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Composable end-to-end security of Gaussian quantum networks with untrusted relays

Masoud Ghalaii,∗ Panagiotis Papanastasiou,∗ and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, United Kingdom

Gaussian networks are fundamental objects in network

information theory. Here many senders and receivers

are connected by physically motivated Gaussian channels

while auxiliary Gaussian components, such as Gaussian

relays, are entailed. Whilst the theoretical backbone of

classical Gaussian networks is well established, the quan-

tum analogue is yet immature. Here, we theoretically

tackle composable security of arbitrary Gaussian quan-

tum networks (quantum networks), with generally un-

trusted nodes, in the finite-size regime. We put forward

a general methodology for parameter estimation, which is

only based on the data shared by the remote end-users.

Taking a chain of identical quantum links as an example,

we further demonstrate our study. Additionally, we find

that the key rate of a quantum amplifier-assisted chain

can ideally beat the fundamental repeaterless limit with

practical block sizes. However, this objective is practically

questioned leading the way to new network/chain designs.

Introduction
− log2 (1 − 𝜂), where 𝜂 is the channel’s transmissivity, is

the maximum fundamental rate, in bits, at which two distant

parties can distribute quantum bits, entanglement bits, or se-

cret bits. This is known as the Pirandola-Laurenza-Ottaviani-

Banchi (PLOB) bound and holds for any point-to-point pro-

tocol of quantum communication [1]. Since the discovery of

PLOB, vast efforts have been made to break its hindrance,

e.g., by using quantum repeater chains [2, 3]. In fact to out-

class the PLOB bound, it is necessary to insert in-the-middle

quantum stations, which can also be set out in a non-chain

configuration to build a quantum network withal. Thus, one

ultimate goal is not only to surpass the PLOB bound, but

also to branch out a network of quantum links that would

enable simultaneous secure communication or key distribu-

tion between more than just a few pairs of users [4]. Such

telecommunication networks can further develop to provide

us with a future quantum internet for quantum-secure com-

munications [2, 3] and distributing quantum computing [5–8].

Gaussian networks, inter alia, are at the core of classical in-

formation theory, upon which concepts of communication net-

works have been developed [9]. Such networks, e.g., a large

network of optical fibre links, have been studied and evolved

in response to our continuous demand for data communica-

tions. They, as the name suggests, enjoy Gaussian signal as-

sumptions and Gaussian links, where random variables with

Gaussian probability density functions describe the channel

noise. In addition, any other component, e.g., repeater re-

lays, that makes the process of data communications possi-

ble or alleviates it is Gaussian, such that none of the shared

∗ These authors have contributed equally to this work.

FIG. 1. Quantum communication network. Two arbitrary end-

users, Alice (𝐴) and Bob (𝐵), can communicate through diverse, not

necessarily direct, routes that extend across intermediate untrusted

sender-receiver pairs that act as relays (yellow nodes). Two possi-

ble routes are highlighted in red. The quantum network is Gaus-

sian if the operations at the nodes and the channels associated with

links are all Gaussian, so that the final state shared by Alice and

Bob is Gaussian. More weakly, we also include the possibility of

non-Gaussian post-selection operations which however project into

a Gaussian state when they are successful (see text for more details).

variables/distributions between users of the network becomes

non-Gaussian. In this work, we put our focus on Gaussian

quantum networks that benefit from Gaussian input signals,

Gaussian quantum channels, and auxiliary Gaussian quan-

tum devices. In particular, we study end-to-end security be-

tween two arbitrary users of a Gaussian quantum network who

are generally linked via untrusted nodes (see Fig. 1). More

weakly, as we explain later, we also admit some post-selection

operations that are conditionally Gaussian, i.e., projecting into

a Gaussian state when they are successful (discarding their

output otherwise).

While examining a quantum network, not only is it funda-

mental to compute the relevant communication rates between

arbitrary users, namely upper, lower and achievable rates, but

it is crucial to evaluate composable key rates with a finite num-

ber of uses of the network. Evaluating the rate is possible

by analysing the data statistics that the parties would obtain

through the so-called parameter estimation (PE) [10–12]. For

a typical single link, PE analysis, which commonly refers to

estimating channel parameters (loss and noise), is relatively

straightforward [13, 14]. However, PE can become very chal-

lenging in large-scale quantum networks. For these reasons,

we do not consider estimating channel parameters; instead, we

use PE in a more general sense by directly estimating measur-

able quantities, e.g., the covariance matrix of the end parties.

In the context of continuous-variable (CV) quantum key

distribution (QKD), we show that any two users of a Gaussian

quantum network can successfully extract composable secret

keys from their local shared data, together with any classical
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public data that they might receive from other stations of the

network. As mentioned above, an important point to remark

is that we allow the network to deviate from being Gaussian,

including the possibility to be conditionally Gaussian, i.e., de-

scribed by a Gaussian state only after the success of a non-

Gaussian, post-selection mechanism (feature which is needed

for effective entanglement distillation [15–19]). In particular,

this happens when non-deterministic quantum amplifiers are

in use, where they sporadically fail to amplify [20–25]. We

further investigate the use of such amplifiers in a linear quan-

tum chain.

Results and Discussion

Gaussian quantum networks. We consider the scenario

where Alice and Bob are two arbitrary users of a quantum

network, as sketched in Fig. 1; their objective is to remotely

share a secret key. Let us assume that there are 𝑀 − 1 stations

that relay signals from Alice to Bob through a specific route

that is made of 𝑀 basic links. As Fig. 2a schematically illus-

trates, an arbitrary route can be seen as a chain of quantum

links. It is also assumed that a powerful eavesdropper (Eve)

may operate the intermediate stations and also store all the

lost portion of the signals into her quantum memories (QMs).

The relay stations may consist of several components. For in-

stance, they can be equipped with entanglement sources, such

as two-mode squeezed vacuum (TMSV), quantum amplifiers,

quantum memories, and a classical communication system;

see Fig. 2b. Nonetheless, the key role of the relays is to con-

nect adjacent links via joint Bell measurements, whose out-

comes 𝛾𝑖 (for 𝑖 = 1, . . . , 𝑀 − 1) are aired to Alice and Bob

for local data processing. Note that, in case the relays operate

differently from expected, this would reflect in high amount

of noise in Alice and Bob’s shared data.

Figure 2c captures the role of the network in terms of quan-

tum teleportation-stretching formalism [1]. The network pro-

vides end-parties, Alice and Bob, with a bipartite (entangled)

Gaussian state, which we call the network state 𝜌𝐴′𝐵′′ | {𝛾𝑖 }, be-

fore 𝛾𝑖’s corrections are applied. We conventionally assume

that the initial single links are of zero mean. However, execu-

tion of a relay, e.g., 𝑅1, displaces the mean value of the state

by an amount 𝑓 (𝛾1) proportional to 𝛾1. In order to ‘correct’

this a displacement operation, e.g., 𝐷1, should be applied ac-

cordingly. Similar displacement operations are applied due

to other relay outcomes that can all be postponed to one end.

Thus, in this way, the mean value of the network state after

𝛾𝑖 corrections, now described by 𝜌𝐴′𝐵′ , becomes independent

of the 𝛾𝑖’s (in fact we balance it to zero). Further, since dis-

placements are local operations, the network state will have

a covariance matrix (CM) V𝐴′𝐵′ = V𝐴′𝐵′′ | {𝛾𝑖 }, which is de-

scribed in the normal form

V𝐴′𝐵′ =

(
aI cZ

cZ bI

)
,

{
I := diag(1, 1),
Z := diag(1,−1). (1)

Therefore, the network state supplies Alice and Bob with an

overall two-mode Gaussian state that can be used to imple-

ment different one-way-like communication protocols.

