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The computation of invariant solutions and the visualisation of the associated state space
have played a key role in the understanding of transition and the self-sustaining process
in wall-bounded shear flows. In this study, an extension of this approach is sought for a
turbulent flow which explicitly exhibits multi-scale behaviour. The minimal unit of multi-
scale near-wall turbulence, which resolves two adjacent spanwise integral length scales
of motion, is considered using a shear stress-driven flow model (Doohan et al., J. Fluid
Mech., vol. 913, 2021, A8). The edge state, twenty-six travelling waves and two periodic
orbits are computed, which represent either the large- or small-scale self-sustaining
processes. Given that the spanwise length scales are not widely separated here, it could be
envisaged that turbulent trajectories visit these solutions in the state space. Considering
the intra- and inter-scale dynamics of the flow, numerous phase portraits are examined,
but the turbulent state is not found to approach any of these solutions. A detailed
analysis reveals that this is due to the lack of scale interaction processes captured by
the invariant solutions, including the mean-fluctuation interaction, the energy cascade in
the streamwise wavenumber space and the cascade-driven energy production discovered
recently. There is a single solution that resembles turbulence much more than the others,
which captures two-scale energetics and a scale interaction process involving energy
feeding from small to large spanwise scales through the subharmonic sinuous streak
instability mode. Based on these observations, it is conjectured that the state space view
of turbulent trajectories wandering between solutions would need suitable refinement to
model multi-scale turbulence, when each solution does not represent multi-scale processes
of turbulence. In particular, invariant solutions that are inherently multi-scale would be
required.

Key words:

1. Introduction

The presence of chaotic eddies over a wide range of length and time scales is a
fundamental feature of turbulent fluid flow, and has been well documented over the
years. In particular, in wall-bounded flows, the integral length scale depends on the wall-
normal height: the smallest energy-containing eddies reside in the near-wall region and
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scale in inner units with the viscous length scale δν = ν/uτ (ν is the kinematic velocity of
the fluid and uτ is the friction velocity), while the largest energy-containing eddies span
the entire wall-normal domain and scale in outer units with outer length scale h (e.g.
the half-height of a channel). The multi-scale flow topology of wall-bounded turbulence
is perhaps best described by the attached-eddy hypothesis of Townsend (1956, 1980), in
which it was proposed that the energy-containing eddies of the logarithmic layer form
a self-similar hierarchy and that the characteristic length scale is proportional to the
distance between the eddy centre and the wall y. Townsend’s idea can be extended to
include the near-wall and outer regions in a more broad sense, and there is a growing
body of numerical and experimental evidence supporting his original hypothesis and
subsequent theory, including the linear growth of the characteristic spanwise lengthscale
with distance from the wall (Tomkins & Adrian 2003), the existence of self-similar
energy-containing velocity structures (del Álamo et al. 2006; Hwang & Cossu 2010c,
2011; Lozano-Durán & Jiménez 2014; Hwang 2015) and the logarithmic wall-normal
dependence of the streamwise and spanwise turbulence intensities (Jimenez & Hoyas
2008; Marusic et al. 2013). Furthermore, it has been demonstrated recently that the
self-similar energy balance originates from the logarithmic mean velocity profile and
that these two fundamental features of wall-bounded turbulence are mutually equivalent
(Hwang & Lee 2020), providing a theoretical basis of the attached eddy hypothesis of
Townsend (1956, 1980).
Due to the property of the Navier-Stokes equations, the eddies of various forms

and scales interact with one another non-linearly and non-locally. Understanding the
corresponding scale interaction processes has been one of the long-standing challenges in
the analysis of turbulent flows. The best-known scale interaction process is undoubtedly
the Richardson-Kolmogorov energy cascade (Kolmogorov 1941), in which the production
of turbulent kinetic energy (TKE) at the (large) integral length scale results in energy
transfer down to the Kolmogorov length scale (i.e. the smallest possible length scale), at
which TKE is dissipated into heat due to viscous effects. In wall-bounded shear flows,
scale interactions are particularly vigorous near the wall, since all scales in the self-similar
hierarchy are present through their inactive motions (Townsend 1980), and numerous
studies have focussed on the interaction of near-wall ‘inner’ structures and near-wall-
penetrating ‘log-layer/outer’ structures (e.g. Hutchins & Marusic 2007; Mathis et al.

2009; Talluru et al. 2014; Duvvuri & McKeon 2015; Agostini & Leschziner 2016; Zhang
& Chernyshenko 2016; Baars et al. 2017). More recent analyses of the statistical structure
of such interactions have revealed that the scale interaction processes in wall-bounded
turbulence are dauntingly complex (Cimarelli et al. 2016; Kawata & Alfredsson 2018; Cho
et al. 2018; Lee & Moser 2019; Doohan et al. 2021), especially when all integral length
scales are taken into account. In particular, a wealth of new scale interaction processes
have been identified, such as the involvement of larger energy-containing eddies in the
energy cascade of smaller energy-containing eddies and energy transfer from small to
large scales in the near-wall region (Cho et al. 2018; Doohan et al. 2021).

The continuum of integral and dissipation length scales has hindered the study of
the temporal dynamics of multi-scale turbulent flows, although certain progress has
been made. In particular, it has been demonstrated that there exists a self-sustaining
mechanism for the energy-containing eddies at each integral length scale and that this
process can operate independently of the motion at other scales (Hamilton et al. 1995;
Jiménez & Pinelli 1999; Flores & Jiménez 2010; Hwang & Cossu 2010c, 2011; Hwang
2015; Hwang & Bengana 2016). The mechanism in question has been termed the ‘self-
sustaining process’ (SSP) (Hamilton et al. 1995; Waleffe 1997) and it is based on the
quasi-cyclic interaction of streaks and quasi-streamwise vortices, namely the amplification
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of streaks by streamwise vortices through the lift-up effect (Butler & Farrell 1993; del
Álamo & Jimenez 2006; Pujals et al. 2009; Cossu et al. 2009; Hwang & Cossu 2010a,b;
Willis et al. 2010), the breakdown of streaks due to normal-mode instability and/or
transient growth (Hamilton et al. 1995; Schoppa & Hussain 2002; Park et al. 2011;
Cassinelli et al. 2017; de Giovanetti et al. 2017; Lozano-Durán et al. 2021) and the
non-linear regeneration of the streamwise vortices (Hamilton et al. 1995; Schoppa &
Hussain 2002; Hwang & Bengana 2016; Bae et al. 2021). Similar mechanisms have been
proposed earlier (Benny 1984; Hall & Smith 1991). In particular, Hall & Smith (1991)
formulated a self-consistent theory referred to as ‘vortex-wave’ interaction, where, in the
context of the self-sustaining process, the ‘vortex’ is a structure composed of streamwise-
uniform (or averaged) streaks and streamwise vortices and the ‘wave’ is the marginally
stable inviscid streak-instability mode (or inviscid Rayleigh wave). The dynamics of the
dissipative eddies are similarly complex: recent evidence indicates that the production
and dissipation of TKE are dynamically correlated, and that the dissipation dynamics
are instead far from equilibrium (e.g. Vassilicos 2015). In accordance with the notion
of non-equilibrium turbulent dissipation, it has been observed that the instantaneous
dissipation rate strongly depends on the production dynamics of the system (Goto &
Vassilicos 2015). This has recently been corroborated by the analysis of a flow domain
just large enough to sustain two adjacent spanwise integral length scales of motion, which
we have termed ‘the minimal unit of multi-scale near-wall turbulence’ (here, the term
‘multi-scale’ implies the presence of multiple integral length scales of energy-containing
motion of similar order). Even in such a relatively simple flow, the small-scale dissipation
terms have been found to inherit the time scales of the large-scale self-sustaining process
(Doohan et al. 2021). Furthermore, the same study revealed that inter-scale energy
transfer is intimately linked to the self-sustaining process of the donor scale; namely
that the energy cascade from large to small scales is determined by the streak-instability
stage of the large-scale SSP and that the energy transfer from small to large scales is
determined by the streak-instability stage of the small-scale SSP, and appears to be
related to the subharmonic-sinuous streak-instability mode in particular.
A recent breakthrough in the analysis of the turbulent dynamics has been the successful

application of the concepts of dynamical systems theory, in which the temporal evolution
of a turbulent velocity field is represented as a chaotic trajectory in an infinite-dimensional
state space (e.g. Kerswell 2005; Eckhardt et al. 2007; Kawahara et al. 2012; Graham &
Floryan 2020). The dynamical systems description of turbulent flow emerged with the
computation of non-trivial invariant solutions of the Navier-Stokes equations, including
equilibrium solutions of Couette flow (Nagata 1990; Clever & Busse 1997), relative
equilibrium solutions of Poiseuille flow (Waleffe 1998, 2001, 2003) and relative periodic
orbits of Couette flow (Kawahara & Kida 2001), and multitudes of solutions have
been discovered over the years for numerous flow configurations such as pipe flow
(Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Duguet et al. 2008; Viswanath 2009;
Willis et al. 2013; Budanur et al. 2017), channel flow (Viswanath 2007; Gibson et al.

2008, 2009b; Nagata & Deguchi 2013; Deguchi & Hall 2014b; Park & Graham 2015)
and boundary-layer flow (Kreilos et al. 2013; Khapko et al. 2013; Deguchi & Hall
2014a). Typically, invariant solutions capture coherent structures such as streaks and
quasi-streamwise vortices and their self-sustaining processes. As they are an equilibrium
or time-periodic manifestation of these features, invariant solutions are also termed
‘exact coherent structures’. Invariant solutions form a skeleton for the dynamics of
the flow in the infinite-dimensional state space. Analysis of their linear stability, i.e.
the numerical computation of the eigenvalues and eigenmodes of converged solutions,
then enables a finite-dimensional approximation to the local state space dynamics. The
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dynamical systems framework has been particularly successful in describing laminar-
turbulent transition, including the calculation of the laminar-turbulent separatrix (the
‘edge’) and the attractor within it (the ‘edge state’) (Itano & Toh 2001; Skufca et al.

2006; Schneider et al. 2007, 2008), the computation of spatially-localised edge states
and invariant solutions (Duguet et al. 2009; Mellibovsky et al. 2009; Schneider et al.

2010a,b; Gibson & Brand 2014; Brand & Gibson 2014), and the connection between
invariant solutions and vortex-wave interaction states has been identified (e.g. Hall &
Smith 1991; Hall & Sherwin 2010; Deguchi et al. 2013; Deguchi & Hall 2014b; Deguchi
2015). Furthermore, it has been shown that simple invariant solutions well describe the
self-sustaining dynamics at a single integral length scale (e.g. Jiménez & Simens 2001;
Viswanath 2007; Gibson et al. 2009b; Willis et al. 2016; Doohan et al. 2019), using
techniques such as computational-domain confinement in the near-wall region and over-
damped large-eddy simulation in the logarithmic layer (Yang et al. 2019) and in the outer
region (Rawat et al. 2015; Hwang et al. 2016). In particular, a number of previously-
computed invariant solutions have been found to scale in inner units (Deguchi 2015;
Eckhardt & Zammert 2018; Yang et al. 2019; Azimi & Schneider 2020). In recent years,
efforts have also been made to extend the dynamical systems approach to multi-scale
turbulence, including a multi-scale equilibrium solution of Rayleigh-Bénard convection
(Motoki et al. 2021) and a periodic orbit that captures the energy cascade in three-
dimensional body-forced turbulence (van Veen et al. 2019).

