodonts of Southern Primor' e: Moscow, Instituta
626	Geologii i Geofiziki, Sibirskoe Otdelenie, Akadamie Nauk SSSR, 142 p. [in
627	Russian]
628	Cao, C.Q., Love, G.D., Hays, L.E., Wang, W., Shen, S.Z., Summons, R.E., 2009.
629	Biogeochemical evidence for euxinic oceans and ecological disturbance
630	presaging the end-Permian mass extinction event. Earth and Planetary Science
631	Letters. 281, 188-201.
632	Chen, Y.L., Jiang, H.S., Lai, X.L., Yan, C.B., Richoz, S., Liu, X.D., Wang, L., 2015.
633	Early Triassic conodonts of Jiarong, Nanpanjiang Basin, southern Guizhou
634	Province, South China. Journal of Asian Earth Sciences. 105, 104-121.
635	Chen, Y.L., Kolar-Jurkovšek, T., Jurkovšek, B., Aljinović, D., Richoz, S., 2016. Early
636	Triassic conodonts and carbonate carbon isotope record of the Idrija-Žiri area,
637	Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology. 444, 84-100.

638	Chen, Y.L., Richos, S., Krystyn, L., Zhang, Z.F., 2019. Quantitative stratigraphic
639	correlation of Tethyan conodonts across the Smithian-Spathian (Early Triassic)
640	extinction event. Earth-Science Reviews. 195, 37-51.
641	Chen, Y.L., Joachimski, M.M., Richoz, S., Krystyn, L., Aljinović, D., Smirčić, D.,
642	Kolar-Jurkovšek, T., Lai, X.L., Zhang Z.F., 2021. Smithian and Spathian (Early
643	Triassic) conodonts from Oman and Croatia and their depth habitat revealed.
644	Global and Planetary Change. 196, 103362.
645	Clarkson, M.O., Richoz, S., Wood, R.A., Maurer, F., Krystyn, L., Mcgurty, D.J.,
646	Astratti, D., 2013. A new high-resolution δ^{13} C record for the Early Triassic:
647	insights from the Arabian Platform. Gondwana Res. 24, 233-242.
648	Dagis, A.A., 1984. Early Triassic Conodonts from Northern Middle Siberia: Trudy
649	Akademiia SSSR, Sibirskoe otdelenie Instituta Geologii I Geofiziki. 554, 3-69.
650	[in Russian]
651	Duan, J.Y., 1987. Permian-Triassic conodonts from southern Jiangsu and adjacent
652	areas, with indexes of the color alteration. Acta Micropalaeontologica Sinica. 4,
653	351-368.
654	Duan, J.Y., 1989, Palaeoecological Environment And Palaeogeographical
655	Significance of Pachycladina (Conodonta), Acta Micropalaeontologica Sinica, 6,
656	91-95. [in Chinese]
657	Dzik, J., 1976, Remarks on the evolution of Ordovician conodonts: Acta

- Palaeontologica Polonica, v. 21, p. 395–455.
- Eichenberg, W., 1930, Conodonten aus dem Culm des Harzes: Palaontologische
- 660 Zeitschrift, v. 12, p. 177–182.

661	Feng, Z.Z., Bao Z.D., Li S.W., 1997, Potential of Oil and GAS of the Middle and
662	Lower Triassic of South China from the Viewpoint of Lithofacies
663	Paleogeography, Journal of the University of Petroleum, China, 21. [in Chinese]
664	Goudemand, N., Romano, C., Leu, M., Bucher, H., Trotter, J., Williams, I., 2018.
665	Dynamic interplay between climate and marine biodiversity upheavals during the
666	Early Triassic Smithian-Spathian biotic crisis. Earth Sci. Rev.
667	https://doi.org/10.1016/j. earscirev.2019.01.013.
668	Hatleberg, E.W., Clark, D.L., 1984. Lower Triassic conodonts and biofacies
669	interpretations: Nepal and Svalbard. Geologica et Palaeontogica, 18, 101-125.
670	Horacek, M., Richoz, S., Brandner, R., Krystyn, L., Spotl, C., 2007. Evidence for
671	recurrent changes in Lower Triassic oceanic circulation of the Tethys: the $\delta^{13}C$
672	record from marine sections in Iran. Palaeogeography, Palaeoclimatology,
673	Palaeoecology. 252, 355–369.
674	Jiang, H.S., Lai, X.L., Luo, G.M., Aldridge, R., Zhang, K.X., Wignall, P.B., 2007.
675	Restudy of conodont zonation and evolution across the P/T boundary at Meishan
676	Section, Changxing, Zhejiang, China. Global and Planetary Change. 55, 39–55.
677	Joachimski, M.M., Lai, X.L., Shen, S.Z., Jiang, H.S., Luo, G.M., Chen, B., Chen, J.,
678	Sun, Y.D., 2012, Climate warming in the latest Permian and the Permian-
679	Triassic mass extinction, Geology. 40, 195-198.
680	Klets, T.V., 1995, Triassic Biostratigraphy and Conodonts of the Middle Sikhote Alin
681	(NGU, Novosibirsk) [in Russian].