We remark that the Gaussianity assumption can be weak-

ened because of conditioning, or post-selection, where re-

FIG. 2. A quantum communication chain within a network. a, An

arbitrary route between Alice and Bob can be seen as a linear chain

between them that consists of 𝑀 links and 𝑀 − 1 stations (𝑅𝑖’s). b,

Each station can encompass a noiseless linear amplifier (NLA, 𝑔),

a bipartite entanglement TMSV source (𝜇), a couple of QMs, and a

non-ideal Bell detection, whose loss is simulated by a couple of beam

splitters with transmissivity 𝜂B. c, A Gaussian quantum network

provides the end parties with a Gaussian bipartite state, called the

network state 𝜌𝐴′𝐵′ . Displacement operations need to be applied

according to the information received form the stations, as shown

in a. d, The effect of the Gaussian quantum network in c can be

simulated via a one-way Gaussian protocol with an equivalent source

𝜇′, and an equivalent channel, E ′, with loss 𝜂′ and excess noise 𝜉 ′.

lays can actually impose non-Gaussianity on the entire net-

work, yet the system can be assumed conditionally Gaus-

sian. This situation occurs because measurable quantities,

such as CM elements, depend on relay measurement out-

comes, which may vary for different sets of {𝛾𝑖}. This is

similar to post-selection [26, 27] or discrete-alphabet proto-

cols [28, 29] where, for example, the outcome set #1 gives

V
#1
𝐴′𝐵′ , while the outcome set #2 gives V

#2
𝐴′𝐵′ that differs from

the CM associated to that of set #1. Thus, one needs to build

an average rate over all possible outcome sets. Therefore, the

average state/CM would be non-Gaussian. Nevertheless, if in

such situations we choose to discard the unsuccessful events,

then the post-selected state between Alice and Bob is Gaus-

sian.

Security reduction. It is conceivable that the types of at-

tack that eavesdroppers may apply on a multi-link quantum

network can be more complex than the way they would attack

conventional one-link protocols. For instance, in a quantum

network a subset of the links that form the route from Alice to

Bob may have correlations. In fact, Eve may adapt her attack

on a link based on the information she has gained while at-

tacking other, previous links. This generally defines a collec-

tive network attack, which has memory between the links but

is memory-less between different uses of the network. Such

inter-link correlations are taken into account in the network

state or, alternatively, its corresponding CM. This is due to the

fact that we consider only the end-to-end Gaussian CM for the

analysis.1 As a requirement for our analysis, it is important to

1 Note that we assume that the route is fixed. In the case it changes use-by-

use, a more general attack would involve correlations between all the links

that are overall used over multiple uses of the network.
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note that the CM of the network state is in normal form of

Eq. (1).

Nevertheless, there may also be correlations between sub-

sequent uses of a route, which defines an even more power-

ful and general, coherent attack. Hence, we need to prove

the security when the eavesdroppers develop inter-use corre-

lations, i.e., when they apply a coherent attack. Our solution

is to tackle this problem by reducing the Gaussian quantum

network security to that of one-way protocols, for which op-

timality of collective Gaussian attacks has been proven [30].

In this way, we reduce the complexity of the problem and ex-

tend the security analysis under collective attacks to coherent

attacks.

Assume that the end-nodes of the network, 𝐴′ and 𝐵′, re-

main in the Gaussian regime. We can seek for equivalent pa-

rameters of a single Gaussian channel that does the same job.

In fact, the overall function of a Gaussian quantum network

can be reduced to, and modelled by, a one-way Gaussian chan-

nel, with loss 𝜂′ and excess noise 𝜉 ′, applied to an equivalent

source with modulation 𝜇′. See Fig. 2d, where we have that

such equivalent parameters builds up a CM in normal form

V
eqv

𝐴′𝐵′ =

(
𝜇′I

√︁
𝜂′(𝜇′2 − 1)Z√︁

𝜂′(𝜇′2 − 1)Z 𝜂′𝜇′ + 1 − 𝜂′ + 𝜉 ′I

)
. (2)

It is straightforward to find the elements of the CM of the

equivalent state, given by Eq. (2), in the terms of the triplet

(a, b, c) in Eq. (1) that describes the network state 𝜌𝐴′𝐵′ ; one

can obtain



𝜇′ = a,

𝜂′ = c2 (a2 − 1)−1,

𝜉 ′ = (a + 1) (b − 1) − c2.

(3)

Note that V
eqv

𝐴′𝐵′ is bona fide, i.e., 𝜇′ ≥ 1, 𝜂′ ≤ 1, and 𝜉 ′ ≥ 0,

when the CM in Eq. (1) is bona fide, i.e., a, b ≥ 1 and c ≤
min

{√
a2 − 1,

√︁
(a + 1) (b − 1)

}
[31].

This means that the original collective network attacks can

be extended to coherent network attacks where correlations

could happen between different uses of the network. Con-

sequently, the optimality of Gaussian attacks in typical one-

way Gaussian protocols is extended to Gaussian quantum net-

works. It is therefore a reasonable assumption to consider

Gaussian eavesdropping which is the optimal strategy in the

presence of protocols based on Gaussian resources. For this

reason, for our security analysis and composable study we

consider network attacks that are collective and Gaussian.

Emulation of sending- and receiving-only relays. It is

conceivable that a node in a quantum network is exploited to

only send/share or only receive/measure quantum signals. In

order to keep our study as general as possible, especially when

it comes to parameter estimation, we shall simulate such spe-

cific relays that include either a relay with some outcome 𝛾 or

a source with some variance 𝜇 to feed its adjacent relays; see

Fig. 3a1. Assume three single links that are connected via two

Bell detection modules. The emulation can be performed by

(i) applying the second relay on modes 𝐵 and 𝑐, which pro-

duces the outcome 𝛾2, (ii) applying a correction/displacement,

𝐷2, at the first relay on mode 𝑏, which subsequently teleports

mode 𝑐 to 𝑏′, and (iii) taking the limit 𝜈 → ∞. As sketched in

Fig. 3a2, we show that the above steps would reduce the two

‘full’ relays, which include a Bell measurement as well as a

TMSV source, to a receiving-only and a sending-only relays.

For convenience, let us describe the situation in terms of the

teleportation-stretching technique, developed in [1], as shown

in Fig. 3b1 and b2. We shall show that in both cases, after

taking the limit 𝜈 → ∞, the resultant CM for modes 𝑏′𝐶 ′ is

the same. By assuming that E is a thermal-loss with transmis-

sivity 𝜂 and noise at channel output 𝜉, we see that the scheme

in Fig. 3b2 gives

V
b2
𝑏′𝐶′ =

(
𝜇I

√︁
𝜂(𝜇2 − 1)Z√︁

𝜂(𝜇2 − 1)Z 𝜂𝜇 + 1 − 𝜂 + 𝜉I

)
. (4)

With a bit of math one can show that the execution of the relay

in Fig. 3b1 gives

V
b1
𝑏′𝐶′ =

©«
𝜇 − 𝜇2−1

𝜇+𝜈 I

√
𝜂 (𝜇2−1) (𝜈2−1)

𝜇+𝜈 Z√
𝜂 (𝜇2−1) (𝜈2−1)

𝜇+𝜈 Z 𝐹I

ª®¬
, (5)

𝐹 =
𝜇(𝜂𝜇 + 1 − 𝜂 + 𝜉) + (1 − 𝜂 + 𝜉) + 𝜂

𝜇 + 𝜈 .

