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Persistent oscillatory dynamics in nonequilibrium many-body systems is a tantalizing manifestation of

ergodicity breakdown that continues to attract much attention. Recent works have focused on two classes of

such systems: discrete time crystals and quantum many-body scars (QMBS). While both systems host

oscillatory dynamics, its origin is expected to be fundamentally different: discrete time crystal is a phase of

matter which spontaneously breaks the Z2 symmetry of the external periodic drive, while QMBS span a

subspace of nonthermalizing eigenstates forming an su(2) algebra representation. Here, we ask a basic

question: is there a physical system that allows us to tune between these two dynamical phenomena? In

contrast to much previous work, we investigate the possibility of a continuous time crystal (CTC) in

undriven, energy-conserving systems exhibiting prethermalization. We introduce a long-range XYZ spin

model and show that it encompasses both a CTC phase as well as QMBS. We map out the dynamical phase

diagram using numerical simulations based on exact diagonalization and time-dependent variational

principle in the thermodynamic limit. We identify a regime where QMBS and CTC order coexist, and we

discuss experimental protocols that reveal their similarities as well as key differences.

DOI: 10.1103/PhysRevLett.129.140602

Introduction.—The basic tenet of thermodynamics is that

when a substance contains many constituents, its macro-

scopic behavior can be efficiently described by just a few

variables such as pressure, volume, and temperature.

Microscopic details typically only enter through the

mechanism of dissipation, which accounts for the energy

transfer from the large to the microscopic scale (heating).

Generally, the higher the temperature the faster the relax-

ation of any nongeneric state that possesses some ordering,

such as magnetization, unless the latter is explicitly con-

served by the system’s Hamiltonian.

It therefore came as a surprise when Rydberg atom

experiments [1] revealed long-lived oscillations of an

order parameter in a very high energy density initial state.

The oscillations were subsequently understood to be due

to quantum many-body scars (QMBSs): a dynamically

decoupled subspace, spanned by nonthermalizing many

body eigenstates, which is not protected by any symmetry

[2,3]. This system evades rapid relaxation due to the fact

that QMBS eigenstates form “towers” with (nearly)

equidistant energy spacing. Superpositions of tower states

undergo periodic evolution, therefore avoiding the

dephasing that afflicts generic states. These QMBS towers

can be understood semiclassically [4–8], based on an

analogy with quantum scars of a single particle in a

stadium billiard [9]. Importantly, this behavior was shown

to occur also in higher dimensions [10–12] and in the

presence of certain kinds of perturbations [13–15] includ-

ing disorder [16]. More generally, QMBS subspaces are

now understood to originate from a (restricted) spectrum

generating algebra [17–19], which has been shown to

arise in a number of nonintegrable lattice models [17,20–

29]. As the models are nonintegrable, this represents a

weak violation of the eigenstate thermalization hypothesis

(ETH) [30,31].

A seemingly distinct way of evading the ETH is the

formation of a continuous time crystal (CTC) [32]. In the

CTC phase, the system is in a prethermal state that

corresponds to a near-ground state in the rotating frame,

while being at a very high energy density in the lab frame

[33]. Being at a low temperature in the rotating frame, the

system has the possibility to develop an order parameter,

spontaneously breaking a symmetry which may be unique

to the rotating frame. Eventually, the system is expected to

fully thermalize; however, if both the prethermalization

timescale and the thermalization timescale (corresponding

to full equilibration in the lab frame) increase with the

system size, the result would be a long-lived, quasistatic

ordering in the rotating frame, manifesting as a “rotating”

order parameter in the lab frame.

In this Letter, we address the following question: are

CTC and QMBS distinct mechanisms of ETH breaking?

The two a priori appear different: QMBSs reveal them-

selves for very special initial states, while CTC, being a

phase of matter, is supposed to be characterized by an

order parameter, with the same order parameter configu-

ration (defined down to physically small but microscopi-

cally large volume) possibly originating from very
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different microscopic states. Nevertheless, one might

wonder if underlying the CTC there are scarlike towers

of states that violate the ETH. Below we introduce a long-

range XYZ spin model, experimentally motivated by

systems of trapped ions and polar molecules, which

realizes both QMBS as well as CTC route for evading

the ETH. For sufficiently long-range interactions, our

simulations using infinite matrix product state methods

reveal signatures of spontaneous symmetry breaking in

the thermodynamic limit and the formation of CTC. For

weakly anisotropic couplings and irrespective of inter-

action range, we demonstrate the existence of QMBS.