Despite this recent progress, the extent to which the dynamical systems framework
can describe the dynamics of turbulence remains uncertain, especially when the flow
exhibits multi-scale behaviour (i.e. at high Reynolds numbers). Indeed, while invariant
solutions have been numerically continued to high Reynolds numbers in a number of
previous studies (Wang et al. 2007; Viswanath 2009; Deguchi & Hall 2014b), the ability
of these solutions to capture the properties of turbulence at that same Reynolds number
is not very well understood. Even in the minimal unit of multi-scale near-wall turbulence
(Doohan et al. 2021), which is only twice the size of the minimal unit (Jiménez & Moin
1991) in each spatial direction, the temporal dynamics are governed by various inter- and
intra-scale processes, i.e. the energy cascade at both large and small scales, the driving
of small-scale turbulent production by the energy cascade from large scale, the feeding of
energy from small to large scales, and the large- and small-scale self-sustaining processes.

The objective of this study is to explore the state-space dynamics of a wall-bounded
turbulent flow with two spanwise integral length scales. For this purpose, we again
consider the minimal unit of multi-scale near-wall turbulence as in Doohan et al. (2021).
The flow configuration studied is the shear stress-driven model of the inner-scaling part
of near-wall turbulence (i.e. the mesolayer) in the absence of an outer flow (Doohan et al.

2019), a ‘re-scaled’ model in viscous inner units for the near-wall region in the high friction
Reynolds number limit Reτ → ∞. The wall-normal extent of the mesolayer increases
asymptotically as y+ ∼ √

Reτ (the superscript + denotes inner scaling) (e.g. Long &
Chen 1981; Wei et al. 2005) and so in the high-Reτ limit, the mesolayer encompasses a
hierarchy of lengthscales and not just the near-wall self-sustaining structures (Jiménez &
Pinelli 1999). But by confining the computational domain in the streamwise and spanwise
directions, only motion with spanwise wavelengths λ+

z ≈ 110, 220 is sustained due to the
periodic boundary conditions of the numerical simulation, and the related dynamics
become relevant to the lower part of the mesolayer just above the buffer layer. Here, the
minimal unit of multi-scale near-wall turbulence is analysed from a dynamical systems
perspective. The edge state and twenty-eight invariant solutions are computed, which
are subsequently compared to the turbulent trajectory in a selection of phase portraits
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relating to the large- and small-scale self-sustaining processes and the large- and small-
scale energy balance equations.
From a dynamical systems perspective, turbulence is viewed as a ‘chaotic random

walk’ around a number of simple invariant solutions, such as travelling waves and
periodic orbits, connected by heteroclinic/homoclinic orbits (e.g. Kerswell 2005; Eckhardt
et al. 2007; Kawahara et al. 2012; Graham & Floryan 2020). Indeed, this approach
has provided a sound description of the state space of turbulence at least in spatially-
confined simulations at transitional Reynolds numbers, and in many cases the turbulent
state has been found to be organised around upper-branch travelling waves and periodic
orbits (Gibson et al. 2009b,a; Cvitanovic & Gibson 2010; Chandler & Kerswell 2013;
Willis et al. 2016). As such, a suitable averaging of these invariant solutions provides
a meaningful dynamical/statistical description of turbulence (e.g. periodic orbit theory;
Cvitanovic et al. 2005; Chandler & Kerswell 2013). From this perspective, a large number
of solutions at both large and small scales would enable us to examine whether minimal
multi-scale (i.e. two-scale) near-wall turbulence can be characterised in terms of the
solutions at each individual scale. If turbulence frequently visits the neighbourhood of
some of the large- and small-scale solutions in the state space, a suitable average of
invariant solutions would provide a meaningful quantitative description of the turbulent
statistics. However, as will be seen in §3.3, the turbulent state, visualised through many
different phase portraits, does not approach anywhere near the travelling waves obtained
even in the simplest multi-scale (i.e. two-scale) system. From this observation, it is
therefore conjectured that multi-scale turbulence, even with two similar lengthscales,
may not simply be interpreted in the state space as a trajectory visiting the invariant
solutions at each scale. Instead, the trajectories would need to wander between inherently
multi-scale solutions, as no evidence has been found to suggest the trajectories visit the
invariant solutions at each scale. In this study, an analysis of the computed invariant
solutions is performed, revealing that the solutions are only able to partially depict the
scale-interaction processes of turbulence. They lack some of the key nonlinear processes,
such as the mean-fluctuation interaction and direct/inverse energy cascade. Therefore,
their utilisation and interpretation for modelling fully-developed multi-scale turbulence
requires extra care. Finally, we also report an invariant solution with two-scale energetics
related to the ‘inverse’ energy cascade, and its physical relevance is discussed in the
context of the previous work by Doohan et al. (2021) (§4.3).

This paper is organised as follows. The shear stress-driven flow model, and the two-
scale energy balance equations and related observables are discussed in §2. The invariant
solutions computed are presented in §3, together with their bifurcation diagrams and
phase portraits. Finally, the invariant solutions are critically compared to the turbulent
state in §4, in terms of the mean-fluctuation interaction and direct/inverse energy
cascade, and the conclusions are discussed in §5.

2. Problem formulation

2.1. Shear stress-driven flow model

The shear stress-driven flow model of Doohan et al. (2019, 2021) is considered as a
model of wall-bounded turbulence, the flow geometry of which is sketched in figure 1. For
full details of the construction and verification of the model, the reader may also refer
to Doohan et al. (2019, 2021). The fully-developed turbulent flow in this model defines a
time-averaged friction velocity uτ . Using the friction velocity, this model is re-scaled in
inner units, denoted by the superscript +, where t+ is time, x+ = (x+, y+, z+) are the



6 P. Doohan, Y. Bengana, Q. Yang, A. P. Willis and Y. Hwang

streamwise, wall-normal and spanwise coordinates, (L+
x , L

+
y , L

+
z ) the domain dimensions

and u+ = (u+, v+, w+) the corresponding velocity components. The wall is located at the
lower boundary of the domain denoted by y+ = 0. The velocity field can be expressed in
terms of the mean and fluctuating components: u+(x+, t+) = U+(y+, t+)+u′+(x+, t+),
where U+ = ⟨u+⟩x+,z+ , u′+ = (u′+, v′+, w′+) and ⟨ · ⟩x+,z+ denotes the average in the
streamwise and spanwise directions. The time-averaged mean streamwise momentum
equation is then given by

dU
+

dy+
− ⟨u′+v′+⟩x+,z+ = 1, (2.1)

where (·) denotes the average in time and U+ is the streamwise component of U+. We
note that (2.1) is approximately valid within the mesolayer for any wall-bounded parallel
shear flow in the asymptotic limit Reτ → ∞. For example, in pressure-driven channel
flow, an extra term originating from the pressure gradient, −y+/Reτ , vanishes in this
limit, provided that L+

y is within the mesolayer, i.e. y+ ≲
√
Reτ (e.g. Long & Chen

1981; Wei et al. 2005). As L+
y → ∞, it is not possible to simulate the entirety of the

mesolayer as Reτ → ∞. Instead, by choosing a suitable L+
y , our simulations resolve

the inner-scaling dynamics related to the part of the flow within the mesolayer: i.e. the
outer flow is explicitly excluded from the model with an asymptotic scaling, and the part
of the inner-scaling flow dynamics, defined by the computational domain, is simulated
in isolation like in the minimal flow unit (Jiménez & Moin 1991). The choice for L+

y

therefore determines the extent of the near-wall region and mesolayer simulated in the
asymptotic limit Reτ → ∞, typically informed by observations of near-wall turbulence:
for example, in Doohan et al. (2019), L+

y ≈ 90 was found to be a reasonable choice with
L+
z ≈ 110 and L+

x ≈ 320, providing the turbulence statistics and spectra almost identical
to those from the minimal-flow-unit simulation in plane Couette flow for y+ ≲ 50. In
general, the flow statistics resolved in a simulation depend on the value of L+

y . However,
it remains unchanged below a certain wall-normal location in the flow domain, if L+

y is
chosen to be sufficiently large.

The fluctuating velocity components are governed by the momentum equation

∂u′+

∂t+
+ (U+ · ∇)u′+ + (u′+ · ∇)U+ = −∇p′+ +∇2u′+

−
[
(u′+ · ∇)u′+ − ⟨(u′+ · ∇)u′+⟩x+,z+

]
, (2.2)

where p′+ is the pressure fluctuation. The no-slip condition u+ = 0 is imposed at
y+ = 0 to represent the stationary wall. At the upper boundary, a horizontally-uniform
shear stress is applied such that a prescribed bulk flow rate is maintained during the
simulation. The imposed boundary condition is identical to that of Doohan et al. (2021).
Periodic boundary conditions are applied in the streamwise and spanwise directions. The
numerical simulations in this study were carried out with the diablo Navier-Stokes solver
(Bewley 2014). This code employs the Fourier-Galerkin method in the streamwise and
spanwise directions with a 2/3 dealiasing rule, and a second-order finite difference scheme
in the wall-normal direction. The temporal discretisation is based on the fractional-step
algorithm (Kim & Moin 1985), with implicit treatment of wall-normal derivatives using
the Crank-Nicolson scheme and explicit treatment of the remaining terms using a low-
storage third-order Runge-Kutta scheme. For further details about the model and its
validation, the reader may refer to Doohan et al. (2019).
In this study, the number of integral length scales is restricted to two as in Doohan

et al. (2021) to consider the simplest multi-scale dynamics of similar order: i.e. near-wall
turbulence with two integral length scales of motion. To this end, the domain size is
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Figure 1. Geometry of the shear stress-driven flow model.

L+
x L+

y L+
z Nx Ny Nz T+

640 180 220 64 105 64 >300000

Table 1. Simulation parameters of the minimal unit of multi-scale near-wall turbulence, Ω2.
Here, (L+

x , L
+
y , L

+
z ) denote the domain dimensions, Nx, Ny and Nz the number of grid points

in the streamwise, wall-normal and spanwise directions respectively, and T+ the duration of the
flow simulation.

chosen to be (L+
x = 640, L+

y = 180, L+
z = 220) and due to the streamwise- and spanwise-

periodic boundary conditions, enforced by expressing the velocity field as a sum of discrete
modes according to the Fourier-Galerkin method, the largest velocity structures resolved
have spanwise wavenumbers n = 1, 2 and spanwise wavelengths λ+

z ≈ 220 and λ+
z ≈

110. However, given that the smallest integral length scale is approximately λ+
z ≈ 110

(Jiménez & Moin 1991), the remaining smaller velocity structures with higher harmonics
would not be viewed to be energy-containing. In this way, the model allows for the
analysis of the temporal dynamics of near-wall turbulence sustained at approximately
two spanwise integral length scales. Throughout this work, the minimal unit of multi-scale
near-wall turbulence is denoted by Ω2 and its simulation parameters are summarised in
table 1.