One can then verify that V
b1
𝑏′𝐶′ equals the CM in Eq. (4) in the

limit 𝜈 → ∞.

In Fig. 3c1 and c2, we further verify that corrections based

on broadcasted 𝛾𝑖’s can be postponed to one end (here to

the end-mode ‘𝑎’). We do so by checking the equivalence

when the displacement operator 𝐷2 can be postponed and

performed along with 𝐷1. The equivalence can be verified

through checking both CMs and mean values. From upper

and lower panels in Fig. 3c, it is clear that the equality holds

for CMs since both scenarios start with the same resources

and channels, on which only local displacement operations,

which do not change the CMs, are applied.

For mean values, we start by the fact that initial mean value

vector for the four involved modes is zero, i.e., x𝐵′𝑏𝐴𝑎 = 0.

Let us start from Fig. 3c1. The displacement 𝛾2 := (𝑞𝛾2
+

𝑖𝑝𝛾2
)/
√

2 implies that x
′
𝐵′𝑏𝐴𝑎 = (0 0 𝑞𝛾2

𝑝𝛾2
0 0 0 0)T, which

after applying the balanced beam splitter of the Bell detection

varies to

x
′′
𝐵′𝑏𝐴𝑎 =

(
0 0

𝑞𝛾2√
2

𝑝𝛾2√
2

−𝑞𝛾2√
2

−𝑝𝛾2√
2

0 0
)T

. (6)

Next, it can be shown that the execution of homodyne de-

tection modules, with the outcomes 𝑞𝛾1
and 𝑝𝛾1

that forms

𝛾1 := 𝑞𝛾1
+ 𝑖𝑝𝛾1

, gives the mean value vector for the mode 𝑎

x
′′′
𝑎 = Γ

(
𝑞𝛾2

+
√

2𝑞𝛾1

𝑝𝛾2
−
√

2𝑝𝛾1

)
, with Γ :=

√︁
𝜂(𝜇2 − 1)

𝜈 + 𝜂(𝜇 − 1) + 1 + 𝜉 .

(7)

Then the parties apply the following displacement depen-

dent on the outcomes

𝐷1 (𝑞𝛾1
, 𝑝𝛾1

) = Γ

(
−
√

2𝑞𝛾1

+
√

2𝑝𝛾1

)
, (8)
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FIG. 3. Emulation of specific nodes of a quantum network. a1 and a2, We emulate receiving-only and sending-only nodes. b1 and b2, We

sketch the teleportation stretching form of a1 and a2, respectively. c1 and c2, We show that all displacement operations can be postponed to

one, receiver end (see main text). Here, E and 𝐷 represent a thermal-loss channel and single-mode displacement operation, respectively. (see

main text for explanation).

and obtain the mean of mode 𝑏 (rescaled by the factor Γ)

x
up
𝑎 = Γ

(
𝑞𝛾2

𝑝𝛾2

)
. (9)

In Fig. 3c2, after applying the Bell detection module, with

outcomes 𝑞′𝛾1
and 𝑝′𝛾1

, we have that

x𝑎 =

√
2Γ

(
𝑞′𝛾1

𝑝′𝛾1

)
; (10)

hence, we apply the displacement 𝐷 ′
1
(𝑞′𝛾1

, 𝑝′𝛾1
) to obtain

x
′
𝑎 =

(
0

0

)
. (11)

One can show that the mean value vector for the mode 𝑎 after

the displacement 𝐷 ′
2
(𝑞′𝛾2

, 𝑝′𝛾2
) is given by

x
down
𝑎 =

(
𝑞′𝛾2

𝑝′𝛾2

)
, (12)

whose entries can be tuned so that x
down
𝑎 = x

up
𝑎 .

Note that we can define a “network number,” 𝑆net, which

tells us how a generic network is different from a fully de-

signed network whose nodes are all sending-receiving. Pre-

cisely, the number 𝑆net accounts for the number of only-

receiving plus only-sending nodes. A fully designed network

then has 𝑆net = 0. Note also that, as described in Fig. 3, such

nodes always appear in pairs, such that 𝑆net is an even num-

ber, the reason being directionality of the generated signals

as well as network’s symmetry. In fact, like an entanglement

source that feeds the two ends of a single link, the function

of the network is to distribute entanglement towards both far-

ends. Installing nodes that result in 𝑆net being an odd num-

ber, would break the directionality, and the symmetry, which

therefore breaks off the links of the network.

Parameter estimation. The outcomes of the relays are bi-

dimensional Gaussian variables 𝛾𝑖 = (𝑞𝛾𝑖 , 𝑝𝛾𝑖 )𝑇 , which are

taken into account by Alice and Bob to post-process their local

variables. Let us focus on the 𝑞-quadrature for the next deriva-

tions since equivalent steps hold for the 𝑝-variable. To sim-

plify the derivations, we in fact assume that 𝑞 and 𝑝 quadra-

tures are not mixed by the eavesdropper so that they can be

treated as independent variables. (This is a reasonable proto-

col assumption; extension is just a matter of technicalities).

In this work we assume that both Alice and Bob apply het-

erodyne measurements on the end-to-end modes 𝐴′ and 𝐵′

with outcomes 𝑧𝐴 := (𝑞𝐴, 𝑝𝐴) and 𝑧𝐵 := (𝑞𝐵, 𝑝𝐵), respec-

tively, to establish a secure key. By assuming that the relays

work properly and that the quadratures follow a normal distri-

bution, we can write the variables that build the raw key for

Alice and Bob, respectively, as

𝑞𝑥 =𝑞𝐴 −
𝑀−1∑︁
𝑖=1

𝑢𝑖𝑞𝛾𝑖 , (13)

𝑞𝑦 =𝑞𝐵 −
𝑀−1∑︁
𝑖=1

𝑣𝑖𝑞𝛾𝑖 , (14)

where 𝑢𝑖’s and 𝑣𝑖’s are real numbers.2 For security reasons,

we require 𝑞𝑥 and 𝑞𝑦 to be uncorrelated with the public vari-

ables 𝑞𝛾𝑖 ’s that are known to Eve, i.e., 〈𝑞𝑥𝑞𝛾𝑖 〉 = 0, which

2 In a prepare and measure variant, where Alice prepares coherent states,

she generates variable �̄�𝐴 =

(√︃
𝜇−1
𝜇+1 𝑞𝐴,

√︃
𝜇−1
𝜇+1 𝑝𝐴

)
, with 𝜇 = 𝜎2

𝐴
− 1,

where 𝜎2
𝐴

is the variance of the Gaussian modulation of �̄�𝐴. Hence, before

applying Eqs. (13) and (14), one needs to apply a transformation, L =√︃
𝜇−1
𝜇+1 I, on �̄�𝐴 in order to obtain 𝑧𝐴.
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imposes the following constraints

〈𝑞𝐴𝑞𝛾𝑖 〉 =
𝑀−1∑︁
𝑘=1

𝑢𝑘 〈𝑞𝛾𝑖𝑞𝛾𝑘 〉, (15)

from which one can calculate the weights 𝑢𝑖’s (similar rela-

tions hold for 𝑞𝑦 , 𝑞𝐵 and 𝑣𝑖’s).