While the phase diagram contains regimes where CTC

and QMBS coexist, we argue that they are distinct

phenomena and we discuss experimental protocols that

can distinguish between them.

The model and its phase diagram.—Recent experiments

[34–39] have realized discrete time crystals (DTC), which

dynamically break the Z2 Ising symmetry of the Floquet

drive [40–44] (for recent reviews of DTCs, see Refs. [45–

47]). By contrast, here we consider a disorder-free,

undriven XYZ spin model, with anisotropic long-range

couplings and in the magnetic field along the z-axis, given
by the Hamiltonian:

H ¼
1

N

X

i>j

X

ν¼x;y;z

Jν

ji − jjα
σνi σ

ν
j þ hz

X

i

σzi ; ð1Þ

where σνi are the standard Pauli matrices on site i, and α

controls the power-law decay of the interactions. We

assume a 1D chain with open boundary conditions and

divide the interaction couplings Jν with the Kac norm, N

[48], which ensures the energy density is intensive.

Before presenting detailed numerical results on the

model in Eq. (1), we give their summary in Fig. 1. The

dynamical phase diagram is a function of α and two

symmetry-breaking parameters: the anisotropy that leads

to U(1) symmetry breaking, JUð1Þ ≡ jJx − Jyj, and SU(2)

symmetry breaking in the rotating frame, JSUð2Þ≡

jðJx þ JyÞ=2 − Jzj. The field hz is assumed to be fixed

to some large value hz ≫ Jν, and the remaining depend-

ence on Jν and α is sketched. We discuss four main regions

of this phase diagram, labeled in Fig. 1.

(i) The static prethermal theorem [33] shows that a

Hamiltonian of the form H ¼ H0 þ hzZ, with Z ¼
P

j σ
z
j

possessing an integer spectrum, in the limit of large hz, can
be brought into a form Dþ V þ hzZ through a series of

unitary rotations, where D commutes with Z and V is an

exponentially small correction in hz. Thus, for exponen-
tially long times in hz, the dynamics of our model is

governed by an effective prethermal Hamiltonian

Heff ¼ Dþ hzZ, which has a U(1) symmetry generated

by Z. In [48] we explicitly perform the unitary rotation to

first order, finding that the correction terms in V contain α

via a power-law dependence similar to the original

Hamiltonian, with the overall prefactors J2
Uð1Þ=hz,

JUð1ÞJSUð2Þ=hz. It follows that the prethermal phase is

robust, provided JUð1Þ, JSUð2Þ ≪ hz. Moreover, for fixed

hz, numerical scans point to weak dependence of the

prethermal phase on α [48]. Finally, at first order in

1=hz, it follows that the prethermal phase has a stronger

dependence on JUð1Þ than on JSUð2Þ. Thus, the prethermal

region of the phase diagram roughly takes the shape of an

elliptic cylinder, sketched in Fig. 1.

(ii) The CTC phase must be a subset of the prethermal

region where the emergent U(1) symmetry of the effective

Hamiltonian is spontaneously broken. Because of the

Mermin-Wagner theorem, in 1D this can only happen if

the interactions are sufficiently long-ranged [49,50].

Consistent with this, we observe a transition when α ∼

2.5 from a trivial U(1)-preserving phase to a CTC phase.

Thus, we expect the prethermal CTC phase to exist within

the bounded cylindrical region depicted in Fig. 1.

(iii) The robustness of QMBS is determined by how well

the interactions approximately preserve a single tower of

Z eigenstates, which is solely dependent on the model’s

proximity to the isotropic point, Jx ¼ Jy ¼ Jz. At this point

the model possesses SU(2) symmetry irrespective of α,

hence the QMBS region has no α dependence and it is

bounded by two planes perpendicular to the JSUð2Þ axis.

The boundary is sharp as the QMBS behavior diminishes

exponentially with JSUð2Þ [48].