682	Klets, T	.V., 20)08, Pal	leogeogra	aphic	regional	lization	of	Triass	sic seas	based	on
-----	----------	---------	----------	-----------	-------	----------	----------	----	--------	----------	-------	----

- conodontophorids, Stratigraphy and Geological, 16, 467-489.
- 684 Klets T.V., and Kopylova, A.V., 2006, New Triassic conodontophorids from
- 685 Northeastern Asia, in News in Paleontology and Stratigraphy, Issue 8 (GEO,
- 686 Novosibirsk). 95–105 [in Russian].
- 687 Klets, T.V., and Yadrenkin, A.V., 2001, Conodonts from the Lower Triassic of the
- Kotel' nyi Island (Taxonomic Composition, Correlation): News in Paleontology
 and Stratigraphy. 4, 14 21. [in Russian]
- 690 Kolar-Jurkovšek, T., Jurkovšek, B., Vuks, V.J., Hrvatović, H., Aljinović, D., Šarić, Ć.,
- Skopljak, F., 2014. The Lower Triassic platy limestone in the Jajce area (Bosnia
 and Herzegovina). Geologija. 57, 105-118.
- Kolar-Jurkovšek, T., Jurkovšek, B., 2015. Conodont zonation of Lower Triassic strata
 in Slovenia. Geologija. 58, 155–174.
- 695 Kolar-Jurkovšek, T., Chen, Y.L., Jurkovšek, B., Poljak, M., Aljinović, D., Richoz, S.,
- 696 2017. Conodont biostratigraphy of the Early Triassic in eastern Slovenia.
- 697 Paleontological Journal. 51, 687-703.
- 698 Kolar-Jurkovšek, T., Hrvatović, H., Aljinović, D., Nestell, G.P., Jurkovšek, B.,
- 699 Skopljak, F., 2021 Permian-Triassic biofacies of the Teočak section, Bosnia and
- Herzegovina. Global and Planetary Change. 200, 103458.
- 701 10.1016/j.gloplacha.2021.103458.

702	Koike, T., 1988. Lower Triassic conodonts Platyvillosus from the Taho Limestone in
703	Japan, Sci. Repts. Yokohama Natl. Univ. Sec. II, 61-79.
704	Konstantinov, A.G., Sobolev, E.S., and Yadrenkin, A.V., 2013. Triassic stratigraphy
705	of the Eastern Laptev Sea coast and New Siberian Islands: Russian Geology and
706	Geophysics. 54, 792–807.
707	Korte, C., Kozur, H.W., 2010. Carbon-isotope stratigraphy across the Permian-
708	Triassic boundary: a review. Journal of Asian Earth Sciences. 39, 215–235.
709	Kozur, H., 1989. Significance of events in conodont evolution for the Permian and
710	Triassic stratigraphy. Courier ForschInst. Senckenberg. 117, 385-408.
711	Kozur, H.W., 1998. Problems for evaluation of the scenario of the Permian-Triassic
712	boundary biotic crisis and of its causes. Geologia Croatica. 51, 135-162.
713	Kozur, H.W., 2003. Integrated ammonoid, conodont and radiolarian zonation of the
714	Triassic and some remarks to Stage/Substage subdivision and the numeric age of
715	the Triassic stages. Albertiana. 28, 57-74.
716	Kozur, H., Mostler, H., 1970. Neue Conodonten Aus Der Trias, Ber. NatMed. Ver.
717	Innsbruck. 58, 429-464.
718	Kozur, H., Pjatakova, M., 1976. Die Conodontenart Anchignathodus parvus n. sp.,
719	eine Wichtige Leitform der Basalen Trias. Koninklijke Nederlandse Akademie
720	van Wetenschappen Proceeding (Series B). 79, 123-128.
721	Kozur H.W., Mostler H., Krainer K., 1998. Sweetospathodus n. gen. and
722	Triassospathodus n. gen. two important Lower Triassic conodont genera.