Now, let us consider and study the sampled data [𝑞𝐴] 𝑗 and

[𝑞𝛾𝑖 ] 𝑗 , for 𝑗 = 1, . . . , 𝑁 , associated with variables 𝑞𝐴 and 𝑞𝛾𝑖 ,

respectively. From these, Alice can calculate the correspond-

ing maximum likelihood estimators

�〈𝑞𝐴𝑞𝛾𝑖 〉 = 𝑁−1
𝑁∑︁
𝑗=1

[𝑞𝐴] 𝑗 [𝑞𝛾𝑖 ] 𝑗 , (16)

�〈𝑞𝛾𝑖𝑞𝛾𝑘 〉 = 𝑁−1
𝑁∑︁
𝑗=1

[𝑞𝛾𝑖 ] 𝑗 [𝑞𝛾𝑘 ] 𝑗 . (17)

Next, to obtain values of the weights 𝑢𝑖’s, she replaces these

values in the set of 𝑀 equalities in Eq. (15). She then contin-

ues with calculating [𝑞𝑥] 𝑗 by replacing the 𝑢𝑖’s, and the data

points [𝑞𝐴] 𝑗 and [𝑞𝛾𝑖 ] 𝑗 , in Eq. (13). Indeed, Bob obtains

similar relations for 𝑞𝑦 and 𝑣𝑖’s.

At this stage the parties are in a position to compute the

classical CM associated to their post-processed data

𝚺 =

(
V̂𝑥 Ĉ𝑥𝑦

Ĉ𝑥𝑦 V̂𝑦

)
, (18)

where V̂𝑥 = diag
(
〈̂𝑞2

𝑥〉,�〈𝑝2
𝑥〉

)
, V̂𝑦 = diag

(
〈̂𝑞2

𝑦〉,�〈𝑝2
𝑦〉

)
, and

Ĉ𝑥𝑦 = diag
(�〈𝑞𝑥𝑞𝑦〉,�〈𝑝𝑥 𝑝𝑦〉) .

For the 𝑞-quadrature we have that (not to mention that the

parties repeat the same process for the 𝑝-quadrature)

〈̂𝑞2
𝑥〉 = 𝑚−1

pe

𝑚pe∑︁
𝑗=1

[𝑞𝑥]2
𝑗 , (19)

〈̂𝑞2
𝑦〉 = 𝑚−1

pe

𝑚pe∑︁
𝑗=1

[𝑞𝑦]2
𝑗 , (20)

�〈𝑞𝑥𝑞𝑦〉 = 𝑚−1
pe

𝑚pe∑︁
𝑗=1

[𝑞𝑥] 𝑗 [𝑞𝑦] 𝑗 , (21)

when 𝑚pe is the number of signals sacrificed for PE.

Note that, in principle, the parties can locally calculate the

values from the estimators V̂𝑥 and V̂𝑦 using 𝑁 data points

while �〈𝑞𝑥𝑞𝑦〉 demands sharing 𝑚pe data points through the

public classical channel. These data can be easily acquired

by Eve and thus must not contribute to the key generation. In

general, the parties optimize the amount of shared data, 𝑚pe,

so as to limit the uncertainty of terms such as �〈𝑞𝑥𝑞𝑦〉 while

still keeping as many samples as possible for the secret key.

The parties can compute an interval, with confidence 1 −
𝜀pe, for the estimated CM from which they derive the worst-

case scenario CM, i.e., the CM that minimizes the key rate

according to the sampled data with a probability larger than

1 − 𝜀pe. This CM is given by

𝚺wc = 𝚺 +
√︄

4𝜅

𝑚pe

(
V̂𝑥 − V̂𝑥+V̂𝑦

2
Z

− V̂𝑥+V̂𝑦

2
Z V̂𝑦

)
, (22)

with 𝜅 = ln(8𝜀−1
pe ). This is calculated by using suitable tail

bounds for the chi-squared distribution (see Methods). It is

valid for any CM of two correlated systems even if the entries

are given theoretically via a model, e.g., 𝑦 =
√
𝜏𝑥 + 𝜖 , with

scale factor
√
𝜏 and variance 𝜎2

𝜖 for the normal variable 𝜖 .

Asymptotic key rate. We define the asymptotic secret key

rate of sharing a key between two arbitrary users of a quantum

network based on the Devetak-Winter rate [32]

𝐾 = 𝛽𝐼 (𝑧𝐴 : 𝑧𝐵 |{𝛾𝑖}) − 𝜒(𝐸 : 𝑧𝑟 |{𝛾𝑖}), (23)

where 𝐼 (𝑧𝐴 : 𝑧𝐵 |{𝛾𝑖}) is the mutual information between 𝑧𝐴
and 𝑧𝐵 and 𝑆(𝐸 : 𝑧𝑟 ) is the Holevo information between Eve’s

system and the reconciliation variable 𝑧𝑟 , with 𝑟 = 𝐴(𝐵) in-

dicating direct (reverse) reconciliation. In this work, we focus

on the reverse reconciliation 𝑟 = 𝐵. By definition, we have

𝜒(𝐸 : 𝑧𝐵 |{𝛾𝑖}) = 𝑆(𝐸 |{𝛾𝑖}) − 𝑆(𝐸 |𝑧𝐵{𝛾𝑖}), (24)

where

𝑆(𝐸 |{𝛾𝑖}) = −tr
(
𝜌𝐸 | {𝛾𝑖 } log2 𝜌𝐸 | {𝛾𝑖 }

)
(25)

is the von Neumann entropy of Eve’s state, 𝜌𝐸 (conditioned

on the knowledge of the 𝛾’s), and

𝑆(𝐸 |𝑧𝐵{𝛾𝑖}) =
∫

d𝑧𝐵𝑝(𝑧𝐵 |{𝛾𝑖})

×
[
− tr

(
𝜌𝐸 |𝑧𝐵 {𝛾𝑖 } log2 𝜌𝐸 |𝑧𝐵 {𝛾𝑖 }

) ]
, (26)

where 𝜌𝐸 |𝑧𝐵𝛾𝑖 is the state conditioned on Bob’s variable 𝑧𝐵
(after the 𝛾’s).

With this in mind, the parties neither know the explicit

description of Eve’s system nor how she interacts with the

links. However, by assuming that Eve purifies the system

between Alice and Bob, such that 𝜌𝐴𝐵𝐸 | {𝛾𝑖 } is a pure state,

it holds that 𝑆(𝐸 |{𝛾𝑖}) = 𝑆(𝐴𝐵|{𝛾𝑖}) and 𝑆(𝐸 |𝑧𝐵{𝛾𝑖}) =

𝑆(𝐴|𝑧𝐵{𝛾𝑖}) [33], where the later equality also exploits the

fact that Bob performs a rank-1 measurement (like heterodyne

detection) therefore projecting the global pure state 𝜌𝐴𝐵𝐸 | {𝛾𝑖 }
into a reduced pure state 𝜌𝐴𝐵 |𝑧𝐵 {𝛾𝑖 }. Since the state 𝜌𝐴𝐵 | {𝛾𝑖 }
is Gaussian, it is characterized by its CM, V𝐴𝐵 | {𝛾𝑖 }. In prac-

tice, this can be estimated by the worst-case quantum CM,

Vwc (compatible with the classical data shared by the parties)

V𝐴𝐵 | {𝛾𝑖 } ≃ Vwc = 𝚺wc − I ⊕ I. (27)

By setting

V𝐴𝐵 | {𝛾𝑖 } :=

(
V𝐴| {𝛾𝑖 } C𝐴𝐵 | {𝛾𝑖 }

C𝐴𝐵 | {𝛾𝑖 } V𝐵 | {𝛾𝑖 }

)
, (28)
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we have that the conditional CM after Bob’s heterodyne is

given by

V𝐴 |𝑧𝐵 {𝛾𝑖 } = V𝐴 | {𝛾𝑖 } − C
⊤
𝐴𝐵 | {𝛾𝑖 }

[
V𝐵 | {𝛾𝑖 } + I

]−1
C𝐴𝐵 | {𝛾𝑖 } .