(iv) Finally, the limit α ¼ 0 is a fully connected Lipkin-

Meshkov-Glick (LMG) model [51,52], which can be

described by only a few collective variables if initial states

satisfy permutation symmetry [53–55]. The paramagnetic

state (Jν ≪ jhzj) can be identified with a CTC (Ref. [47]

used a term “mean-field time crystal” to distinguish this

FIG. 1. Schematic summary of the dynamical phase diagram of

the model in Eq. (1) as a function of U(1) symmetry breaking

JUð1Þ, SU(2) symmetry breaking JSUð2Þ and interaction range α.

Within the prethermal regime (yellow), CTC phase emerges for

small α and small JUð1Þ (green). QMBS (red) are independent of α

but require small JSUð2Þ. The solvable Lipkin-Meshkov-Glick

(LMG) limit (α ¼ 0) is shown in gray.
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special type of CTC). In the Ising limit, the thermalization

time is estimated as τth ∼ Nβ=d, where β ¼ min½d − α; ð1þ
dÞ=2� [56]. Thus for d ¼ 1 and α < 1=2, thermalization

time (∼N1−α) is much longer than prethermalization or

order parameter melting time, ∼N1=2 [57,58], both diverg-

ing with system size.

Numerical evidence for CTC.—For large hz, sufficiently
long-range interactions (α > d ¼ 1) and low temperatures,

Fig. 2 shows that a prethermal CTC phase emerges in the

model given by Eq. (1). Provided hz is sufficiently large,

the dynamics is described—up to a timescale exponential

in hz=JUð1Þ—by an effective Hamiltonian Heff ¼ Dþ hzZ

where D is given by [32]

D¼
X

j>i

1

2
ðJxþJyÞ

�

σxi σ
x
j

ji− jjα
þ

σ
y
i σ

y
j

ji− jjα

�

þJz
σziσ

z
j

ji− jjα
: ð2Þ

This effective Hamiltonian has an emergent U(1) symmetry

which is spontaneously broken at low effective temper-

atures for long-range interactions (α≲ 2.5) [50]. To avoid

the challenges of observing spontaneous symmetry break-

ing in finite volume, in Fig. 2 we use time-dependent

variational principle (TDVP) for infinite matrix product

states [59] to directly study the properties of the system in

the thermodynamic limit. The power-law interactions in

Eq. (1) were approximated as a sum of exponential

functions and we used bond dimension χ ¼ 128 and time

step δt ¼ 0.025 (see Ref. [48] for further details).

We restrict to states with a two-site unit cell,

jψð0Þi ¼ ⊗
i
jþi2i−1 ðcosϕjþi2i þ i sinϕj−i2iÞ; ð3Þ

where ϕ ¼ 0 corresponds to spins polarized along the

x-axis. The CTC order parameter is defined as hσþi≡
ð1=2Þ

P

i¼1;2 jhσ
þ
i ij, i.e., we average the absolute expect-

ation value of σþ ≡ ðσx þ iσyÞ=2 over the sites in the unit

cell. This is because, for our initial state, hσþ
2i−1i ¼ 1=2 and

hσþ
2ii ¼ expð−i2ϕÞ=2, thus taking the absolute value allows

us to detect the loss of magnetization due to U(1) symmetry

breaking, rather than phase cancellations within the unit

cell due to the choice of the initial state. We confirm that

for α≲ 2.5 the order parameter hσþi acquires a finite

expectation value in the ground state of D. The local

hz field drives rotations in the x-y plane, causing the

order parameter to oscillate periodically—the anticipa-

ted hallmark of the CTC phase. Figure 2 illustrates this

by the dynamics of DðtÞ≡ hψðtÞjDjψðtÞi (normalized by

the value at t ¼ 0), the von Neumann bipartite entangle-

ment entropy SEðtÞ and the order parameter hσþðtÞi.
Figures 2(a)–2(c) are for the x-polarized (ϕ ¼ 0) initial

state. As hz is increased, the CTC phase is stabilized: D is

well conserved, while hσþðtÞi remains approximately

(a) (b) (c)

(d) (e) (f)