723 Geologia Croatica. 51, 1-5.

724	Krystyn, L., Balini, M., Nicora, A., 2004. Lower and Middle Triassic stage and
725	substage boundaries in Spiti. Albertiana. 30 Suppl., 39-52.
726	Krystyn, L., Bhargava, O.N., Bhatt, D.K., 2005. Muth (Spiti, Indian Himalaya) – A
727	Candidate Global Stratigraphic Section and Point (GSSP) for the base of the
728	Olenekian Stage. Albertiana. 33, 51-53.
729	Krystyn, L., Richoz, S., Bhargava, O.N., 2007. The Induan-Olenekian Boundary (IOB)
730	in Mud - an update of the candidate GSSP section M04. Albertiana. 36, 33-42.
731	Kuz'min S.P., and Klets, T.V., 1990, The Biostratigraphy of Lower Triassic Deposits
732	in the Shevlya River Basin, in Proceedings of the IV Far East RMSS (GKP PGO
733	"Dal'geologiya", Khabarovsk). 146–147 [in Russian].
734	Lai, X.L., 1992. Conodont, in Yin, H.F., Yang, F.Q., Huang, Q.S., Yang, H.S., and
735	Lai, X.L., eds., Triassic in Qinling and Adjacent Areas: China University of
736	Geosciences Press, Wuhan. 66–68. [in Chinese]
737	Lai, X.L., Yin, H.F., 1992. Early Triassic paleogeography, in Yin, H.F., Yang, F.Q.,
738	Huang, Q.S., Yang, H.S., and Lai, X.L., eds., Triassic in Qinling and Adjacent
739	Areas: China University of Geosciences Press, Wuhan. 66-68. [in Chinese]
740	Lai, X.L., Yin, H.F., Yang, F.Q., 1992. The character and evolution of ecostratigraphy
741	and paleobiogeography of Triassic Qinling Basin. Earth Science. 17, 345–352.
742	[in Chinese with English abstract]
743	Lai, X.L., Yang, F.Q., Yin, H.F., 1994. Research of Permian-Triassic boundary strata,
744	in west Qinling Area. Geoscience. 8, 20–26. [in Chinese with English abstract]

745	Lai, X.L., Yin, H.F., Yang, F.Q., 1995. Reconstruction of the Qinling Triassic
746	Paleo-ocean. Earth Science. 20, 648–656. [in Chinese with English abstract]
747	Lai, X.L., Wignall, P.B., Zhang, K.X., 2001. Palaeoecology of the conodonts
748	Hindeodus and Clarkina during the Permian–Triassic transitional period.
749	Palaeogeography, Palaeoclimatology, Palaeoecology. 171, 63-72.
750	Lehrmann, D.J., Stepchinski, L., Altiner, D., Orchard, M.J., Montgomery, P., Enos, P.,
751	Ellwood, B.B., Bowring, S.A., Ramezani, J., Wang, H.M., Wei, J.Y., Yu, M.Y.,
752	Griffiths, J.D., Minzoni M., Schaal, E.K., Li, X.W., Meyer, K.M., Payne, J.L.,
753	2015. An integrated biostratigraphy (conodonts and foraminifers) and
754	chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental
755	chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic
756	strata of Guandao section, Nanpanjiang Basin, south China. Journal of Asian
757	Earth Sciences. 108, 117-135.
758	Li, H.X., Jiang, H.S., Chen, Y.L., Wignall, P.B., Wu, B.J., Zhang, Z.T., Zhang, M.H.,
759	Ouyang, Z.M., Lai, X.L., 2019. Smithian platform-bearing gondolellid
760	conodonts from Yiwagou Section, northwestern China and implications for their
761	geographic distribution in the Early Triassic. Journal of Paleontology. 93,
762	496-511.
763	Li, H.X., Wang, M.Y., Zhang, M.H., Wignall, P.B., Rigo, M., Chen, Y.L., Wu, X.L.,
764	Ouyang, Z.M., Wu, B.J., Yi, Z.Y., Zhang, Z.T., Lai, X.L., 2021. First records of
765	Late Triassic conodont fauna and $\delta^{13}C_{carb}$ from the Dengdengqiao Section,