2.2. Two-scale energy balance

Having introduced the shear stress-driven flow model, the task at hand is to introduce
the observables which would well represent the temporal dynamics at two spanwise
integral length scales. In this study, we follow the approach in Doohan et al. (2021),
where a binary decomposition of the fluctuating velocity field is first considered in order
to separate the energy-containing eddies at each integral length scale: i.e. u′+ = u+

l +u+
s ,

where u+
l = (u+

l , v
+
l , w

+
l ) denotes the large-scale velocity field and u+

s = (u+
s , v

+
s , w

+
s )

the small-scale velocity field. Here, u+
l and u+

s are defined as

u+
l =

∑

|m|⩽mx

∑

|n|⩽1

û′+
m,n ei(mk

+

x0
x++nk

+

z0
z+); |m|+ |n| ≠ 0, (2.3a)
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Figure 2. Root mean squared velocity profiles (a) u+
rms, (b) v+rms and (c) w+

rms (solid lines),
decomposed into their large-scale (dashed lines) and small-scale (dash-dotted lines) components.
Time-averaged, wall-normal profiles of a selection of terms on the right-hand side of (d, e, f) (2.4)
and (g, h, i) (2.5): turbulent production (red), inter-scale turbulent transport (black), pressure
strain (green) and dissipation (blue) of (d) E+

ul (P
+

ul,−T+

↕,ul, Π
+

ul, ϵ
+

ul), (e) E+

vl (−T+

↕,vl, Π
+

vl, ϵ
+

vl),

(f) E+

wl (−T+

↕,wl
, Π+

wl, ϵ
+

wl), (g) E+
us (P+

us, T
+

↕,us, Π
+
us, ϵ

+
us), (h) E+

vs (T+

↕,vs, Π
+
vs, ϵ

+
vs) and (i) E+

ws

(T+

↕,ws
, Π+

ws, ϵ
+
ws).

u+
s =

∑

|m|⩽mx

∑

2⩽|n|⩽nz

û′+
m,n ei(mk

+

x0
x++nk

+

z0
z+), (2.3b)

where (̂·) denotes the Fourier coefficients, k+x0 and k+z0 are the fundamental streamwise and
spanwise wavenumbers, and mx and nz are the number of harmonics in the streamwise
and spanwise directions. This decomposition is based entirely on the spanwise wavelength
and all streamwise wavelengths are included (apart from the spatial mean), since the
size of energy-containing eddies in wall-bounded turbulence is well characterised by
the spanwise lengthscale and they are comprised of structures of various streamwise
lengthscales (Hwang 2015). The root mean squared velocity profiles and their large-
and small-scale components are shown in figures 2(a-c). The large-scale structures are
relatively uniform across the wall-normal domain (dashed lines) while the small-scale
structures are much more pronounced near the wall (dash-dotted lines), consistent with
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Townsend’s hypothesis (Townsend 1980). Note that these results (and those in subsequent
sections) are plotted over the interval y+ ∈ [0, 120] so as to exclude the flow region
immediately below the upper boundary.
Substitution of u+

l and u+
s into (2.2) yields the large- and small-scale momentum

equations

∂u+
l

∂t+
+ (U+ · ∇)u+

l = −(u+
l · ∇)U+ −∇p+l +∇2u+

l

−Pl{(u+
l · ∇)u+

l + (u+
l · ∇)u+

s + (u+
s · ∇)u+

l + (u+
s · ∇)u+

s } (2.4)

and

∂u+
s

∂t+
+ (U+ · ∇)u+

s = −(u+
s · ∇)U+ −∇p+s +∇2u+

s

−Ps{(u+
s · ∇)u+

s + (u+
s · ∇)u+

l + (u+
l · ∇)u+

s + (u+
l · ∇)u+

l }, (2.5)

where p′+ = p+l + p+s are the large- and small-scale pressure fluctuations that enforce
continuity of the large- and small-scale velocity fields, and Pl{ · } and Ps{ · }
denote projection onto large and small scales respectively. Using (2.4) and (2.5), the
componentwise energy-balance equations at each scale can be defined, as detailed in
Doohan et al. (2021). Multiplying (2.4) by u+

l and averaging in the streamwise and
spanwise directions with some further rearrangement of nonlinear terms, the large-scale
energy balance equation is written as

∂E+
ul

∂t+
= P+

ul −T+
u,↕ + T+

ul,− + T+
ul,# +Π+

ul + T+
ν,ul + ϵ+ul, (2.6a)

∂E+
vl

∂t+
= T+

p,vl −T+
v,↕ + T+

vl,− + T+
vl,# +Π+

vl + T+
ν,vl + ϵ+vl, (2.6b)

∂E+
wl

∂t+
= −T+

w,↕ + T+
wl,− + T+

wl,# +Π+
wl + T+

ν,wl + ϵ+wl, (2.6c)

where

E+
ul =

1

2
⟨(u+

l )
2⟩x+,z+ , E+

vl =
1

2
⟨(v+l )2⟩x+,z+ and E+

wl =
1

2
⟨(w+

l )
2⟩x+,z+ (2.7a, b, c)

are large-scale streamwise, wall-normal and spanwise kinetic energy, P+
ul is large-scale

turbulent production, T+
u,↕, T

+
v,↕, T

+
w,↕ are streamwise, wall-normal and spanwise ‘inter-

scale’ turbulent transport, T+
ul,−, T

+
vl,−, T

+
wl,− large-scale streamwise, wall-normal and

spanwise ‘intra-scale spatial’ turbulent transport, T+
ul,#, T

+
vl,#, T

+
wl,# large-scale stream-

wise, wall-normal and spanwise ‘inter-scale spatial’ turbulent transport, Π+
ul, Π

+
vl and

Π+
wl large-scale streamwise, wall-normal and spanwise pressure strain, T+

p,vl is large-scale

pressure transport, T+
ν,ul, T+

ν,vl and T+
ν,wl are large-scale streamwise, wall-normal and

spanwise viscous transport, and ϵ+ul, ϵ
+
vl and ϵ+wl are large-scale streamwise, wall-normal

and spanwise dissipation. Similarly, using (2.5) the small-scale energy balance equation
is obtained as,

∂E+
us

∂t+
= P+

us +T+
u,↕ + T+

us,− + T+
us,# +Π+

us + T+
ν,us + ϵ+us, (2.8a)

∂E+
vs

∂t+
= T+

p,vs +T+
v,↕ + T+

vs,− + T+
vs,# +Π+

vs + T+
ν,vs + ϵ+vs, (2.8b)

∂E+
ws

∂t+
= T+

w,↕ + T+
ws,− + T+

ws,# +Π+
ws + T+

ν,ws + ϵ+ws, (2.8c)
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in which

E+
us =

1

2
⟨(u+

s )
2⟩x+,z+ , E+

vs =
1

2
⟨(v+s )2⟩x+,z+ and E+

ws =
1

2
⟨(w+

s )
2⟩x+,z+

(2.9a, b, c)
are small-scale streamwise, wall-normal and spanwise kinetic energy, P+

us is small-scale
turbulent production, T+

us,−, T
+
vs,−, T

+
ws,− are small-scale streamwise, wall-normal and

spanwise ‘intra-scale spatial’ turbulent transport, T+
us,#, T

+
vs,#, T

+
ws,# small-scale stream-

wise, wall-normal and spanwise ‘inter-scale spatial’ turbulent transport, Π+
us, Π

+
vs and

Π+
ws are small-scale streamwise, wall-normal and spanwise pressure strain, T+

p,vs is small-
scale pressure transport, T+

ν,us, T
+
ν,vs and T+

ν,ws small-scale streamwise, wall-normal and
spanwise viscous transport, and ϵ+us, ϵ

+
vs and ϵ+ws small-scale streamwise, wall-normal and

spanwise dissipation. The definitions of the terms in the large- and small-scale energy
balance equations are given in full in supplementary material §1.
Some key features of the terms defined in (2.6) and (2.8) are subsequently discussed.

The turbulent production terms P+
ul and P+

us originate from the first linear term in the
right hand side of (2.4) and (2.5), and they represent the linear mechanisms through which
the large- and small-scale velocity fluctuations extract energy from the mean velocity.
If averaged in time and the wall-normal direction, the production terms are perfectly
balanced with the dissipation terms:

⟨P+
ul + P+

us⟩y+ = ⟨ϵ+ul + ϵ+vl + ϵ+wl + ϵ+us + ϵ+vs + ϵ+ws⟩y+ . (2.10)

The pressure strain and transport terms involve both linear and nonlinear mechanisms,
since the pressure is driven by ‘fast’ linear and ‘slow’ nonlinear terms in (2.6) and (2.8)
(Kim 1989). From the continuity equation, the pressure strain terms at each scale also
satisfy −Π+

ul = Π+
vl + Π+

wl and −Π+
us = Π+

vs + Π+
ws, playing a crucial role in the

distribution of TKE produced in the streamwise component to the wall-normal and
spanwise components (Cho et al. 2018). In particular, at the integral length scale, this
process was found to be closely associated with the streak instability/breakdown in the
self-sustaining process at each scale (Doohan et al. 2021). Turbulent transport, which
originates from the nonlinear terms in (2.4) and (2.5), is broken down into ‘inter-scale’
transport (with subscript ‘↕’), ‘inter-scale spatial’ transport (with subscript ‘#’) and
‘intra-scale spatial’ transport (with subscript ‘−’). The inter-scale transport terms,

T+
u,↕ = ⟨u+

l (u
+
l · ∇u+

s )⟩x+,z+ − ⟨u+
s (u

+
s · ∇u+

l )⟩x+,z+ , (2.11a)

T+
v,↕ = ⟨v+l (u+

l · ∇v+s )⟩x+,z+ − ⟨v+s (u+
s · ∇v+l )⟩x+,z+ , (2.11b)

T+
w,↕ = ⟨w+

l (u
+
l · ∇w+

s )⟩x+,z+ − ⟨w+
s (u

+
s · ∇w+

l )⟩x+,z+ , (2.11c)

depend on both large- and small-scale velocity components and are shared by (2.6) and
(2.8) with opposite sign, indicating that they play a role in the direct same-component
exchange of TKE between different scales. The ‘inter-scale spatial’ transport terms also
represent a type of scale interaction and depend on both large- and small-scale velocity
components. However, the resulting energy transfer only takes place locally in space (i.e.
in the wall-normal direction), because there is no ‘net’ transfer generated from

⟨T+
ul,#⟩y+ = ⟨T+

vl,#⟩y+ = ⟨T+
wl,#⟩y+ = 0,

⟨T+
us,#⟩y+ = ⟨T+

vs,#⟩y+ = ⟨T+
ws,#⟩y+ = 0, (2.12)

as per their definitions (see supplementary material §1). Finally, the ‘intra-scale spatial’
transport terms are only associated with the redistribution of energy across space induced
by velocity components of the same scale. Given the nature of the turbulent transport
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terms discussed here, the primary focus in this study will be given to studying the inter-
scale direct turbulent transport in (2.11). The statistics of the production, inter-scale
turbulent transport, pressure strain and dissipation terms discussed above are shown
in figure 2. For further discussion of these variables, the reader may refer to Doohan
et al. (2021), in which their statistical characteristics, temporal dynamics and cross-
correlations are extensively studied. Note that the statistical profiles of the intra- and
inter-scale spatial turbulent transport terms are plotted in figure 4 of that work.

2.3. Observables

Time-dependent observables, required for the construction of phase portraits, are
now defined by suitably averaging the terms in (2.6) and (2.8) in the wall-normal
direction. Here, it should be mentioned that the decomposition (2.3) for the energy-
balance equations (2.6) and (2.8) is only introduced as a matter of convenience. Indeed,
the energy transfer dynamics have been found to vary considerably across the wall-
normal domain. For instance, E+

us in (2.8) not only contains the energy of the small-scale
anisotropic near-wall coherent structures (e.g. streaks) but also that of relatively isotropic
small-scale eddies generated by the energy cascade from the large-scale structures. Given
the two completely different origins of the dynamics involved in E+

us depending on
the wall-normal location, the limits of integration in y+ have been chosen carefully as
discussed in detail in Doohan et al. (2021). In subsequent sections, the same notation
is used to denote the y+-averaged terms but the corresponding limits of integration are

also indicated for the time-dependent observables: for example, T+
u,↕

∣∣120
45

is the streamwise

inter-scale turbulent transport term averaged over the interval y+ ∈ [45, 120].