(29)

Next, from the symplectic spectra 𝜈𝐴𝐵 | {𝛾𝑖 } and 𝜈𝐴 |𝑧𝐵 {𝛾𝑖 },
of V𝐴𝐵 | {𝛾𝑖 } and V𝐴 |𝑧𝐵 {𝛾𝑖 }, we compute the Holevo informa-

tion

𝜒(𝐸 : 𝑧𝐵 |𝛾𝑖) =
∑︁
𝑙

ℎ( [𝜈𝐴𝐵 | {𝛾𝑖 }]𝑙) −
∑︁
𝑘

ℎ( [𝜈𝐴 |𝑧𝐵 {𝛾𝑖 }]𝑘 ),

(30)

where ℎ(𝑥) =
𝑥+1
2

log2
𝑥+1
2

− 𝑥−1
2

log2
𝑥−1

2
. In addition, the

mutual information is given by [34]

𝐼 (𝑧𝐴 : 𝑧𝐵 |{𝛾𝑖}) =
1

2
log2

1 + det V𝐴 | {𝛾𝑖 } + trV𝐴 | {𝛾𝑖 }
1 + det V𝐴 |𝑧𝐵 {𝛾𝑖 } + trV𝐴 |𝑧𝐵 {𝛾𝑖 }

.

(31)

Therefore, the parties have calculated a modified asymp-

totic key rate that encompasses the worst-case scenario given

the sampled data. This is correct up to an error 𝜀pe and is

calculated from Alice’s and Bob’s remote, shared, data that

account for the relay outputs 𝛾𝑖’s without any assumption on

the structure of the intermediate channels. To put it more pre-

cisely, the rate should be re-scaled in a way to account for

the number of uses sacrificed for parameter estimation. We

discuss this and other aspects in detail shortly.

Let us also remark that in all the derivation above, we as-

sume that the conditioning associated with the 𝛾𝑖’s create the

same conditional CM for the shared state regardless of the ac-

tual values of 𝛾𝑖’s. This makes sense only under the Gaussian

assumptions for the network, but this is still true even in the

presence of NLAs, where the network is conditionally Gaus-

sian.

Composable finite-size key rate. The security of Gaussian

quantum networks can be further extended by considering

finite-size correction terms dependent on small failure prob-

abilities of different processes of the protocol. Over a chosen

route of the network, Alice and Bob would share the follow-

ing classical-quantum state between themselves and Eve, who

is assumed to perform a collective Gaussian attack,

𝜌𝐴𝐵𝐸 =

∑︁
𝑘,𝑙

𝑝(𝑘, 𝑙) |𝑘〉𝐴〈𝑘 | ⊗ |𝑙〉𝐵 〈𝑙 | ⊗ 𝜌𝐸 (𝑘, 𝑙), (32)

where 𝐸 ≡ 𝐸1𝐸2 . . . 𝐸𝑀 are Eve’s systems; see Fig. 2a. Thus,

at the end of the error correction, Alice and Bob possess cor-

related discretized variables 𝑘𝑛 and 𝑙𝑛 respectively associated

with 𝜌⊗𝑛
𝐴𝐵𝐸

.

As we discussed, the end-to-end CM, either built from sam-

pled data or given by means of a proper model, would suffice

to derive the secret key rate or suitable bounds by using the

notions of coherent information and reverse coherent infor-

mation of bosonic channels [35, 36], as well as the relative

entropy of entanglement [37]. Since in a real-world scenario

the parties exchange only a finite number of signal states, here

the focus is put on composable finite-size analysis, which has

become the touchstone for QKD security, rather than the ulti-

mate bounds. The security of a QKD protocol is desired to be

composable, i.e., the protocol must not be distinguished from

an ideal protocol which is secure by construction [2]. Math-

ematically, a composable security proof can be provided by

incorporating proper error parameters, 𝜀’s, for each segment

of the protocol, namely, error correction (EC), privacy ampli-

fication (PA), smoothing, and hashing [10, 11].

We assume that a total number of 𝑁 Gaussian signals are

measured by Alice and Bob. An amount 𝑛 of these would be

used for key extraction, while the rest 𝑚pe = 𝑁 − 𝑛 are left for

PE, i.e., the evaluation of the CM. Upon successful comple-

tion of the EC procedure, with probability 𝑝ec, the composable

finite-size secret key rate is given by [38]

𝐾 ≥ 𝑛𝑝ec

𝑁

(
𝐾pe −

Δaep√
𝑛

+ Θ

𝑛

)
, (33)

where the higher-order terms read

Δaep :=4 log2 (
√
𝑑 + 2)

√︃
log2 (18𝑝−2

ec 𝜀
−4
s ), (34)

Θ := log2

[
𝑝ec (1 − 𝜀2

s

3
)
]
+ 2 log2 (

√
2𝜀h), (35)

The above equation is valid for a protocol with overall security

𝜀 = 𝜀cor + 𝜀s + 𝜀h + 𝑝ec𝜀pe, where 𝜀pe is the total error prob-

ability associated with PE. Assuming reverse reconciliation,

the hash comparison stage of the finite-key analysis requires

Bob sending
⌈
log2 (1 − 𝜀cor)

⌉
bits to Alice for some proper

𝜀cor (called 𝜀cor-correctness) and bounds the probability that

Alice’s and Bob’s sequences are different even if their hashes

coincide. 𝜀h(s) is the hashing (smoothing) parameter. Conve-

niently one can also define the frame error rate FER = 1− 𝑝ec.

It is also assumed that by using an analog-to-digital conver-

sion, each continuous-variable symbol is encoded with 𝑑 bits

of precision.

The value of 𝐾pe in Eq. (33) can be computed in differ-

ent ways depending on the level of reliability. In practice, one

would use the sampled data to compute 𝐾pe using Eq. (23) and

the worst-case CM shared by the end-users. Remarkably this

is practically the most appropriate choice in the case of multi-

hop quantum networks with untrusted relays. In the presence

of a conditionally Gaussian network, the rate in Eq. (33) mod-

ifies by setting 𝑚 → 𝑚𝑝s where 𝑝s is the probability of suc-

cessful post-selection. As an example, in the following, we

study a quantum repeater chain and compute the composable

finite-size key rate considering the worst-case parameters for

the end-to-end shared CM.