766	Dangchang County, Gansu Province, northwestern China. Journal of Earth
767	Science. 32, 646-656.
768	Liang, D., Tong, J.N., Zhao, L.S., 2011. Lower Triassic Smithian-Spathian boundary
769	at West Pingdingshan Section in Chaohu, Anhui Province. Sci China Earth Sci.
770	41, 149-157.
771	Liang, L., Tong, J.N., Song, H.J., Song, T., Tian, L., Song, H.Y., Qiu, H.O., 2016.
772	Lower-Middle Triassic conodont biostratigraphy of the Mingtang section,
773	Nanpanjiang Basin, South China, Palaeogeography, Palaeoclimatology,
774	Palaeoecology. 459, 381-393.
775	Lindström, M., 1970, A suprageneric taxonomy of the conodonts: Lethaia, v. 3, p.
776	427–445.
777	Liu, S., Sun, Z.Y., Ji, C., Zhou, M., Jiang, D.Y., 2020. Conodont Biostratigraphy and
778	Age of the Early Triassic Fish-Bearing-Nodule Levels from Nanjing and Jurong,
779	Jiangsu Province, South China. Journal of Earth Science. 31, 9-22.
780	Lucas, S.G., Orchard, M.J. 2007. Triassic lithostratigraphy and biostratigraphy north
781	of Currie, Elko County, Nevada. In: Lucas, S.G. & Spielmann, J.A. (eds.): The
782	Global Triassic. New Mexico Museum of Natural History and Science Bulletin.
783	40, 119–126.
784	Lyu, Z.Y., Orchard, M.J., Chen, Z.Q., Zhao, L.S., Zhang, L., Zhang, X.M., 2018. A
785	Taxonomic re-Assessment of the Novispathodus waageni Group and its role in
786	defining the base of the Olenekian (Lower Triassic). Journal of Earth Science. 29,
787	824–836.

788	Lyu, Z.Y., Zhang, L., Algeo, T.J., Zhao, L.S., Chen, Z.Q., Li, C., Ma, B., Ye, F.H.,
789	2019. Global-ocean circulation changes during the Smithian-Spathian transition
790	inferred from carbon-sulfur cycle records, Earth-Science Reviews, 195, 114-132.
791	Lyu, Z.Y., Orchard, M.J., Chen, Z.Q., Henderson, C.M., Zhao, L.S., 2020. A
792	proposed ontogenesis and evolutionary lineage of conodont Eurygnathodus
793	costatus and its role in defining the base of the Olenekian (Lower Triassic).
794	Palaeogeography, Palaeoclimatology, Palaeoecology. 559.
795	Maekawa, T., Komatsu, T., Shigeta, Y., Takashima, R., Yamaguchi, T., 2021. Carbon
796	isotope chemostratigraphy and conodont biostratigraphy around the Smithian-
797	Spathian boundary in the Panthalassan carbonate succession (SW Japan). Journal
798	of Asian Earth Sciences. 205, 104570.
799	Metcalfe, I., Nicoll, R.S., Willink, R., Ladjavadi, M., Grice, K., 2013. Early Triassic
800	(Induan - Olenekian) conodont biostratigraphy, global anoxia, carbon isotope
801	excur- sions and environmental perturbations: new data from Western Australian
802	Gondwana. Gondwana Res. 23, 1136 - 1150.
803	Nakrem, H.A., Orchard M.J., Weitschat W., Hounslow M.W., Beatty T.W., Mørk A.,
804	2008. Triassic conodonts from Svalbard and their Boreal correlations. Polar
805	Research. 27, 523-539.
806	Orchard, M.J., 1995. Taxonomy and Correlation of Lower Triassic (Spathian)
807	segminate conodonts from Oman and revision of some species of
808	Neospathodus. Journal of Paleontology, 69, 110-122.
809	Orchard, M.J., 2005. Multielement conodont apparatuses of Triassic Gondolelloidea.