While the observables defined with the terms in (2.6) and (2.8) are useful to un-
derstand the energy transfer dynamics between large and small scales, they are not
very informative about the dynamics of the coherent structures within each scale. The
dynamics of the structures at each scale has been well understood in terms of the self-
sustaining process which involves the interplay between rolls, streaks and the streak-
instability waves (e.g. Hamilton et al. 1995; Hwang & Bengana 2016). Therefore, the
observables representing these fundamental structural elements are also defined by further
decomposing the velocity components into their streamwise-independent and streamwise-
dependent parts. The kinetic energies of large-scale straight streaks (ss), wavy streaks
(ws), straight rolls (sr) and wavy rolls (wr) are defined as

E+
ss,l(t

+) =
1

2
⟨⟨u+

l ⟩2x+⟩z+

∣∣∣
120

0
, (2.13a)

E+
ws,l(t

+) =
1

2
⟨(u+

l − ⟨u+
l ⟩x+)2⟩x+,z+

∣∣∣
120

0
, (2.13b)

E+
sr,l(t

+) =
1

2
⟨⟨v+l ⟩2x+ + ⟨w+

l ⟩2x+⟩z+

∣∣∣
120

0
, (2.13c)

E+
wr,l(t

+) =
1

2
⟨(v+l − ⟨v+l ⟩x+)2 + (w+

l − ⟨w+
l ⟩x+)2⟩x+,z+

∣∣∣
120

0
, (2.13d)

respectively, while the kinetic energies of small-scale straight streaks, wavy streaks,
straight rolls and wavy rolls are defined as

E+
ss,s(t

+) =
1

2
⟨⟨u+

s ⟩2x+⟩z+

∣∣∣
45

0
, (2.14a)

E+
ws,s(t

+) =
1

2
⟨(u+

s − ⟨u+
s ⟩x+)2⟩x+,z+

∣∣∣
45

0
, (2.14b)
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E+
sr,s(t

+) =
1

2
⟨⟨v+s ⟩2x+ + ⟨w+

s ⟩2x+⟩z+

∣∣∣
45

0
, (2.14c)

E+
wr,s(t

+) =
1

2
⟨(v+s − ⟨v+s ⟩x+)2 + (w+

s − ⟨w+
s ⟩x+)2⟩x+,z+

∣∣∣
45

0
, (2.14d)

respectively. Finally, it has been found that there exists an inverse energy transfer from
small to large scales in the region close to the wall (Cho et al. 2018), which has been
referred to as ‘feeding’ (Doohan et al. 2021). The structures that emerge from the feeding
process are primarily localised streamwise and spanwise velocity fluctuations, and they
are ‘inactive’ in the sense that they carry little to no Reynolds shear stress (Townsend
1980). Following Doohan et al. (2021), the large-scale inactive structures resulting from
the streamwise feeding process are measured through the near-wall kinetic energy of wavy
streamwise motion

E+
wu,i =

1

2
⟨(u+

l − ⟨u+
l ⟩x+)2⟩x+,z+

∣∣∣
20

0
. (2.15)

3. Invariant solutions

3.1. Computation of solutions

Doohan et al. (2019) computed invariant solutions for a single-scale minimal unit
using the Newton–Krylov–Hooksetp algorithm (Viswanath 2007, 2009; Gibson et al. 2008;
Willis et al. 2013). Given a velocity field u+ that is expected to be close to an invariant
solution, this method minimises the relative error

r =
||σ(−s+x ,−s+z )Φ

T+

(u+)− u+||
||u+|| , (3.1)

where ΦT+

is the Navier–Stokes propagator, which integrates u+ forward in time by a
period T+, and σ applies a spatial shift to the resulting velocity field by distances −sx
and −sz. The minus sign indicates that these shifts are in the negative x and z direction,
in particular to counter the downstream advection of the solutions. The phase speeds
of the solution are c+x = s+x /T

+, c+z = s+z /T
+, being careful to ensure that the shifts

have not been aliased by a period of the domain. For periodic orbits, T+ also needs to
be determined, while for travelling waves the choice of T+ is arbitrary, usually taken to
be of order 10. The domain Ω1 in which the solutions were calculated by Doohan et al.

(2019) had dimensions L+
x = 320, L+

y = 90 and L+
z = 110, i.e. each dimension is half that

of the domain Ω2 of the present study, given in table 1. Although this is quite a difference
in domain size, it is expected that it should be possible to use the same Newton-based
algorithm to numerically continue at least a subset of the invariant solutions to Ω2.
During the continuation, the aspect ratio of the flow domain L+

x : L+
y : L+

z is held
fixed, and the shift-reflect symmetry

[u+, v+, w+](x+, y+, z+) = [u+, v+,−w+](x+ + L+
x /2, y

+,−z+) (3.2)

is preserved. It is also possible to numerically continue the invariant solutions by in-
creasing the wall-normal domain height from L+

y = 90 to L+
y = 180 while maintaining

L+
x = 320 and L+

z = 110 fixed. These solutions can then be concatenated in the
streamwise and spanwise directions, forming a solution with four copies of the structure in
the larger two-scale domain Ω2. These solutions satisfy the periodic boundary conditions
of Ω2, so that the concatenated velocity field is an exact solution in Ω2 with the same
phase speeds c+x and c+z , and time period T+. Solutions constructed in this manner
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exhibit the half-shift-reflect symmetry

[u+, v+, w+](x+, y+, z+) = [u+, v+,−w+](x+ + L+
x /4, y

+,−z+), (3.3)

where here L+
x = 640 is the streamwise dimension of Ω2. A critical limitation of the latter

continuation approach is that these structures, due to their streamwise and spanwise
periodicity within the flow domain, do not include the fundamental streamwise and
spanwise wavenumbers, nor indeed all wavenumbers associated with odd m and n in
equation (2.3). Clearly, the solutions computed in this manner do not capture the
large-scale structures with spanwise wavelength λ+

z = 220 in (2.3a). Therefore, the
invariant solutions obtained using the concatenation approach will be called the small-
scale solutions, while those obtained through fixed-aspect ratio numerical continuation
will be called the large-scale solutions.
Likewise, it is acknowledged that the continuation approach is also not ideal, in the

sense that there is no explicit introduction of activity at multiple length scales. There
is no robust approach, however, to finding or constructing such solutions. The search
for recurrences, or quiescent periods, in the turbulent dynamics has been fruitful in
identifying solutions in minimal domains, but the substantial extra degrees of freedom
of the two-scale domain imply that the probability of experiencing a sufficiently close
recurrence is vanishingly small. We have experimented with the superposition of some
large- and small-scale solutions in order to construct a two-scale solution without success.
Solutions that inherently include multi-scale activity might also be more naturally
represented by a relative periodic orbit. However, as the period natural to the self-
sustaining cycle at each scale is unlikely to be the same, this implies that periods for the
overall multi-scale orbit may be infinite (quasi-periodic) or too long to be captured at
present.
Using the continuation and concatenation approaches, in total, ten large-scale solutions

and eighteen small-scale solutions have been computed in the minimal unit of multi-scale
near-wall turbulence Ω2. The relative error r of all solutions reported in this work is
less than 10−6. Their properties are summarised in table 2. A representative large-scale
solution (EQL1b) and small-scale solution (EQS1b) are plotted in figure 3, together with
a turbulent snapshot for reference. A detailed description of each of the large- and small-
scale solutions is given in supplementary material §2.

3.2. Bifurcation of solutions

As described previously, the large-scale solutions are obtained through fixed-aspect
ratio numerical continuation from the minimal unit Ω1 to the minimal unit of multi-scale
near-wall turbulence Ω2. However, it is also of interest to analyse the bifurcation of both
large- and small-scale solutions over the domain size in order to establish connections
between the solutions. The invariant solutions are continued over a range of values of
the spanwise domain width L+

z while maintaining the aspect ratio of the flow domain
fixed. The numerical continuation is carried out using a pseudo-arclength continuation
algorithm and the resulting (L+

z , ∆
+) bifurcation diagram is plotted in figure 4, where

∆+ is the time-averaged wall shear rate:

∆+ =
dU

+

dy+

∣∣∣∣
y+=0

. (3.4)

We note that the time-averaged wall shear rate of turbulent state is unity (i.e. ∆+ = 1;
see (2.1)).
The large-scale solutions EQL1a and EQL1b emerge in a saddle-node bifurcation at
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Scale Solution T+ c+x ∆+ dim(Wu)

Large EQL1a - 19.8603 0.2278 1
EQL1b - 16.9326 0.8698 36
EQL2a - 17.1444 0.2056 5
EQL2b - 12.1717 1.0366 69
EQL3a - 12.6507 0.2234 3
EQL3b - 7.3405 0.4528 24
EQL4a - 17.7416 0.2006 4
EQL8a - 17.0960 0.2340 2
EQL8b - 6.9505 0.2690 5
EQL9b - 20.7447 0.2527 11

Small POS0a 20.3715 16.0631 0.3851 5
POS0b 19.9855 16.0076 0.5496 10
EQS1a - 17.4483 0.4097 7
EQS1b - 16.9461 0.5167 12
EQS2a - 18.4886 0.2332 4
EQS2b - 18.4359 0.2726 9
EQS2c - 17.2672 0.2302 4
EQS2d - 17.7391 0.3310 13
EQS3a - 6.8004 0.2346 3
EQS3b - 5.6126 0.2689 2
EQS4a - 17.4716 0.2155 3
EQS4b - 17.4994 0.2219 5
EQS10a - 6.7417 0.2384 5
EQS10b - 5.7595 0.2622 4
EQS11a - 17.3793 0.4394 13
EQS11b - 16.9330 0.5203 22
EQS12a - 17.2305 0.4513 18
EQS12b - 17.2914 0.4934 18

Table 2. Properties of the large- and small-scale invariant solutions in the minimal unit of
multi-scale near-wall turbulence Ω2: the time period T+, the phase speed c+x , the wall shear rate
∆+ and the dimension of the unstable manifold within the corresponding subspace dim(Wu).
The values of c+x and ∆+ of POS0a and POS0b are averages over the corresponding time period
T+.

L+
z ≈ 35 (black line). A secondary solution curve emerges at L+

z ≈ 77 on the upper
branch, which exhibits highly erratic behaviour at low values of L+

z before rejoining the
primary solution curve at the same point. EQL2a and EQL2b appear in a saddle-node
bifurcation at L+

z ≈ 60 (gold line). The upper branch is highly complex at L+
z ≈ 80, but it

varies smoothly with L+
z above L+

z ≈ 90, along which the solution EQL2b was obtained.
EQL3a and EQL3b (dark blue line), EQL4a (red line) and EQL8a and EQL8b (dark
green line) also emerge in saddle-node bifurcations at L+

z ≈ 47, L+
z ≈ 67 and L+

z ≈ 112,
respectively. The upper branch of EQL4a could not be traced up to L+

z = 220, since the
relative error began to increase above the desired threshold. Furthermore, EQL9b was
not amenable to fixed-aspect ratio numerical continuation and so it does not appear in
figure 4.

The (L+
z , ∆

+) bifurcation diagram of the small-scale solutions is plotted in the insert
in figure 4, all of which also emerge in saddle-node bifurcations. However, the bifurcation
points occur at much higher values of L+

z , ranging from L+
z ≈ 180 for POS0a and POS0b
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Figure 3. Velocity field visualisation and root mean squared velocity profiles of two invariant
solutions and the turbulent state. High- and low-speed streaks u′+ are shown in red/blue, and
positive and negative wall-normal velocity isosurfaces v′+ are shown in yellow/green respectively:
(a, d) EQL1b: u

′+ = ±3.50, v′+ = ±0.90; (b, e) EQS1b: u
′+ = ±2.20, v′+ = ±0.50; (c, f) a

turbulent snapshot: u′+ = ±3.50, v′+ = ±2.00. The u+
rms, v

+
rms and w+

rms profiles are shown in
red, green and blue respectively.