FIG. 2. Signatures of the continuous time crystal. (a) Expectation value of the prethermal Hamiltonian, Eq. (2), in the time evolved

state. The value is normalized by its value at time t ¼ 0. (b) Order parameter hσþðtÞi defined in the text. (c) Entanglement entropy SEðtÞ.
All plots are for the infinite long-range XYZmodel in Eq. (1) with α ¼ 1.13, Jx ¼ −0.4, Jy ¼ −2.0, Jz ¼ −1. The value of the field hz is

indicated in panels (a)–(c), while hz ¼ 1 in panels (d)–(f). The initial state is given by Eq. (3) with ϕ ¼ 0 in (a)–(c), and ϕ ¼
f0; π=6; π=4; π=3; π=2g in panels (d)–(f). Dashed lines in (f) denote the average magnetization cosðϕÞ=2 after the rapid initial relaxation.
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constant. For intermediate hz, D does not decay to zero as

typically seen in periodically driven systems [49]. This is

due to the fact that hz is a parameter in our Hamiltonian,

rather than a driving frequency which pushes the system to

infinite temperature. The fact that hσþðtÞi remains approx-

imately constant implies periodic oscillations in σxðtÞ and
σyðtÞ with a period T ≈ 2π=hz. Because of the asymmetry

between Jx and Jy couplings, hσþðtÞi is not exactly

conserved over time even in the prethermal phase, instead

it oscillates between maxima (minima) when pointing

along the x or y axis. This is also the cause of the small

oscillations observed in D on the prethermal plateau. As

our chosen initial state jψð0Þi is close to the ground state of
Heff (but midspectrum for H), the growth of SEðtÞ is

strongly suppressed for large hz.
At high temperatures, the effective Hamiltonian transi-

tions out of the CTC phase to a trivial disordered phase.

The impact of energy density on the dynamics can be

studied by varying ϕ in Eq. (3) to increase the energy

density of the initial state. Dynamics for various choices of

ϕ can be seen in Figs. 2(d)–2(f). These states are spread

through the spectrum of Heff , with Dð0Þ=N ≈ f−0.35;
−0.26;−0.15 − 0.05; 0.05g, respectively. For all these

states, D is well conserved, thus we remain in a prethermal

phase. However, the increase in energy density means that

the prethermal Gibbs state eventually becomes a high-

temperature state and CTC order is lost. This is accom-

panied by hσþðtÞi decaying to zero and faster growth

of SEðtÞ.
Many-body scars via “tunnels to towers.”—Close to the

isotropic point Jx ¼ Jy ¼ Jz, we find QMBS arise in the

model (1) due to an approximate “tunnels-to-towers”

mechanism [19]. The Z field term in the Hamiltonian in

Eq. (1) possesses a spectrum generating algebra with

respect to the raising operator of the standard SU(2)

representation, ½Z; σþ� ¼ 2σþ. This trivially guarantees

the eigenstates of Z form equidistant “towers.” Taking Z,
one can define a Hamiltonian by adding some additional

term, specially chosen so as to preserve only a single tower

of eigenstates of Z as eigenstates of the full Hamiltonian,

while generically mixing other towers such that the result-

ing model is nonintegrable [19]. The preserved tower of

eigenstates is found to be QMBS eigenstates. For example,

they have subthermal entanglement entropy and coherent

dynamics in all observables can be witnessed by preparing

initial states with dominant support on the scarred sub-

space. Previous constructions of scarred Hamiltonians of

this form have preserved a single tower of eigenstates

exactly, in the sense that they remain exact eigenstates of

the full Hamiltonian and therefore remain equidistant in

energy. Sufficiently close to the isotropic point of the

Hamiltonian in Eq. (1), these conditions are satisfied

approximately (in [48] we quantify this). In this sense, a

set of QMBS eigenstates are found in the spectrum of the

Hamiltonian, which are approximately equidistant in

energy and resemble some subset of exact eigenstates of

Z. These QMBS eigenstates require weakly broken SU(2)

symmetry and their presence is largely independent of α.

In Fig. 3 we demonstrate the existence of QMBS

eigenstates by exact diagonalization of a N ¼ 16 site chain.

We consider couplings close to the isotropic point,

Jx ¼ −0.8, Jy ¼ −1, and Jz ¼ −0.95. In Figs. 3(a) and

3(b) we plot the overlap of eigenstates with the x-polarized
state [ϕ ¼ 0 in Eq. (3)], for both long-range (α ¼ 1.13) and

short-range (α ¼ 3) models. In both cases, we see a top

band of scarred eigenstates and note they resemble the large

spin SU(2) basis states in the z-direction jS ¼ N=2; mi.
These are precisely the eigenstates of Z which are approx-

imately preserved as eigenstates of the full Hamiltonian.