810 Papers in Palaeontology. 73, 73-101.

811	Orchard, M.J., 2007. Conodont diversity and evolution through the latest Permian and
812	Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology.
813	252, 93–117.
814	Orchard, M.J., 2008. Lower Triassic conodonts from the Canadian Arctic, their
815	intercalibration with ammonoid-based stages and a comparison with other North
816	American Olenekian faunas. Polar Research. 27, 393-412.
817	Orchard, M.J., Bucher, H., 1992. Conodont-ammonoid intercalibration around the
818	Lower-Middle Triassic boundary: Nevadan clocks help tell British Columbian
819	time; in Current Research, Part E. Geological Survey of Canada. Paper 92-1E,
820	133-140.
821	Orchard, M.J., Krystyn, L., 1998. Conodonts of the Lowermost Triassic of Spiti, and
822	new zonation based on Neogondolella successions. Rivista Italiana di
823	Paleontologia e Stratigrafia. 104, 341-368.
824	Orchard, M.J., Krystyn, L., 2007. Conodonts from the Induan-Olenekian boundary
825	interval at Mud, Spiti. Albertiana. 35, 30-34.
826	Orchard, M.J., Tozer, E.T., 1997. Triassic condont biochronology, its calibration with
827	the ammonoid standard, and a biostratigraphic summary for the western Canada
828	Sedimentary Basin. Bulletin of Canadian Petroleum Geology. 45, 675-692.
829	Orchard, M.J., Zonneveld, J.P., 2009. The Lower Triassic Sulphur Mountain
830	Formation in the Wapiti Lake area: lithostratigraphy, conodont biostratigraphy,
831	and a new biozonation for the lower Olenekian (Smithian). Can. J. Earth Sci. 46,
832	757-790.

833	Payne, J.L., Lehrmann, D.J., Wei, J.Y., Orchard, M.J., Schrag, D.P., Knoll, A.H.,
834	2004. Large Perturbations of the Carbon Cycle During Recovery from the
835	End-Permian Extinction, Science. 305, DOI: 10.1126/science.1097023
836	Richoz, S., 2006. Stratigraphic et variations isotopiques du carbone dans le Permien
837	supérieur et le Trias inférieur de quelques localités de la Néo-Téthys (Turquie,
838	Oman et Iran). Mémoires de Géologie (Lausanne), 46, 275.
839	Song, H.Y., Tong, J.N., Algeo, T.J, Horacek, M., Qiu, H.O., Song, H.J., Tian, L.,
840	Chen, Z.Q., 2013. Large vertical $\delta^{13}C_{DIC}$ gradients in Early Triassic seas of the
841	South China craton: implications for oceanographic changes related to Siberian
842	Traps volcanism. Global and Planetary Change, 105, 7-20.
843	Song, H.Y., Du, Y., Algeo, T.J., Tong, J.N., Owens, J.D., Song, H.J., Tian, L., Qiu,
844	H.O., Zhu, Y.Y., Lyons, T.W., 2019. Cooling-driven oceanic anoxia across the
845	Smithian/Spathian boundary (mid-early Triassic). Earth-Science Reviews, 195,
846	133-146.
847	Sun, Y.D., Joachimski, M.M., Wignall, P.B., Yan, C.B., Chen, Y. L., Jiang, H.S.,
848	Wang, L.N., Lai, X.L., 2012. Lethally hot temperatures during the Early Triassic
849	greenhouse. Science, 338, 366–370.
850	Sun, Y.D., Richoz, S., Krystyn, L., Grasby, S.E., Chen, Y.L., Banerjee, D.,
851	Joachimski, M.M., 2021. Integrated bio-chemostratigraphy of Lower and Middle
852	Triassic marine successions at Spiti in the Indian Himalaya: Implications for the
853	Early Triassic nutrient crisis. Global and Planetary Change, 196.