(brown line) to L+
z ≈ 217 for EQS2a and EQS2b (gold line). It should be recalled that

the small-scale solutions are obtained through velocity field concatenation and so they
capture two sets of small-scale structures with spanwise wavelengths λ+

z = 110, as defined
in (2.3). Therefore, this range of values of the bifurcation points is consistent with twice
the characteristic spacing of near-wall streaks (e.g. Kline et al. 1967). The proximity
of Ω2 to the bifurcation points of the small-scale solutions would also explain the lack
of velocity field diversity in supplementary material §2.2, since there would be little
difference between lower- and upper-branch solutions close to the bifurcation point and
more diverse solutions may emerge at higher values of L+

z . Finally, it is evident that the
values of the wall shear rate ∆+ of most of the large- and small-scale solutions in Ω2 (i.e.
L+
z = 220 in figure 4) are considerably lower than that of the corresponding turbulent

state (∆+ = 1). Only EQL1b and EQL2b attain values comparable to that of the mean
turbulent state (see table 2).

3.3. Phase portraits

The visualisation of the state space using suitably defined phase portraits is a key
concept in the dynamical systems framework, which helps to rationalise the chaotic
dynamics in terms of the geometrical structure of trajectories in the state space. While
equilibria correspond to points in the state space, their stable and unstable manifolds
characterise the local state space dynamics. In low-dimensional dynamical systems, the
hope was that a sufficiently large number of such invariant solutions (including periodic
orbits) would be able to offer physical insight into the global state-space dynamics of
turbulence (Kerswell 2005; Eckhardt et al. 2007; Kawahara et al. 2012; Graham & Floryan
2020). Indeed, this approach has been successful in the characterisation of transition to
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Figure 4. (L+
z , ∆

+) bifurcation diagram of the large-scale invariant solutions. Black line, EQL1a

& EQL1b; gold line, EQL2a & EQL2b; dark blue line, EQL3a & EQL3b; red line, EQL4a;
dark green line, EQL8a & EQL8b. The insert shows the (L+

z , ∆
+) bifurcation diagram of the

small-scale invariant solutions. Brown line, POS0a & POS0b; black line, EQS1a & EQS1b; gold
line, EQS2a & EQS2b; orange line, EQS2c & EQS2d; dark blue line, EQS3a & EQS3b; red line,
EQS4a & EQS4b; purple line, EQS10a & EQS10b; grey line, EQS11a & EQS11b; light blue line,
EQS12a & EQS12b. The ∆+ values of POS0a and POS0b are averages over the corresponding
time period T+.

turbulence in wall-bounded shear flows (e.g. Gibson et al. 2008; Kreilos & Eckhardt
2012; Zammert & Eckhardt 2015), especially when the computational domain of interest
is sufficiently small to avoid the further complexity of spatio-temporal effects (for the
spatio-temporal nature of transition, see the review by Barkley 2016). Furthermore, for a
turbulent flow at sufficiently low Reynolds numbers, in which the dynamics are dominated
by the self-sustaining process at a single integral length scale (Jiménez & Moin 1991;
Hamilton et al. 1995; Doohan et al. 2019), it has been observed that the upper-branch
solutions typically resemble the turbulent state (e.g. Gibson et al. 2009b; Willis et al.

2013; Doohan et al. 2019), while a few of the lower-branch solutions constitute the edge
state (e.g. Itano & Toh 2001; Skufca et al. 2006; Schneider et al. 2007, 2008).
Having computed a number of solutions inΩ2 and analysed their bifurcation behaviour,

the ability of the invariant solutions to capture the dynamics of near-wall turbulence with
two integral length scales of motion is now assessed. Recalling the large-scale kinetic
energy terms in (2.13), the small-scale kinetic energy terms in (2.14) and the terms in
the large- and small-scale energy balance equations in (2.6) and (2.8), the turbulent
trajectory and the large- and small-scale solutions are plotted in various phase portraits
in figure 5.
The (E+

ss,l, E
+
ss,s) phase portrait is shown in figure 5(a). As expected, the small-scale

equilibrium solutions (triangles) and small-scale periodic orbits (circles) do not capture
any large-scale structures and lie along the ordinate, exhibiting a wide range of values of
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Figure 5. Phase portraits of the turbulent trajectory (dotted grey line) and the invariant

solutions in the following planes: (a) (E+

ss,l, E
+
ss,s); (b) (E+

sr,l, E
+
sr,s); (c) (P+

ul

∣

∣

∣

120

0

, P+
us

∣

∣

∣

45

0

);

(d) (E+

ws,l, E
+
ws,s); (e) (E+

wr,l, E
+
wr,s); (f) (−Π+

ul

∣

∣

∣

120

0

,−Π+
us

∣

∣

∣

45

0

); (g) (−ϵ+ul

∣

∣

∣

120

0

,−ϵ+us

∣

∣

∣

45

0

); (h)

(−ϵ+vl

∣

∣

∣

120

0

− ϵ+wl

∣

∣

∣
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∣

∣

∣
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5

). The edge state and the large-scale

equilibrium solutions are plotted as squares, the small-scale equilibrium solutions as triangles
and the small-scale periodic orbits as circles. The colour scheme is identical to that in figure 4,
with the addition of the edge state in brown and EQL9b in pink. Lower-branch solutions have
unfilled symbols and upper-branch solutions have filled symbols. The values for the edge state,
POS0a and POS0b are averages over the corresponding time period T+.

E+
ss,s. Indeed, this is observed in all of the remaining phase portraits in figure 5(b-i). The

large-scale solutions (squares) exhibit significant values of E+
ss,l, some of which are close

to the maximum values attained by the turbulent trajectory, consistent with the strong
straight streaks identified in the velocity field visualisations in supplementary material
figure 2. However, most of the large-scale solutions do not feature typical values of E+

ss,s

and are positioned well below the turbulent trajectory in figure 5(a). This indicates that
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there is little development of small-scale structures during the numerical continuation
of invariant solutions from Ω1 to Ω2, at least in most cases. Only EQL1b (filled black
square) exhibits considerable values of both E+

ss,l and E+
ss,s, while EQL4a (unfilled red

square) and EQL9b (filled pink square) are close to the minimum values attained by the
turbulent trajectory.

The (E+
sr,l, E

+
sr,s) phase portrait is plotted in figure 5(b). With the exception of EQL2a

(unfilled gold square) and EQL2b (filled gold square), it is apparent that the large-scale
solutions (squares) only capture large-scale straight rolls and lie along the abscissa, while
the small-scale solutions (triangles and circles) only capture small-scale straight rolls and
lie along the ordinate. In particular, EQL1b (filled black square), EQL4a (unfilled red
square) and EQL9b (filled pink square) exhibit negligible values of E+

sr,s. Therefore, it is
evident that the large-scale solutions only capture the large-scale self-sustaining process
(apart from EQL2a and EQL2b) and the small-scale solutions only capture the small-
scale self-sustaining process. Furthermore, the values of E+

sr,l attained by the large-scale

solutions and the values of E+
sr,s attained by the small-scale solutions are considerably

lower than the mean turbulent values of each, consistent with the weak wall-normal
and spanwise velocity fluctuations observed in the root mean squared velocity profiles
in supplementary material figure 2 and figure 3. EQL2b is the only large-scale solution
that features significant values of both E+

ss,s in figure 5(a) and E+
sr,s in figure 5(b),

but it exhibits negligible values of both E+
ss,l and E+

sr,l. This indicates that it captures
the small-scale self-sustaining process rather than the large-scale self-sustaining process,
which requires further investigation (see §4.3 for a further discussion). Likewise, EQL2a

attains a non-negligible value of E+
ss,s in figure 5(a) and a very small value of E+

sr,s in
figure 5(b), suggesting that it is a subdued manifestation of the small-scale self-sustaining
process.

In the (P+
ul

∣∣120
0

, P+
us

∣∣45
0
) phase portrait in figure 5(c), EQL2b (filled gold square) is the

only solution that exhibits considerable values of both large- and small-scale turbulent
production, indicative of two-scale energetics. However, this is counterintuitive since it
does not capture the large-scale self-sustaining process, as discussed previously, and so the
analysis of EQL2b is deferred to §4.3. With the exception of EQL2a (unfilled gold square)
and EQL2b, the large-scale solutions (squares) only attain non-negligible values of large-
scale production and the small-scale solutions (triangles and circles) only attain non-
negligible values of small-scale production, consistent with the previous results relating
to the large- and small-scale self-sustaining processes. In particular, EQL1b (filled black

square) exhibits a negligible value of P+
us

∣∣45
0
, implying that the structures associated with

the large value of E+
ss,s in figure 5(a) are passively driven by the large-scale dynamics of

the solution. The values of P+
ul

∣∣120
0

attained by the large-scale solutions and the values

of P+
us

∣∣45
0

attained by the small-scale solutions are also considerably lower than the mean
turbulent values of each. This issue will be discussed in detail in §4.1.

In the (E+
ws,l, E

+
ws,s) phase portrait in figure 5(d), it is apparent that the invariant

solutions even fail to reproduce some fundamental features at each scale. With the
exception of EQL2b (filled gold square), the large-scale solutions (squares) do not capture
prominent large- or small-scale wavy streaks and are clustered between the minimum
values attained by the turbulent trajectory and the origin, nor do the small-scale solutions
(triangles and circles) which lie along the ordinate well below the minimum values
of E+

ws,s. This failure is even more obvious in the (E+
wr,l, E

+
wr,s) phase portrait in

figure 5(e), in which both the large- and small-scale solutions (apart from EQL2b)
capture neither large- nor small-scale wavy rolls and are positioned at the origin. These
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observations indicate that x+-dependent structures are largely absent from the invariant
solutions, consistent with the prominent elongated structures identified in the velocity
field visualisations in supplementary material figure 2 and 3. Considering the large-
scale solutions, we note that the numerical continuation from Ω1 to Ω2 is equivalent
to increasing the ‘effective’ Reynolds number, while fixing the domain size. Therefore,
the dominance of more elongated structures in the velocity fields can be explained by the
fact that the straight streaks can be driven by straight rolls with lower energy at higher
Reynolds number (e.g. Butler & Farrell 1993; Schmid & Henningson 2001). The lower
energy of the straight rolls should also be related to the less wavy streaks, as the straight
rolls originates from a nonlinear interaction between the wavy streaks (i.e. the nonlinear
mechanism of the streak instability). This observation is also consistent with the vortex-
wave interaction asymptotic theory by Hall & Sherwin (2010), although the theory is
not necessarily applicable to all the large-scale solutions found here (see supplementary
material §2.1 and Doohan et al. 2019). In computing the small-scale solutions on the
other hand, the smaller values of E+

ws,s and E+
wr,s would be more related to the fact that

these solutions are not very far from the bifurcation points (figure 4). In such a regime,
both upper- and lower-branch equilibrium solutions are well depicted only with single
streamwise Fourier mode, which would lead to considerably reduced values of E+

ws,s and
E+

wr,s (Pausch et al. 2019).
The inability of the invariant solutions to capture x+-dependent structures has a

knock-on effect on the large- and small-scale energy balance equations (2.6) and (2.8).
In particular, given that Π+

ul and Π+
us depend on (u+

l )x+ and (u+
s )x+ respectively (see

supplementary material equations (1.5a) and (1.13a)), the large- and small-scale solutions
exhibit negligible values of both large- and small-scale streamwise pressure strain in the

(−Π+
ul

∣∣120
0

,−Π+
us

∣∣45
0
) phase portrait in figure 5(f) and are positioned at the origin (apart

from EQL2b (filled gold square)). Since the role of the streamwise pressure strain terms
is to re-distribute streamwise TKE to the wall-normal and spanwise components, this
would also explain the weak wall-normal and spanwise velocity fluctuations observed in
the root mean squared velocity profiles in supplementary material figure 2 and figure
3. Consequently, most of the large- and small-scale solutions are dominated by the

streamwise velocity fluctuations. This also manifests in the (−ϵ+ul
∣∣120
0

,−ϵ+us
∣∣45
0
) phase

portrait in figure 5(g) and the (−ϵ+vl
∣∣120
0

− ϵ+wl

∣∣120
0

,−ϵ+vs
∣∣45
0

− ϵ+ws

∣∣45
0
) phase portrait in

figure 5(h). The large-scale solutions (squares) attain non-negligible values of large-scale
streamwise dissipation and lie mostly along the abscissa (apart from EQL2b), while the
small-scale solutions (triangles and circles) attain non-negligible values of small-scale
streamwise dissipation and lie along the ordinate. However, the large- and small-scale
solutions exhibit negligible values of both large- and small-scale wall-normal and spanwise
dissipation, and are positioned at the origin again, since there is little wall-normal and
spanwise TKE to dissipate.
Finally, the absence of structures at either large or small scale renders turbulent

transport largely trivial. In the (E+
wu,i,−T+

u,↕

∣∣25
5
) phase portrait in figure 5(i) for example,

both large- and small-scale solutions feature negligible values of streamwise inter-scale
turbulent transport and lie along the abscissa, apart from EQL1b (filled black square)
and EQL2b (filled gold square), which will be discussed in §4.2 and §4.3 respectively.