Numerical results. As we mentioned earlier, a route be-

tween two nodes in a quantum network can be seen as a chain

of quantum links. We here apply our general techniques for

quantum networks to study a quantum chain of identical links

and generally-untrusted stations. We note that this is a mere

example and that our methodology is generic that can be ap-

plied to any chain. Subsequently, by assuming the illustration

in Fig. 2, we find the end-to-end CM and compute the com-

posable finite-size key rate.
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Let us assume the chain is made of 𝑀 = 2𝑚 identical links

(we call 𝑚 the repeater depth), each described by a standard

CM

V0 =

(
a0I c0Z

c0Z b0I

)
. (36)

For a typical link (without an NLA), with a TMSV source 𝜇,

channel loss 𝜂 and excess noise 𝜖 (referred to the channel’s

input), we have that a0 = 𝜇, b0 = 𝜂𝜇 + 1 − 𝜂 + 𝜂𝜖 , and c0 =√︁
𝜂(𝜇2 − 1). By using similar techniques introduced in [39],

the end-to-end CM between Alice and Bob, in the case of non-

ideal Bell measurements, is found to have the standard form

V𝐴𝐵 =

(
a𝑚I c𝑚Z

c𝑚Z b𝑚I

)
, (37)

with the following parameters




a𝑚 = a𝑚−1 −
𝜂Bc2

𝑚−1

𝜂B (a𝑚−1+b𝑚−1)+1−𝜂B
,

b𝑚 = b𝑚−1 −
𝜂Bc2

𝑚−1

𝜂B (a𝑚−1+b𝑚−1)+1−𝜂B
,

c𝑚 =
𝜂Bc2

𝑚−1

𝜂B (a𝑚−1+b𝑚−1)+1−𝜂B
.

(38)

As expected, for 𝜂B = 1 the above equations reduce to the

previous results in [39]. Next, we can apply the formula for

finite-size key rate, given in Eq. (33).

In Fig. 4, we plot the secret key rate versus the overall dis-

tance between Alice and Bob. Assuming the CV QKD proto-

col with heterodyne detection, we compute 𝐾pe for the worst-

case scenario CM. The links are thermal-loss channels, which

we simulate by considering optical fibres with the loss fac-

tor of 0.2 dB/km and noise parameter 𝜖 . Here, we choose an

initial modulation at the input of each link, 𝜇, such that the

maximum distance is achieved. It was observed that the com-

posable rate is highly sensitive to the relay loss, 𝜂B, as well

as channel excess noise, 𝜖 . This can be seen in Fig. 4 where

we compare the rates for 𝑚 = 1 and 𝑚 = 2 with that of ideal

chain, with 𝜂B = 1 and 𝜖 = 0.

It is known that Gaussian-only nodes cannot act as quantum

repeaters [40, 41]. Expectedly, Fig. 4 verifies that the end-to-

end rate cannot reach/beat the repeaterless PLOB limit. This

is because, in our example, the relays are Gaussian operation

and as such they cannot do so. That being said, we emphasise

that references [40, 41] are more about entanglement distribu-

tion than QKD. The quantum repeater chain in our paper has

an element of non-Gaussianity in the concept of being post-

selectively Gaussian, e.g., via NLAs.

One can also compare a part of our results to the well-

studied measurement-device-independent (MDI) QKD proto-

cols [42]. In the case where 𝑚 = 1 our chain includes two

links and one intermediate node, which very much resembles

a MDI setup. It is known that the so-called symmetric MDI,

wherein the links are identical and the node sits exactly at the

middle, is poor in delivering a secret key at long distances,

especially for non-zero excess noise and non-ideal relay [43].

Whereas an asymmetric MDI, wherein the node is closer to

one end, can reach longer distances. In our example, we as-

sumed identical links and as such, comparing with symmetric

MDI, we do not expect to reach longer distances.

FIG. 4. Composable key rate per chain use. We consider a

heterodyne-based CV-QKD protocol implemented over a quantum

chain with depths 𝑚 = 1 and 𝑚 = 2. Here, we assume non-ideal Bell

detection modules with 𝜂B = 0.95 and excess noise 𝜖 = 0.005 SNU

for each single link. Other parameters are 𝛽 = 0.98, 𝑁 = 1010,

𝑚pe = 0.1𝑁 , 𝑑 = 25, FER = 0.1, 𝜀s = 𝜀h = 𝜀pe = 10−10, 𝑤 = 6.34

and 𝜀 = 4.5 × 10−10. Rates are compared with an ideal chain (with

𝜂B = 1, 𝜖 = 0 and 𝛽 = 1) and the repeaterless capacity, i.e., PLOB

bound [1].

Now let us revamp the quantum chain to design a quan-

tum repeater. Considering the class of continuous-variable

quantum repeaters [39, 44–48], several proposals have been

suggested to increase the reach of single-link CV QKD pro-

tocols, e.g., by utilizing NLAs [49], which nevertheless can

improve the secure distance for only a few tens of kilome-

tres [49–51]. One idea is that a quantum repeater can essen-

tially be built by a concatenation of such NLA-improved links.

Key elements of any repeater chain include entanglement dis-

tribution, entanglement distillation or purification, and entan-

glement swapping. An NLA-based quantum repeater uses

TMSV sources as an entanglement distribution source and CV

Bell measurements as entanglement swapper device. Other

components such as quantum memories [52, 53] can help to

improve the performance of quantum repeaters, though they

are not essential [54–56]. But due to the non-deterministic na-

ture of NLAs, using QMs in the structure of amplifier-based

repeaters seems indispensable.

To continue, we shall first account for the probabilistic

(post-selection) nature of the NLAs. Take that in total 𝑁 sig-

nals are transmitted, i.e., assume 𝑁 runs. The meaning of

‘run’ is well understood in a single-link protocol. It however

may be slightly more complex in a repeater setup with es-

sentially probabilistic links. Here, by each run we mean that

TMSV sources at all stations simultaneously transmit a signal.

Each signal then has the chance to be successfully amplified

by an NLA placed at the other end of the link. In the follow-

ing, we account for the post-selection effect of the NLAs by

referring to [57], which has studied a similar post-selection

problem in the scope of free-space quantum communications.

Of the overall 𝑁 runs of the protocol 𝑝s𝑁 , where 𝑝s is suc-
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cess probability of the repeater system, will be post-selected

by NLAs. In other words, they post-select a portion 𝑝s𝑁 of

the signals. Hence, assuming that EC is successful with prob-

ability 𝑝ec, an average number of 𝑛𝑝s𝑝ec signals contribute to

the final key and, therefore, Eq. (33) takes the form

𝐾 ≥ 𝑛𝑝s𝑝ec

𝑁

(
𝐾pe −

Δaep√
𝑛𝑝s

+ Θ

𝑛𝑝s

)
. (39)

Before we present numerical results, let us briefly weigh

up the action of NLAs. Firstly, to see if such devices can

be practically useful, we allow some weakening of the Gaus-

sian assumption. This is because the NLA-assisted relays can

actually impose non-Gaussianity, which as pointed out ear-

lier, is necessary to (possibly) outdistance the PLOB. As a

well-known realization, we can take the action of quantum

scissors (QSs), as non-deterministic NLAs, as a guide. Quan-

tum scissors were introduced in [20], and were studied fur-

ther in [24, 25]. While the ideal NLA operation is unphysical,

in the sense that it works only with zero probability of suc-

cess, QSs can act as almost-ideal NLAs under weak signal

assumptions. More precisely, it has been shown that a QS

can almost-noiselessly amplify an input coherent state |𝛼〉 to

|𝑔𝛼〉 with the success probability of a QS 𝑝s = 1/𝑔2, assum-

ing that 𝑔2 |𝛼 |2 ≪ 1 [21, 22, 24]. In the prepare-and-measure

(P&M) protocol, where each link has an initial Gaussian mod-

ulation variance 𝑉𝐴, a similar assumption holds: 𝜂𝑔2𝑉𝐴 ≪ 1,

where we have also take into account the channel loss (We

note that the P&M and entanglement-based protocols are re-

lated via 𝜇 = 𝑉𝐴 + 1.).