854	Sun, Z.Y., Liu, S., Ji, C., Jiang, D.Y., Zhou, M., 2020. Gondolelloid multielement
855	conodont apparatus (Scythogondolella) from the Lower Triassic of Jiangsu,
856	East China, revealed by high-resolution X-ray microtomography. Palaeoworld,
857	30, 286-295.
858	Sweet, W.C., 1970. Uppermost Permian and Lower Triassic Conodonts of the Salt
859	Range and Trans-Indus Ranges, West Pakistan, in Stratigraphic Boundary
860	Problems: Permian and Triassic of West Pakistan. Kummel, B. and Teichert, C.
861	eds. 207-275.
862	Tian, C.R., Dai, J., Tian, S.G., 1983. Chengdu Institute of Geology and Mineral
863	Resources, Triassic conodonts. Paleontological atlas of Southwest China, volume
864	of microfossils. Geological Publishing House, Beijing, pp. 345–398 (pl.79–100).
865	Tong, J.N., Zhao, L.S., 2011. Lower Triassic and Induan-Olenekian Boundary in
866	Chaohu, Anhui Province, South China. Acta Geol. Sin. 85, 399-407.
867	Tong, J.N., Zakharov, Y.D., Orchard, M.J., Yin, H.F., Hansen, H.J., 2003. A
868	candidate of the Induan-Olenekian Boundary stratotype in the Tethyan region.
869	Sci. China D 46, 1182–1200.
870	Tong, J.N., Zuo, J.X., Chen, Z.Q., 2007. Early Triassic carbon isotope excursions
871	from South China: Proxies for devastation and restoration of marine ecosystems
872	following the end-Permian mass extinction. Geological Journal. 42, 371-389.
873	Wang, Z.H., Cao, Y.Y., 1981. Early Triassic conodonts from Lichuan, Western Hubei.
874	Acta Palaeontologica Sinica. 20, 363-375, pls. 1-3. [In Chinese with English
875	abstract]

876	Wang, C.Y., 1995. Conodonts of Permian - Triassic boundary beds and stratigraphic
877	boundary. Acta Palaeontol. Sin. 34, 129 - 151 [in Chinese with English Abstract]
878	Wignall, P.B., 2015. The Worst of Times: How Life on Earth Survived Eighty Million
879	Years of Extinctions: Princeton, NJ, Princeton University Press. 199 p.
880	Wu, B.J., Li, H.X., Joachimski, M.M., Wignall, P.B., Jiang, H.S., Yan, J.X., Wang,
881	L.N., Wu, X.L., Lai, X.L., 2021. Roadian-Wordian (Middle Permian) Conodont
882	Biostratigraphy, Sedimentary Facies and Paleotemperature Evolution at the
883	Shuixiakou Section, Xikou Area, Southeastern Qinling Region, China, Journal of
884	Earth Science, 32, 534-553.
885	Wu, G.C, Ji Z.S, Kolar-Jurkovšek, T., Yao, J.X., Lash, G.G., 2021. Early Triassic
886	Pachycladina fauna newly found in the southern Lhasa Terrane of Tibet and its
887	palaeogeographic implications, 2021. Palaeogeography Palaeoclimatology
888	Palaeoecology, 562.
889	Yan, C.B., Jiang, H.S., Lai, X.L., Sun, Y.D., Yang, B., Wang, L.N., 2015. The
890	Relationship between the "Green-Bean Rock" Layers and Conodont Chiosella
891	timorensis and Implications on Defining the Early-Middle Triassic Boundary in
892	the Nanpanjiang Basin, South China. Journal of Earth Science. 26, 236-245.
893	Yang, B., Yuan, D.X., Henderson, C.M., Shen, S.Z., 2014. Parafurnishius, an
894	Induan (Lower Triassic) conodont new genus from northeastern Sichuan
895	Province, southwest China and its evolutionary implications. Palaeoworld. 23,
896	263-275.