4. Turbulent dynamics and invariant solutions

Thus far, a large number of invariant solutions have been obtained in a computational
domain that can host coherent structures at two integral length scales. According to the
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dynamical systems description of turbulence (e.g. Kerswell 2005; Eckhardt et al. 2007;
Kawahara et al. 2012; Graham & Floryan 2020), many upper-branch solutions have been
found to be a good proxy for the turbulent state, at least for turbulence in spatially-
confined domains at transitional Reynolds numbers (i.e. flow in the minimal unit, e.g.
Gibson et al. 2009b,a; Cvitanovic & Gibson 2010; Chandler & Kerswell 2013; Willis et al.
2016), in which the solutions provide a decent statistical/dynamical description of the
flow characteristics. Similarly, in the minimal unit of multi-scale near-wall turbulence and
with a relatively large number of travelling-wave solutions, one could envisage that the
turbulent trajectory visits the upper-branch solutions at both large and small scales
in the state space, especially since there is little scale separation. It would then be
possible to define a suitable averaging between the large- and small-scale states for
a quantitative statistical description of the flow. However, the phase portraits of the
previous section, defined using a set of physically-relevant observables, revealed that the
turbulent trajectory does not visit the neighbourhood of any of the invariant solutions
computed (figure 5), despite the fact that they are all obtained by suitable numerical
continuation from the minimal unit of near-wall turbulence, in which a number of
solutions (especially the upper-branch states) previously captured many features of the
turbulent state (Doohan et al. 2019).
The observation above presents a challenge in determining the structure of the state-

space of turbulent flow at high Reynolds numbers. In particular, the phase portraits in
figure 5 imply that the self-sustaining processes captured by the large- and small-scale
invariant solutions are not sufficient for the description of multi-scale turbulence, even
for relatively simple two-scale near-wall turbulence. This highlights the need to compute
inherently multi-scale solutions that may structure the state-space, and the importance
of other inter- and intra-scale processes. Thus, exactly what physical processes are absent
from the single-scale solutions? This shortcoming has been found to be intricately linked
to several key scale interaction processes: 1) mean-fluctuation interaction; 2) energy
cascade; 3) inverse energy transfer (i.e. the feeding process). In the remainder of this
work, the aforementioned issues will be discussed in detail.

4.1. Mean-fluctuation interaction

Most of the invariant solutions in the present study depict either large- or small-scale
structures. It is therefore evident that one of the key processes not captured by the
invariant solutions is their interaction. The most fundamental interaction between the
two scales takes place through the mean velocity, and it can be explained by applying
the velocity field decomposition in (2.3) to the mean momentum equation for invariant
solutions:

dU
+

dy+
− ⟨u+

l v
+
l ⟩x+,z+ − ⟨u+

s v
+
s ⟩x+,z+ = ∆+. (4.1)

Here, the wall shear rate∆+ varies with the solution, because the inner-scaling introduced
in §2.1 is based on the friction velocity of the mean turbulent state.
For the fully-developed turbulent state, the mean shear is driven by both large and

small scales, and at the same time, it is the only energy source at both scales (see (2.4)
and (2.5) or (2.6) and (2.8)). In the absence of Reynolds shear stress at either large or

small scale, the mean shear dU
+
/dy+ would diminish and there would be a subsequent

reduction in production at the other scale, given their definitions in supplementary
material equations (1.1) and (1.9). This would also account for the low wall shear rate
values of the invariant solutions (i.e. ∆+) observed in figure 4 and table 2. Further to
this, in the minimal unit of multi-scale near-wall turbulence, there exists a production
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Figure 6. Flow field of energy cascade in EQL1b: (a) isosurfaces of u+

l = ±3.00 (pink/cyan),

T+
us,c = 0.15 (black) and ϵ+

us,□
= −0.10 (blue); (b) isosurfaces of T+

us,c = 0.15 (black), u+
s = 2.25

(yellow) and u+
s = −3.00 (green).

mechanism at small scale driven by the energy cascade from the large scale (i.e. the
driving of small-scale turbulent production in Doohan et al. 2021). Therefore, in the
absence of the large-scale structures, this process would not occur, which would also
contribute to the lower values of wall shear rate of the small-scale invariant solutions.

It is worth mentioning that the mean-fluctuation interaction discussed here was the
key modelling idea of the early work developed in the context of the so-called quasilinear
approximation (Malkus 1956; Herring 1963), where the fluctuation dynamics are simply
modelled with the marginally stable linearised Navier-Stokes equations around the mean.
A modern variant of this approach has shown that if the self-interacting nonlinear terms
in (2.4) and (2.5) are modelled suitably at all integral length scales, the mean-fluctuation
interaction plays a key role in characterising the general statistical behaviour of high-
Reynolds-number turbulence (Hwang & Eckhardt 2020; Skouloudis & Hwang 2021).
Among all the invariant solutions found in this study, it appears that only EQL2b contains
healthy mean-fluctuation interaction at both large- and small scales, as it exhibits non-
zero production at both scales (filled gold square in figure 5c). Accordingly, EQL2b

appears to best resemble turbulent state, although this needs further discussion (§4.3).

4.2. Energy cascade

Another important feature of the turbulent state that is not captured by most of the
invariant solutions is the energy cascade. With the exception of EQL2b, to be discussed
in §4.3, none of the invariant solutions are approached by turbulent state in all phase
portraits related to energy cascade and turbulent dissipation (figures 5f -h). In particular,
the streamwise pressure strain of these invariant solutions at both large and small scales
is negligibly small (figure 5f), resulting in negligibly small wall-normal and spanwise
dissipation (figure 5h). Furthermore, many large-scale solutions exhibit negligibly small
dissipation at small scale (square symbols in figures 5g, h), indicating that they do not
contain a proper mechanism for the energy cascade. A notable exception to this is
EQL1b, the upper branch of a family of large-scale solutions (EQL1a/EQL1b), which
appears to capture a transfer of streamwise TKE from large to small scales in figure
5(i). Although this solution has very little wall-normal and spanwise dissipation at small
scale, a considerable amount of small-scale streamwise dissipation is present (filled black
square in figure 5g).

To better understand the dissipation of the invariant solutions, the energy-cascade-
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Figure 7. Isosurfaces of u′+ (cyan) and ϵ
′
+

u,□
(blue) of (a) EQL1a: u

′+ = −2.50, ϵ
′
+

u,□
= −0.01;

(b) EQL1b: u
′+ = −3.50, ϵ

′
+

u,□
= −0.04; (c) a turbulent snapshot: u′+ = −3.00, ϵ

′
+

u,□
= −0.04.

Here, ϵ
′
+

u,□
= −∇u′+ · ∇u′+.

related variables of EQL1b are visualised in figure 6: i.e. large- and small-scale streamwise
velocity fluctuations, streamwise inter-scale turbulent transport at small scale

T+
us,c = −u+

s Ps{u+
s · ∇u+

l + u+
l · ∇u+

s + u+
l · ∇u+

l }, (4.2a)

and small-scale streamwise dissipation

ϵ+
us,□

= −∇u+
s · ∇u+

s . (4.2b)

The streamwise inter-scale turbulent transport and small-scale dissipation isosurfaces are
unusually elongated in the streamwise direction; these are also localised around the low-
speed large-scale streak (figure 6a) as observed in Doohan et al. (2021). This streamwise
inter-scale turbulent transport appears to generate intense small-scale streamwise velocity
fluctuations (u+

s ) in the same region, as seen in figure 6(b), which explains the large
value of E+

ss,s observed in figure 5(a) (filled black square). This is also consistent with

the negligibly small production at small scale, P+
us

∣∣45
0

of EQL1b (filled black square in
figure 5c), indicating that EQL1b captures a particular scale interaction process resulting
in the transfer of energy within the streamwise velocity component.
The energy cascade and dissipation mechanism of EQL1b, however, appears to be very

different from that of the turbulent state. Figure 7 compares the streamwise dissipation,

ϵ′+
u,□

= −∇u′+ · ∇u′+, (4.3)
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Figure 8. Isocontours of ⟨ϵ
′
+

u,□
⟩x+ (blue) and ⟨u+⟩x+ = c+x (black line) of (a) EQL1a and (b)

EQL1b. Isocontours of ϵ
′
+

u,□
(blue) and u+ = 13 (black line) of three turbulent snapshots in time

(c, d, e).

of two invariant solutions EQL1a and EQL1b with that of turbulent state. Both of
the invariant solutions have highly elongated dissipation structures with very little
downstream undulation, in accordance with the observation in figure 6, whereas the
dissipation structures of the turbulent state are much more isotropic and chaotic. These
highly anisotropic dissipation structures are a general feature of the invariant solutions
except for EQL2b, as indicated by the phase portraits of streamwise pressure strain (figure
5f) and wall-normal and spanwise dissipations (figure 5h). Therefore, this implies that
these invariant solutions do not exhibit the mechanism of turbulent dissipation related
to isotropic smaller-scale structures (Kolmogorov 1941).

The precise origin of this difference can be explained using a quasilinear approximation
(e.g. Thomas et al. 2014; Farrell et al. 2016; Hernandez & Hwang 2021), which has
been found to offer a good reduced theoretical description for many equilibrium-type
invariant solutions (Pausch et al. 2019). We now decompose the velocity fluctuation into
the streamwise mean and the rest: i.e. u′+ = u+

1 + u+
2 where u+

1 = ⟨u′+⟩x+ . If the
invariant solutions of interest are in the form of travelling waves with a constant c+x (i.e.
a relative equilibrium solution), the resulting equations of motion are written as

(U
+ · ∇)u+

1 = −(u+
1 · ∇)U

+ −∇p+1 +∇2u+
1 − (u+

1 · ∇)u+
1 − ⟨(u+

2 · ∇)u+
2 ⟩x+

+⟨(u+
1 · ∇)u+

1 + (u+
1 · ∇)u+

2 + (u+
2 · ∇)u+

1 + (u+
2 · ∇)u+

2 ⟩x+,z+ , (4.4a)

−c+x
∂u+

2

∂x+
+ [(U

+
+ u+

1 ) · ∇]u+
2 + (u+

2 · ∇)(U
+
+ u+

1 ) = −∇p+2 +∇2u+
2 +N (4.4b)

with

N = −(u+
2 · ∇)u+

2 + ⟨(u+
2 · ∇)u+

2 ⟩x+ . (4.4c)

Here, (4.4a) offers a description of the streamwise independent streaks and rolls (or
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vortices), while (4.4b) is for the instability wave arising from the streaks. In the quasilinear
approximation (Pausch et al. 2019), N is ignored, resulting in (4.4b) being a linearised

equation about a streaky base flow (i.e. U
+
+ u+

1 ). In this case, the non-trivial solution
of (4.4b) is obtained from a marginally stable eigenmode. Lastly, in the limit of large
computational domain (or equivalently in the limit of large ‘effective’ Reynolds number;
see Doohan et al. 2019), many solutions described by (4.4) can be approximated by
vortex-wave interaction (VWI) theory (Hall & Sherwin 2010), where the last term in
(4.4a) is modelled as a forcing along the critical layer of (4.4b). Among the invariant
solutions found in this study, EQL1a, EQL2a, EQL3a and EQL4a have previously been
shown to follow the VWI description in the limit of large computational domain (see
supplementary material §2.1 and Doohan et al. 2019).