In Fig. 5, by using the recursive equations, we plot the

asymptotic secret key rate versus the overall distance between

Alice and Bob. Here we have assumed that an ideal chain

with 𝜂B = 1 and 𝜖 = 0. We encounter a dual optimisation

problem, which we solve numerically by optimizing over in-

put modulation 𝜇 and amplification gain 𝑔, while making sure

that 𝜂𝑔2𝑉𝐴 < 10−2.

We interpret the results as follows. The curves show that a

quantum repeater chain with 𝑚 = 1 (𝑚 = 2) can outperform

the ultimate benchmarks at about 300 km (500 km), before

which the optimized amplification gain is 𝑔 = 1, meaning that

no amplification in needed. Although these results look in-

teresting, when we deviate from the ideal case, i.e., relay loss

𝜂 < 1 and excess noise 𝜖 > 0 (specifically we could not find

a positive rate for, e.g., 𝜂B = 0.999 and 𝜖 = 0.001 SNU).

As discussed for a chain without NLAs, this is partly due to

the absolutely symmetric (MDI-like) design that we assumed

through our example. With a different, possibly asymmetric,

design of the repeater links, it may be possible that one can ob-

tain positive rates (nevertheless, the methodology remains the

same as presented in this manuscript). From this prospective,

our results are the starting point for future studies on NLA-

based quantum repeaters.

Conclusions
In summary, we have analysed the composable end-to-end

security of Gaussian quantum networks in the presence of

generally-untrusted nodes. Assuming two arbitrary end-users

of the network, we established a methodology that enables

FIG. 5. Asymptotic key rate per use of quantum repeater chain.

We consider a heterodyne-based CV-QKD protocol implemented

over a quantum repeater chain with depths 𝑚 = 1 and 𝑚 = 2. Here,

we assume reconciliation efficiency 𝛽 = 0.98, ideal Bell detection

modules with 𝜂B = 1.0, and zero excess noise 𝜖 = 0 for each single

link. Rates are compared with the repeaterless capacity, i.e., PLOB

bound [1], and the single-repeater capacity [4].

them to complete the crucial task of parameter estimation

based only on the data remotely possessed. We have further

investigated how they can use the estimated parameters and

compute the composable key rate in the finite-size regime.

Our study does not need to estimate channel parameters of the

individual links that make the route between the two users.

In fact, other than being Gaussian, it does not make any as-

sumptions about the communication links, stations, and/or

any other components involved.

Furthermore, we backed up our theory by considering the

specific case of a chain of identical quantum links, both

with and without NLAs. In our NLA-assisted design, we

assumed ideal NLAs for two reasons. Firstly, under weak

signal assumptions, they can be assumed Gaussian opera-

tions [20, 24, 25] (a good example of these NLAs are quantum

scissors [20]). Secondly, since they are ideal, in the sense that

they do not add extra noise to the system, they help to ob-

tain the ultimate performance that can be achieved by means

of such designs. While we could show that an NLA-assisted

chain can beat the repeaterless limit, we question its practical-

ity. Compared with MDI protocols, we conclude that, apart

from noise and loss, this is mostly due to symmetric design

of the chain. In addition, for achieving a real-world analysis

one can replace the ideal NLAs with realistic ones. This can

nevertheless obsolete the Gaussianity of the network so this

next step will have to be investigated cautiously.

Methods
The worst-case scenario covariance matrix. In the fol-

lowing, we discuss the confidence intervals for 𝚺. Despite the

fact that this procedure is based on the shared data, it can have

a direct application on a theoretical CM as in Eq. (37) defined

through a specific model of the links between the parties. Our
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analysis relies on tail bounds for the chi-squared distribution.

Assume that random data variables [𝑞]1, . . . , [𝑞]𝑁 from the

variable 𝑞 which follows a normal distribution with unit vari-

ance and zero mean value. Then, the random variable

𝑄 =

𝑚pe∑︁
𝑖=1

[𝑞]2
𝑖 ∼ 𝜒2 (𝑚pe, 0) (40)

follows a chi-squared distribution and allows for the following

tail bounds [58, Lemma 6]

𝑃[𝑄 ≥ 𝑚pe + 2
√
𝑚pe𝜅 + 2𝜅] ≤ exp(−𝜅), (41)

𝑃[𝑄 ≤ 𝑚pe − 2
√
𝑚pe𝜅] ≤ exp(−𝜅), (42)

where 𝜅 is related to the error of PE, 𝜀pe, as we shall see

shortly.

From the samples [𝑞𝑥]𝑖 and [𝑞𝑦]𝑖 , one can define standard

normal variables [q𝑥]𝑖 = [𝑞𝑥]𝑖/
√︁
𝜎2
𝑥 and [py]𝑖 = [𝑝𝑦]𝑖/

√︃
𝜎2
𝑦

so the estimators of 〈𝑞2
𝑥〉 and 〈𝑞2

𝑦〉 can be expressed as

〈̂𝑞2
𝑥〉 := 𝑚−1

pe

𝑚pe∑︁
𝑖=1

[𝑞𝑥]2
𝑖 =𝜎

2
𝑥𝑚

−1
pe

𝑚pe∑︁
𝑖=1

[q𝑥]2
𝑖 , (43)

〈̂𝑞2
𝑦〉 := 𝑚−1

pe

𝑚pe∑︁
𝑖=1

[𝑞𝑦]2
𝑖 =𝜎

2
𝑥𝑚

−1
pe

𝑚pe∑︁
𝑖=1

[q𝑦]2
𝑖 , (44)

where
∑𝑚pe

𝑖=1
[q𝑥]2

𝑖 and
∑𝑚pe

𝑖=1
[q𝑦]2

𝑖 are chi-square variables fol-

lowing the tail bounds:

min

[
𝑚pe∑︁
𝑖=1

[q𝑥]2
𝑖 ,

𝑚pe∑︁
𝑖=1

[q𝑦]2
𝑖

]
> 𝑚pe + 2

√
𝑚pe𝜅 + 2𝜅. (45)

This guarantees that maximum noise is considered based on

the data, and implies that

〈̂𝑞2
𝑥〉 ≥ 〈𝑞2

𝑥〉wc, 〈̂𝑞2
𝑦〉 ≥ 〈𝑞2

𝑦〉wc, (46)

with probability

Pr
[
〈̂𝑞2

𝑥〉 ≥ 〈𝑞2
𝑥〉wc

]
≤ exp(−𝜅), (47)

Pr
[
〈̂𝑞2

𝑦〉 ≥ 〈𝑞2
𝑦〉wc

]
≤ exp(−𝜅), (48)

for the worst-case scenario values

〈𝑞2
𝑥〉wc =𝜎

2
𝑥𝑚pe

−1 (𝑚pe + 2
√
𝑚pe𝜅) + O(1/𝑚pe)

=𝜎2
𝑥 (1 + 2

√︃
𝜅/𝑚pe), (49)

〈𝑞2
𝑦〉wc =𝜎

2
𝑦𝑚pe

−1 (𝑚pe + 2
√
𝑚pe𝜅) + O(1/𝑚pe)

=𝜎2
𝑦 (1 + 2

√︃
𝜅/𝑚pe). (50)

To find the worst-case scenario values for the covariance

term 〈𝑥𝑦〉 we make the following calculations: Combining

the samples [𝑥]𝑖 and [𝑦]𝑖 accordingly, we have that

( [𝑞𝑦]𝑖 − [𝑞𝑥]𝑖)2
=[𝑞𝑦]2

𝑖 + [𝑞𝑥]2
𝑖 − 2[𝑞𝑦]𝑖 [𝑞𝑥]𝑖 , (51)

( [𝑞𝑦]𝑖 + [𝑞𝑥]𝑖)2
=[𝑞𝑦]2

𝑖 + [𝑞𝑥]2
𝑖 + 2[𝑞𝑦]𝑖 [𝑞𝑥]𝑖 , (52)

which leads to the relation

[𝑞𝑦]𝑖 [𝑞𝑥]𝑖 =
1

4

[
( [𝑞𝑦]𝑖 + [𝑞𝑥]𝑖)2 − ([𝑞𝑦]𝑖 − [𝑞𝑥]𝑖)2

]
.