- Yang, B., Li, H.X., Wignall, P.B., Jiang, H.S., Niu, Z.J., Ye, Q., Wu, Q., Lai, X.L.,
- 898 2019. Latest Wuchiapingian to Earliest Triassic Conodont Zones and $\delta^{13}C_{carb}$
- 899 Isotope Excursions from Deep-Water Sections in Western Hubei Province, South
- 900 China. Journal of Earth Science, 30, 1059-1074.
- 901 Yang, Z.H., Guo, J.H., Su, S.R., Li, Y., Sun, C.Q., Zhang, C.L., Hei, A.Z., Liang, Y.,
- 2002. New advances in the geological study of the Qinling orogen. Geology inChina, 29, 246-256.
- 904 Yin, H.F., Yang, F.Q., Zhang, K.X., Yang, W.P., 1988. A proposal to the
- biostratigraphy criterion of Permian/Triassic boundary. Memorie della Societa
 Geologica Italiana. 34, 329–344.
- 907 Yuan, D.X., Shen, S.Z., Henderson, C.M., Chen, J., Zhang, H., Feng, H.Z., 2014.
- 908 Revised conodont-based integrated high-resolution timescale for the
- 909 Changhsingian Stage and end-Permian extinction interval at the Meishan
- sections, South China. Lithos, 204, 220-245.
- 211 Zhang, K.X., Tong, J.N., Shi, G.R., Lai, X.L., Yu, J.X., He, W.H., Peng, Y.Q., Jin,
- 912 Y.L., 2007, Early Triassic conodont–palynological biostratigraphy of the
- 913 Meishan D Section in Changxing, Zhejiang Province, South China,
- Palaeogeography, Palaeoclimatology, Palaeoecology. 2007, 4-23.
- 215 Zhang, L.Z., Orchard, M.J., Brayard, A., Algeo, T.J., Zhao, L.S., Chen, Z.Q., Lyu,
- 916 Z.Y., 2019a, The Smithian/Spathian boundary (late Early Triassic): A review of
- 917 T ammonoid, conodont, and carbon-isotopic criteria, Earth-Science Reviews.
- 918 195, 7-36.

919	Zhang, L., Orchard, M.J., Algeo, T.J., Chen, Z.Q., Lyu, Z.Y., Zhao, L.S., Kaiho, K.,
920	Ma, B.A., Liu, S.J., 2019b. An intercalibrated Triassic conodont succession and
921	carbonate carbon isotope profile, Kamura, Japan. Palaeogeography,
922	Palaeoclimatology, Palaeoecology, 519, 65-83.
923	Zhao, L., Orchard, M. J., Tong, J., Sun, Z., Zuo, J., Zhang, S., Yun, A., 2007. Lower
924	Triassic conodont sequence in Chaohu, Anhui Province, China and its global
925	correlation. Palaeogeography, Palaeoclimatology, Palaeoecology. 252, 24-38.
926	Zhao, L.S., Tong, J.N., Sun, Z.M., Orchard, M.J., 2008a. A detailed Lower Triassic
927	conodont biostratigraphy and its implications for the GSSP candidate of the
928	Induan–Olenekian boundary in Chaohu, Anhui Province. Progress in Natural
929	Science. 18, 79-90.
930	Zhao, L.S., Tong, J.N., Zhang, S.X., Sun, Z.M., 2008b. An Update of Conodonts in
931	the Induan-Olenekian Boundary Strata at West Pingdingshan Section, Chaohu,
932	Anhui Province. Journal of China University of Geosciences. 19, 207-216.
933	Zhao, L.S., Chen, Y.L., Chen, Z.Q., Cao, L., 2013. Uppermost Permian to Lower
934	Triassic conodont zonation from Three Gorges Area, South China. Palaios. 28,
935	523-540.
936	Zheng, B.S., Mou, C.L., Wang, X.P., Chen, H.D., 2021, U-Pb ages, trace elements
937	and Hf isotopes of detrital zircons from the late Permian-early Triassic
938	sedimentary succession in the northern Yangtze Block, South China:
939	Implications for the reconstruction of the South China Block in Pangea, Journal
940	of Asian Earth Sciences, 206. 104609.