Now, (4.4) suggests that the key difference between many of the invariant solutions
and the turbulent state obviously lies in the importance of N in (4.4b): for the invariant
solutions, it is either small or sometimes negligible, whereas for the turbulent state, it
is probably non-negligibly large most of the time. The nonlinear term N is essentially
an interaction between streamwise waves. Therefore, this must be the mechanism of the
energy transfer from long streamwise wavelengths to short ones, explaining the difference
in the extent of streamwise undulation between the invariant solutions and the turbulent
state. Indeed, it has been found that the removal of this term in direct numerical
simulation of homogeneous shear turbulence leads to almost complete suppression of
the energy cascade in the streamwise direction, resulting in highly anistropic small-scale
dissipative structures (Hernandez & Hwang 2021), consistent with the phase portraits of
pressure strain and dissipation in figure 5.

Despite the evident difference in the energy cascade and turbulent dissipation, it must
be pointed out that both the invariant solutions and the turbulent state share the same
production term in (4.4b) (i.e. the third term). In fact, in the inviscid limit, (4.4b) with
N = 0 becomes singular in the critical layer (Hall & Horseman 1991): i.e. the layer
at which ⟨u+⟩x+ = c+x . Therefore, the dissipation of the invariant solutions is expected
to be organised around the critical layer, as is indeed confirmed by the cross-streamwise
view of streamwise dissipation in figure 8(a, b) (note that the relatively strong streamwise
dissipation in figure 8(a) is organised around the critical layer at the flank of the low-
speed streak, while that in figure 8(b) appears just above the high-speed streaks and in
the near-wall region of the low-speed streak similar to the turbulent state). However,
it is striking that a very similar feature is also observed for the turbulent state, as
shown in figures 8(c-e) (note that a critical layer cannot be defined in this case, thus an
appropriate constant streamwise velocity for large-scale structures (u+ = 13) is chosen
to mimic the critical layer). This suggests that the dissipation process of the turbulent
state is presumably initiated by such a layer related to the streak instability, confirming
the strong dynamical correlation between the streak instability and turbulent dissipation
observed in Doohan et al. (2021). It would be interesting to see whether this behaviour
persists at high Reynolds numbers, and this remains an open question to be explored in
the future.

Finally, it should be mentioned that the role of the unsteady term, not shown in (4.4),
must not be ignored. There is a body of evidence that the unsteadiness and intermittency
in the flow play a crucial role in the mechanism of the energy cascade (e.g. see the review
by Vassilicos 2015, and the references therein). Figure 9 shows a time series of turbulence
production at large scale, turbulent transport and dissipation at large and small scale
reproduced from the simulation of Doohan et al. (2021). It appears that the observables
related to the energy cascade fluctuate with strong intermittent behaviour. The most
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Figure 9. Time series of (a) P+
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0
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(black) and ϵ+us
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(blue).

prominent dissipation events, which occur following strong production events, would be
related to the generation of highly isotropic small-scale structures from the energy cascade
of the turbulent state. Indeed, it has recently been shown that the dissipation event
in wall-bounded turbulence is strongly correlated with streak breakdown, the process
ensuing the streak instability (Doohan et al. 2021). Having unsteadiness in (4.4b) would
allow its instability to grow further from the marginally stable state and the growth could
then be slowed down by the nonlinear term N , which mediates the energy cascade in the
streamwise wavenumber space. In this respect, periodic orbits embedded in the turbulent
state could offer a better description of the energy cascade and dissipation, although their
computation appears to be challenging in the minimal unit of the multi-scale near-wall
turbulence as has been discussed (see also §5 for a further discussion). However, if they are
computable, they should provide a much better representation of the turbulent dynamics,
as has been demonstrated for simpler cases (Cvitanovic & Gibson 2010; Chandler &
Kerswell 2013; Willis et al. 2016). Such periodic orbits could subsequently be used to
approximate the full statistical and dynamical behaviour through the cycle expansion
(e.g. Cvitanovic et al. 2005; Chandler & Kerswell 2013), although the applicability of
this technique to high-Reynolods number turbulence remains an open question from
both theoretical and technical perspectives.

4.3. Inverse energy transfer - feeding

Now, we discuss the solution EQL2b, whose behaviour has been found to be quite
different from the other solutions in the various phase portraits (figure 5). It has been
observed that EQL2b is the only invariant solution that captures substantial turbulent
production at both large- and small-scales (figure 5c). Furthermore, it is the only solution
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Figure 10. EQL2b: (a) isosurfaces of u
+
s = −2.50 (orange), T+

ul,f = 0.25 (black) and u+

l = ±3.20

(pink/cyan); (b) positive/negative isocontours of u′+ (red/blue) and positive isocontours of T+

ul,f

(black) at y+ ≈ 10; (c) isosurfaces of P+

us,□
= 0.30 (yellow), T+

ul,f = 0.25 (black) and P+

ul,□
= 0.20

(red).

that exhibits a wall shear rate greater than that of the turbulent mean at ∆+ ≈ 1.03 and
it is the most unstable solution, with a 69-dimensional unstable manifold (see table 2).

The solution EQL2b clearly reproduces most elements of the small-scale self-sustaining
process, including small-scale straight rolls E+

sr,s, straight streaks E+
ss,s, wavy streaks

E+
ws,s and wavy rolls E+

wr,s (figure 5). However, it features negligible values of both

E+
ss,l and E+

sr,l and so it does not capture the key flow structures involved in the large-
scale self-sustaining process at all, even though it attains a significant value of large-

scale turbulent production P+
ul

∣∣120
0

. Instead, the large-scale structures detected in EQL2b

appear to be x+-dependent, thus the solution exhibits considerable values of both E+
ws,l

and E+
wr,l. The co-existence of the self-sustaining process at small scale and highly x+-

dependent structures at large scale is reminiscent of the inverse energy transfer from
small to large scales (i.e. the feeding process), which has been discussed extensively in
Doohan et al. (2021). We note that this process is associated with a ‘net’ inverse energy
transfer in the region close to the wall and differs from the ‘backscatter’, which refers to
the instantaneous inverse energy transfer in the energy cascade.

In order to compare EQL2b to the feeding scale interaction process in the region close

to the wall, the (E+
wu,i,−T+

u,↕

∣∣25
5
) phase portrait is plotted in figure 5(i), where −T+

u,↕

∣∣25
5

is streamwise inter-scale turbulent transport defined in (2.11a) and E+
wu,i is the near-wall
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kinetic energy of wavy streamwise inactive motion defined in (2.15). Along the turbulent

trajectory, −T+
u,↕

∣∣25
5

fluctuates about zero, where positive values represent the transfer of

energy from small to large scales (streamwise feeding) and negative values represent the
transfer of energy from large to small scales (the streamwise energy cascade). On average,
the streamwise inter-scale turbulent transport term is positive over the interval y+ ∈
[5, 25], as seen in the statistical analysis in figure 2(d). In particular, EQL2b (filled gold

square) exhibits substantial positive values of both −T+
u,↕

∣∣25
5

and E+
wu,i and is positioned

in the first quadrant, confirming that it indeed captures the transfer of energy from small
to large scales and the resulting localised streamwise inactive motion at large scale, i.e.
a streamwise feeding event.
In order to examine the streamwise feeding event captured by EQL2b, the velocity field

is shown in figure 10(a). The isosurfaces of low-speed small-scale streaks u+
s = −2.50 are

shown in orange, large-scale streamwise turbulent transport T+
ul,f = 0.25 in black and

high- and low-speed large-scale streaks u+
l = ±3.20 in pink and cyan respectively. Here,

the large-scale streamwise turbulent transport (i.e. turbulent transport from small to
large scale in the streamwise component at large scale) is defined as

T+
ul,f = −u+

l Pl{u+
l · ∇u+

s + u+
s · ∇u+

l + u+
s · ∇u+

s }, (4.5)

and the wall-normal range of the visualisation is y+ ∈ [0, 45]. Near the wall, the solution
exhibits meandering small-scale streaks, a manifestation of the small-scale self-sustaining
process as mentioned previously. The isosurfaces of large-scale streamwise turbulent
transport appear in between the low-speed small-scale streaks and are localised in both
the streamwise and spanwise directions. This is similar to the snapshots of streamwise
feeding events in figure 23 of Doohan et al. (2021). The turbulent transport isosurfaces
are well aligned with the large-scale streaks and are also highly localised. In particular,
the streamwise turbulent transport contributes almost entirely to the high-speed large-
scale streaks, consistent with the streamwise feeding event in figure 21 of Doohan et al.

(2021) and the POD analysis in figure 24 of that work.
The streamwise velocity field u′+ and large-scale streamwise turbulent transport T+

ul,f

at y+ ≈ 10 are also plotted in figure 10(b). The isocontours of the high- and low-speed
streaks are shown in red and blue respectively, and positive large-scale streamwise turbu-
lent transport in black. It is immediately obvious that EQL2b captures the subharmonic
sinuous streak instability mode (Schoppa & Hussain 2002) with mirror-symmetric high-
and low-speed streaks, strikingly similar to that identified in the POD analysis in figure
24 of Doohan et al. (2021). Given its mathematical definition (i.e. an instability mode, the
spanwise wavelength of which is twice greater than the spanwise spacing of the base-flow
streaks), the emergence of a ‘subharmonic’ streak instability mode in EQL2b explains
why this solution exhibits an energy transfer from small to large scale. Also, as before,
the localised streamwise turbulent transport isocontours match up with the high-speed
streaks, indicating that the streamwise feeding process emanates from high-speed small-
scale streaks and favours the formation of high-speed large-scale streaks, as seen in figure
10(a).
All these observations are entirely consistent with the analysis in Doohan et al. (2021)

and so it is clear that EQL2b is representative of a streamwise feeding event. In addition,
the subharmonic sinuous streak instability mode appears to underpin the manifestation
of small-scale self-sustaining process in this case. However, the feeding of energy from
small to large scales captured by EQL2b does not fully explain the considerable values of
both large- and small-scale turbulent production it exhibits in figure 5(c). While small-
scale production reflects the presence of the small-scale self-sustaining process mentioned
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previously, the appearance of large-scale production in the absence of the large-scale
self-sustaining process is not obvious. Indeed, in the analysis of the feeding processes in
Doohan et al. (2021), there was no observed increase in large-scale production in response
to streamwise turbulent transport from small to large scales.
In order to investigate the two-scale energetics of EQL2b in more detail, the velocity

field is shown again in figure 10(c). The isosurfaces of small-scale turbulent production
P+
us,□

= 0.30 are shown in yellow, large-scale streamwise turbulent transport T+
ul,f = 0.25

in black and large-scale turbulent production P+
ul,□

= 0.20 in red. Here, the large- and
small-scale turbulent production terms are defined as

P+
ul,□

= −U+
y+u

+
l v

+
l , (4.6a)

P+
us,□

= −U+
y+u

+
s v

+
s . (4.6b)

and the streamwise turbulent transport isosurfaces are identical to those plotted in figure
10(a). The small-scale production isosurfaces meander slightly in the streamwise direction
and match up with the small-scale streaks, corresponding to the small-scale self-sustaining
process. On the other hand, the large-scale production isosurfaces are localised in both
the streamwise and spanwise directions, consistent with the highly localised large-scale
streaks. In particular, the large-scale production isosurfaces are well aligned with the
streamwise turbulent transport isosurfaces. This appears to suggest that the streamwise
TKE transferred from small to large scales is substantial enough to be acted upon by the
mean shear and consequently that the streamwise feeding process can indeed modulate
localised large-scale turbulent production. Therefore, the two-scale energetics of EQL2b

comprise of the small-scale self-sustaining process, the feeding of streamwise TKE from
small to large scales and the resulting localised large-scale turbulent production and
streaks, all of which are supported by the subharmonic sinuous streak instability mode.
As mentioned earlier, the large-scale production seen in EQL2b was not identified in

our recent analysis of turbulent state (Doohan et al. 2021), revealing some seemingly non-
trivial inconsistency between EQL2b and turbulent state. It is, however, worth mentioning
that the turbulent state contains the self-sustaining process at large scale as a production
mechanism, whereas EQL2b does not. Therefore, this inconsistency suggests that the self-
sustaining process at large scale might have suppressed the production mechanism driven
by the feeding event, although this needs further investigation and is beyond the scope
of the present study.