(53)

The variables [𝑞𝑦]𝑖 ± [𝑞𝑥]𝑖 are zero-mean Gaussian variables

with variances 𝑉± since [𝑞𝑥]𝑖 and [𝑞𝑦]𝑖 are assumed to be

Gaussian. More specifically, the variables [𝑞𝑧± ]𝑖 = ( [𝑞𝑦]𝑖 ±
[𝑞𝑥]𝑖)/

√
𝑉± are standard normal variables. Thus by summing

over all the samples and dividing by 𝑚pe, we may express the

estimator of 〈𝑞𝑥𝑞𝑦〉 as

�〈𝑞𝑥𝑞𝑦〉 := 𝑚pe
−1

𝑚pe∑︁
𝑖=1

[𝑞𝑦]𝑖 [𝑞𝑥]𝑖

=
1

4

(
𝑉+𝑚pe

−1

𝑚pe∑︁
𝑖=1

[𝑞𝑧+ ]2 −𝑉−𝑚pe
−1

𝑚pe∑︁
𝑖=1

[𝑞𝑧− ]2

)
, (54)

where
∑𝑚pe

𝑖=1
[𝑞𝑧± ]2 are chi-square distributions following the

tail bounds of Eqs. (41) and (42).

We then impose that the estimator is smaller than its worst-

case scenario value 〈𝑞𝑥𝑞𝑦〉wc, i.e.,

�〈𝑞𝑥𝑞𝑦〉 < 〈𝑞𝑥𝑞𝑦〉wc, (55)

where 〈𝑞𝑥𝑞𝑦〉wc is computed by replacing
∑𝑚pe

𝑖=1
[𝑞𝑧± ]2 with

the tail bounds in Eqs. (41) and (42), i.e., using

𝑚pe∑︁
𝑖=1

[𝑞𝑧+ ]2 < 𝑚pe − 2
√
𝑚pe𝜅, (56)

and

𝑚pe∑︁
𝑖=1

[𝑞𝑧− ]2 > 𝑚pe + 2
√
𝑚pe𝜅 + 2𝜅. (57)

Therefore, up to O(1/𝑚pe), we have

〈𝑞𝑥𝑞𝑦〉wc =
1

4

(
𝑉+

1

𝑚pe

(𝑚pe − 2
√
𝑚pe𝜅)

−𝑉−
1

𝑚pe

(𝑚pe + 2
√
𝑚pe𝜅 + 2𝜅)

)

=
1

4

(
(𝑉+ −𝑉−) − 2

√︃
𝜅/𝑚pe (𝑉+ +𝑉−)

)

=〈𝑞𝑥𝑞𝑦〉 −
√︃
𝑘/𝑚pe (〈𝑞2

𝑥〉 + 〈𝑞2
𝑦〉). (58)

Note that a necessary condition for �〈𝑞𝑥 𝑝𝑦〉 < 〈𝑞𝑥𝑞𝑦〉wc to
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be valid is that either Eq. (56) or Eq. (57) is valid. Therefore

Pr
[�〈𝑞𝑥 𝑝𝑦〉 < 〈𝑞𝑥𝑞𝑦〉wc

]

≤ Pr

[(
𝑚pe∑︁
𝑖=1

[𝑞𝑧+ ]2 < 𝑚pe − 2
√
𝑚pe𝜅

)

∨
(
𝑚pe∑︁
𝑖=1

[𝑞𝑧− ]2 > 𝑚pe + 2
√
𝑚pe𝜅 + 2𝜅

)]

≤ Pr

[(𝑚pepe∑︁
𝑖=1

[𝑞𝑧+ ]2 < 𝑚pe − 2
√
𝑚pe𝜅

)]

+ Pr

[(
𝑚pe∑︁
𝑖=1

[𝑞𝑧− ]2 > 𝑚pe + 2
√
𝑚pe𝜅 + 2𝜅

)]

≤ 2 exp(−𝜅). (59)

Similarly, the parties calculate equivalent relations for

the data from the 𝑝-quadrature. They obtain correspond-

ing equations for 〈𝑝2
𝑥〉wc, 〈𝑝2

𝑦〉wc, and 〈𝑝𝑥 𝑝𝑦〉wc following

Eqs. (49), (50), and (58). In particular, since 〈𝑝𝑥 𝑝𝑦〉wc is a

negative quantity, the corresponding probability of Eq. (59)

will have as an argument an inequality with a different direc-

tion and the minus sign in the corresponding Eq. (58) will be

replaced by a plus sign.

All the worst-case parameters 〈...〉wc define the worst-case

scenario CM 𝚺wc which has the form of Eq. (18) of the main

text but with the replacements 〈...〉 → 〈...〉wc. From the pre-

vious derivations, we see that

𝚺wc = 𝚺 +
√︄

4𝜅

𝑚pe

(
V̂𝑥 − V̂𝑥+V̂𝑦

2
Z

− V̂𝑥+V̂𝑦

2
Z V̂𝑦

)
, (60)

where 𝚺 is exactly the one defined in Eq. (18) of the main

text, together with the associated V̂𝑥 and V̂𝑦 . As we see, the

diagonal (noise) terms are increased whereas the off-diagonal

(correlation) terms are decreased in modulus. This vanishes

in the asymptotic case where 𝑚pe → ∞.

Now, let us assume that at least one of the inequalities in

Eqs. (46) or (55) is true which happens with total probability

≤ 4 exp(−𝜅). Considering the 𝑝 quadrature, the total proba-

bility of failure is ≤ 8 exp(−𝜅). The latter is therefore a bound

on the probability that the CM is worse than the worst-case

expression 𝚺wc (in which case the rate would be less than the

worst-case value). The parties can only allow this to happen

with a very small probability that is less than 𝜀pe. Therefore,

by bounding the previous relation we have that

8 exp(−𝜅) ≤ 𝜀pe, (61)

which defines 𝜅 = ln(8/𝜀pe).
Finally, for calculating the secret key rate of Eq. (39) from

the theoretical CM V in Eq. (37) we apply the inverse trans-

formation of Eq. (27). In this way, we obtain a theoretical

version of the classical CM

𝚺
thr

= [V + (I ⊕ I)] :=

(
V

thr
𝑥 C

thr
𝑥𝑦

C
thr
𝑥𝑦 V

thr
𝑦

)
. (62)

By using this CM, we can calculate the worst-case scenario

theoretical CM

𝚺
thr
wc = 𝚺

thr +
√︄

4𝜅

𝑚pe

(
V

thr
𝑥 −V

thr
𝑥 +V

thr
𝑦

2
Z

−V
thr
𝑥 +V

thr
𝑦

2
Z V

thr
𝑦

)
. (63)

Then, we calculate the worst-case scenario theoretical quan-

tum CM using

V
thr
wc = 𝚺

thr
wc − (I ⊕ I). (64)

The latter is finally used to compute 𝐾pe of the composable

secret key rate in Eq. (39) by following the steps (28)-(31).
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