We note that in sectors with smaller total S, the towers of Z
eigenstates no longer accurately describe the eigenstates

of the full Hamiltonian (e.g., for the Néel state in the

x-direction there are no visible towers). As the x-polarized
state has dominant support on the QMBS eigenstates which

are approximately equidistant in energy, it follows that

initializing the system in this state results in a periodic

trajectory in the Hilbert space, demonstrated by the revivals

in quantum fidelity, fðtÞ ¼ jhψð0ÞjψðtÞij2, in Fig. 3(c). We

confirm that the nonergodic dynamics from such initial

(a) (b)

(c) (d)

FIG. 3. Quantum many-body scars near the isotropic limit of

the model in Eq. (1), with Jx ¼ −0.8, Jy ¼ −1, Jz ¼ −0.95, hz ¼
3 and system size N ¼ 16. The initial state jψð0Þi is x-polarized
[ϕ ¼ 0 in Eq. (3)]. Top row: Eigenstate overlap with jψð0Þi for
both long-range (a) and short-range (b) models. In both cases, the

top band of eigenstates are the QMBS eigenstates, which are

well approximated by maximal-spin SU(2) basis states in the

z-direction, denoted by diamonds. (c) Quantum fidelity revivals

from the initial state jjψð0Þi, for both long- and short-range

models. (d) Finite-size scaling of the fidelity density − lnðf0Þ=N,
where f0 is the height of the first fidelity revival. The fidelity

density, was obtained using finite TDVP with, bond dimension

χ ¼ 300 and time step δt ¼ 0.02.
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states persists in the thermodynamic limit by performing

finite-size scaling of the fidelity density − lnðf0Þ=N, where
f0 is the amplitude of the first fidelity revival. The fidelity

density in Fig. 3(d) converges to a value much smaller than

ln(2), expected for a random initial state in a thermalizing

system. The extrapolated value is of the same order for both

long- and short-range models, indicating the persistence of

ergodicity breaking due to QMBS.

Conclusions.—We demonstrated that a long-range inter-

acting XYZ spin model in a magnetic field realizes two

types of weak ergodicity breaking phenomena—a CTC

phase and QMBS states—allowing us to controllably tune

between them by varying the interaction anisotropies.

While generally distinct phenomena, QMBS and CTC

coexist when both JUð1Þ and JSUð2Þ are small, as indicated

in Fig. 1, raising interesting questions about their distin-

guishability in that regime. A possible intertwining of

QMBS with discrete, rather than continuous, time crystal

was explored in recent works [12,60], which studied

QMBS in the presence of external periodic driving. It

was found that when the drive period is approximately half

of the QMBS revival time, the QMBS can be stabilized,

while avoiding thermalization due to the same principles

that suppress thermalization in our case for large hz. The
interplay is subtle: the ideal drive pulses lead to a complete

cancellation of the Floquet Hamiltonian, such that all initial

states revive [60]. Imperfect driving leads to nontrivial

dynamics, which—surprisingly—tends to better preserve

some QMBS than generic states. There is a very rich

phenomenology that is being uncovered in this setting but

many questions regarding the stabilization mechanism and

sensitivity to the initial state remain open [61,62].

Our results on the undriven XYZ model suggest that

CTC and QMBS can be distinguished by the quench

dynamics from different initial states. QMBS occur for

initial states that have a large overlap with the large-S spin

sector (such as the x-polarized state), regardless of energy

density. The lifetime of the scarring revivals is exponen-

tially sensitive to JSUð2Þ. Moreover, QMBS place stronger

constraints on the dynamics, leading to the wave function

fidelity revivals, in addition to the oscillations of a local

order parameter. In contrast, the CTC manifests for initial

states that have low energy density with respect to D, but

not necessarily large support on a large-S spin sector.

Hence, CTC is expected to persist for other initial states,

such as the two-site unit cell states in Eq. (3), as long as

those are below the critical energy density with respect to

D. The CTC oscillations depend weakly on JSUð2Þ but their

lifetime is exponentially long in hz=JUð1Þ. In future work, it

would be interesting to analyze the behavior of CTC for

initial states beyond period 2, e.g., the spiral states recently

used in Ref. [63], as well as possible realizations of CTC

and QMBS in local models in higher dimensions.
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