5. Conclusion and discussion

In the present study, the state space of the minimal unit of multi-scale near-wall
turbulence (i.e. two integral length scales of motion) has been explored through the
computation of the edge state, twenty-six travelling wave solutions and two periodic
orbits. Given the similar size of the two scales, it seemed reasonable that the turbulent
trajectory may visit some of these solutions at both large and small scales, so that a
suitable average of the solutions could then be defined for a quantitative description of
turbulent state, as in the minimal flow unit. However, the phase portrait visualisations
using a set of suitably defined observables for the two-scale dynamics has revealed that the
turbulent state does not approach any of the computed invariant solutions, despite their
considerable number. We conjecture that inherently multi-scale solutions are necessary,
even for this simplest model of multi-scale turbulence. This observation is reminiscent
of the work by Kerswell & Tutty (2007), who found that the turbulent trajectory does
not spend a significant amount of time near the travelling waves that were known at the
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time. This eventually led to many subsequent studies in the search for periodic orbits
for the description of the dynamics of the turbulent state (e.g. Cvitanovic & Gibson
2010; Chandler & Kerswell 2013; Willis et al. 2016). In this study, the limitations of such
simple travelling-wave solutions are more evidently revealed. The invariant solutions
presented in §3 (see also supplementary material §2) fail to reproduce both the intra-
scale and inter-scale energetics: EQL2a and the small-scale solutions only capture the
small-scale self-sustaining process, while the remaining large-scale solutions only capture
the large-scale self-sustaining process. At both large and small scales, the wavy streaks
and wavy rolls of the self-sustaining process are significantly weaker, which in turn
inhibits the streamwise pressure strain in redistributing streamwise TKE to the wall-
normal and spanwise components, and so the solutions are almost entirely dominated
by streamwise velocity fluctuations. In addition, in the absence of structures at either
large or small scale, the turbulent transport terms are largely trivial and so the scale
interaction processes are obstructed. Although it is expected that the edge state, the
vortex-wave interaction states and the small-scale solutions would not fully capture the
turbulent dynamics, it is interesting to observe that the upper-branch solutions perform
unsuccessfully. In particular, EQL1b, which is the stress-driven analogue of Nagata’s
upper-branch solution (Nagata 1990), is typically representative of the mean turbulent
state in the minimal unit (Doohan et al. 2019) and yet it is positioned at the origin
in multiple phase portraits considered in figure 5. Accounting for all the observations,
we conjecture here that the state space representation of invariant solutions featuring
only single-scale dynamics is insufficient for near-wall turbulence with multiple integral
length scales of motion, even though the numerical set-up of this study only captures
two lengthscales.
Among the computed solutions, we have shown that EQL2b is a two-scale invariant

solution of wall-bounded shear flow that captures a scale interaction process, namely the
feeding of energy from small to large scales recently discovered by Doohan et al. (2021).
Given the non-zero production at large scale, this is a two-scale solution, the behaviour
of which essentially originates from a subharmonic sinuous instability of the small-scale
streaks. It should, however, be mentioned that this is not the first invariant solution that
features the subharmonic sinuous instability mode. The solutions of Itano & Generalis
(2009), identical to EQ7/EQ8 in Gibson et al. (2009b), the hairpin-like solution of Shekar
& Graham (2018) in plane Poiseulle flow and the solution presented in Deguchi & Hall
(2014a) and Deguchi & Hall (2017) for the asymptotic suction boundary layer also exhibit
a subharmonic sinuous instability like EQL2b in the present study. In this respect, the
contribution of the present study lies in the identification of the physical processes that
such invariant solutions describe with a rigorous examination of the scale-interaction
dynamics of the turbulent state (Doohan et al. 2021). It is also worth pointing out that
all these solutions have often been related to the hairpin vortex dynamics proposed by
Adrian (2007), and, interestingly, the same flow structure was also observed in the study
of the nonlinear optimal growth for turbulent channel flow at low Reynolds numbers
(Farano et al. 2017). The analysis here and in Doohan et al. (2021), however, suggests
that the solutions and/or the flow fields of this type would be more precisely related to
the energy transfer from small to large scale through the feeding process.
The unsuccessful dynamical systems description of near-wall turbulence with two

integral length scales of motion can essentially be attributed to the lack of multi-
scale invariant solutions, the computation of which is significantly more challenging.
All invariant solutions presented here, apart from POS0a and POS0b, are equilibrium
solutions, in which the structures of a particular length scale propagate through the
flow domain with constant phase speed. This is a severe restriction for a multi-scale
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solution, where, critically, the mean advection velocity of turbulent fluctuations varies
with both the distance from the wall and the streamwise and spanwise wavelengths (i.e.
the Taylor’s hypothesis; see also del Álamo & Jiménez 2009). It is highly unlikely that
the structures at each integral length scale in such a multi-scale solution would naturally
propagate with the same phase speed (see also the range of values in table 2). Therefore,
the expected form for a multi-scale invariant solution in the present two-scale system
would be a periodic (or quasi-periodic) orbit, and equilibrium solutions more naturally
capture structures at a single integral length scale. Accordingly, to the best of the authors’
knowledge, the only multi-scale solution yet discovered is of Rayleigh-Bénard convection
(Motoki et al. 2021), in which there is no mean advection.
In this regard, the approach to computing solutions in this study can be criticised to

certain extent – both the large- and small-scale solutions presented here are obtained
through numerical continuation of equilibrium solutions from the minimal unit. In
particular, the continuation of the large-scale solutions from Ω1 to Ω2 leads to little
development of small-scale structures and the concatenation of the small-scale solutions
explicitly suppresses large-scale structures. However, there is no robust approach to
computing multi-scale solutions. As mentioned in §3.1, several initial conditions generated
by the superposition of some large- and small-scale solutions have been tried in the hope
of computing a multi-scale invariant solutions, but this effort has been unsuccessful.
Furthermore, given the large Lyapunov exponent expected from the multi-scale turbulent
state (i.e. flow at high Reynolds numbers), it is unlikely that any initial condition taken
directly from the turbulent trajectory would easily converge, let alone to a solution with
two integral length scales of motion.
The role of symmetry-reduction in the computation of multi-scale invariant solutions

should also be addressed. Flow symmetries such as the shift-reflect symmetry (3.2) are
often imposed in order to reduce the dimensionality of the turbulent state space and
to aid in the computation of solutions. However, the symmetry imposed must also be
consistent with the flow physics, for example the shift-reflect symmetry captures the
sinuous streak instability mode - the dominant streak breakdown mechanism of the self-
sustaining process (Hamilton et al. 1995; Cassinelli et al. 2017; de Giovanetti et al.

2017). The identification of a flow symmetry that is relevant to multi-scale near-wall
turbulence is particularly difficult, if not impossible, and even in the minimal unit of
multi-scale near-wall turbulence, the solutions representing the large- and small-scale
self-sustaining processes exhibit different symmetry shifts (§3.1) and the feeding from
small to large scales is associated with the mirror-symmetric subharmonic sinuous streak
instability mode. Notwithstanding the great difficulties involved, the applicability of the
notion of the state space in the dynamical systems framework to multi-scale wall-bounded
turbulence will in future rely on the computation of asymmetric multi-scale periodic
orbits.

It should be stressed that the discussion above does not preclude the existence of
multi-scale invariant solutions in shear flows. Such a solution may well exist, as has been
proposed recently in an asymptotic theory (Hall 2018; Blackburn et al. 2021). Here, we
only point out that the computation of such a multi-scale invariant solution from the full
Navier-Stokes equations is computationally very difficult with the methods available, even
in this simple two-scale system, due to vanishing recurrences and large leading Lyapunov
exponents. The difficulties expected in the computation of multi-scale invariant solutions
directly relevant to the turbulent state certainly present an important challenge to the
description of fully-developed turbulence from a dynamical systems perspective. However,
it is worth mentioning that invariant solutions have played a central role in illuminating
the precise mechanisms of transition, together with recent statistical-mechanics-based
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approaches (see Avila et al. 2011; Barkley 2016 and the references therein). From the
perspective of turbulence research, the true value of invariant solutions perhaps lies in the
fact that they are exact solutions to the Navier-Stokes equations. Therefore, they contain
‘precise dynamical information’ that can be analysed with the Navier-Stokes equations
in a completely ‘deterministic’ manner and the present study is one such example that
demonstrates this. Once some physically relevant invariant solutions are found, they
provide significant benefit over the flow fields obtained by various conditional averaging
and/or simple flow visualisations. Indeed, the ambiguity created by statistical averaging
and the arbitrary interpretation of visualised flow fields have blurred the precise physical
mechanisms underpinned by the governing equations, and this has often been a starting
point of some long-standing and non-trivial debates (e.g. the existence and dynamical
relevance of hairpin vortices). In this respect, the computation of invariant solutions
of the Navier-Stokes equations has provided valuable physical insight into the precise
clockwork of turbulence without creating such ambiguity. It is therefore important to
find a way to overcome and/or bypass the difficulty in the computation of multi-scale
invariant solutions for high-Reynolds-number turbulence.
In this regard, it is finally worth pointing out that many known invariant solutions are

often computed from highly simplified systems rather than the full system: for example,
the solutions in the minimal unit (e.g. Waleffe 1998; Jiménez & Simens 2001; Kawahara &
Kida 2001; Gibson et al. 2009b; Willis et al. 2016; Doohan et al. 2019), the large-scale and
self-similar solutions with an eddy viscosity model for turbulent dissipation (e.g. Rawat
et al. 2015; Hwang et al. 2016; Yang et al. 2019) and the time-periodic solution for a
simplified energy cascade (van Veen et al. 2019). Before computing invariant solutions,
each of these studies have first devised a system with a drastically reduced number of
degrees of freedom, but without losing the key dynamics of interest. In a similar vein,
the key to overcoming this challenge may lie in the development of a robust reduced-
order model that can capture the scale interaction dynamics as currently understood.
A similar effort was in fact attempted in the 1980s (e.g. Aubry et al. 1988). Given
modern computing power and the emergence of novel data-driven techniques, it is now
timely to develop a robust reduced-order model that faithfully describes the dynamics of
fully-developed turbulence. Once such a reduced-order model is available, the concepts of
dynamical systems theory such as invariant solutions could be applied, and may overcome
the challenges identified in this work. Our on-going effort is also currently being made in
this direction (Khoo et al. 2021).
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Park, J. S. & Graham, M. D. 2015 Exact coherent states and connections to turbulent

dynamics in minimal channel flow. J. Fluid Mech. 782, 430–454.
Pausch, M., Yang, Q., Hwang, Y. & Eckhardt, B. 2019 Quasi-linear approximation of

exact coherent states in parallel shear flows. Fluid Dyn. Res. 51, 011402.
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