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A B S T R A C T

Ureteroscopy with laser lithotripsy has evolved as the most commonly used technique for the treatment of
kidney stones. Automated segmentation of kidney stones and the laser fiber is an essential initial step to
performing any automated quantitative analysis, particularly stone-size estimation, that can be used by the
surgeon to decide if the stone requires further fragmentation. However, factors such as turbid fluid inside
the cavity, specularities, motion blur due to kidney movements and camera motion, bleeding, and stone
debris impact the quality of vision within the kidney, leading to extended operative times. To the best of
our knowledge, this is the first attempt made towards multi-class segmentation in ureteroscopy and laser
lithotripsy data. We propose an end-to-end convolution neural network (CNN) based learning framework for
the segmentation of stones and laser fiber. The proposed approach utilizes two sub-networks: (I) HybResUNet,
a hybrid version of residual U-Net, that uses residual connections in the encoder path of the U-Net to improve
semantic predictions, and (II) a DVFNet that generates deformation vector field (DVF) predictions by leveraging
motion differences between the adjacent video frames which is then used to prune the prediction maps. We
also present ablation studies that combine different dilated convolutions, recurrent and residual connections,
atrous spatial pyramid pooling, and attention gate models. Further, we propose a compound loss function that
significantly boosts the segmentation performance in our data. We have also provided an ablation study to
determine the optimal data augmentation strategy for our dataset. Our qualitative and quantitative results
illustrate that our proposed method outperforms state-of-the-art methods such as UNet and DeepLabv3+
showing a DSC improvement of 4.15% and 13.34%, respectively, in our in vivo test dataset. We further show
that our proposed model outperforms state-of-the-art methods on an unseen out-of-sample clinical dataset with
a DSC improvement of 9.61%, 11%, and 5.24% over UNet, HybResUNet, and DeepLabv3+, respectively in the
case of the stone class and an improvement of 31.79%, 22.15%, and 10.42% over UNet, HybResUNet, and
DeepLabv3+, respectively, in case of the laser class.
1. Introduction

Kidney stones present a considerable burden for public healthcare
systems, with the total healthcare expenditure for kidney stones exceed-
ing 2 billion USD annually in the USA alone. It has a recurrence rate
of 10% after one year, 50% over a period of 5–10 years, and 75% over
20 years in most patients (Alelign and Petros, 2018). Kidney stones, also
known as renal calculi, are formed when crystal-forming substances
separate from the urine and accumulate inside the upper urinary tract,
kidney, ureter, or bladder (Alelign and Petros, 2018). Typically, stones
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larger than 5 mm can result in a blockage in the ureter, inducing
severe pain in the abdomen and the lower back (Miller and Lingeman,
2007). Ureteroscopy has evolved into a minimally invasive routine
technique for the treatment of a number of urological conditions such
as urolithiasis, strictures, and hematuria (Reddy and DeFoor, 2010).
Technological advancements have led to the development of low-cost
single-use endoscopes with improved flexibility and image quality. The
data used in this study has been acquired using single-use LithoVueTM
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scope and Lithovue Elite scope (Boston Scientific). The procedure in-
volves inserting a long flexible ureteroscope into the urinary tract
through the urethra passing through the bladder and then into the
ureter and kidney to access the kidney stones. The scope has a working
channel through which tools like laser fiber can be inserted to perform
laser lithotripsy, i.e., stone fragmentation using laser energy. Based on
the size, location, and composition of the stone, the surgeon decides if
the stone requires dusting or fragmentation and sets the laser settings
accordingly (Aldoukhi et al., 2017). Fragmented stones are either left
in place to clear out by themselves over time or extracted using a
special wire basket. The surgeon tries to carefully target the stone
centrally, rather than peripherally, in order to limit the excess heat
generated in the confined spaces of the kidney or ureter (Aldoukhi
et al., 2017). A ureteral stent is usually inserted to allow for the easy
passage of the residual stone debris and fragments. Stones that are
larger than the diameter of the ureter can require additional surgery.
In order to avoid such discomfort to patients and assist clinicians in
performing targeted laser treatment, estimating the size and location
of the kidney stones is important. Automated segmentation is the
primary step to performing any analysis of the stone fragments and
laser fiber. However, compared to standard radiology, very little work
has been published to address the problem of automated segmentation
in ureteroscopy videos. The ureteroscopy and laser lithotripsy data is
significantly different and challenging when compared to the other
endoscopy datasets. The ureteroscopy video has a small-field-of-view
and the signal quality is affected by stone debris originating from stone
fragmentation that obscures the vision in the kidney, making it diffi-
cult for surgeons to perform the stone-treatment procedure efficiently,
thereby adding to the treatment time. Intra-operative bleeding can also
occur during ureteroscopy due to the continuous application of laser
energy, intra-renal pressure, and the trauma caused to the walls of the
ureter (De Coninck et al., 2019). In addition to the aforementioned
challenges, the segmentation task becomes even more complex due to
motion blur arising from unavoidable kidney movements and camera
motion, specular highlights, dynamic background, varying illumination
conditions, artifacts from the turbid fluid inside the target cavity (Rosa
et al., 2011), and high variation in the size, shape, and composition
of the stone. Sample images from our in vitro and in vivo datasets are
shown in Fig. 1 wherein the stone debris and blood are highlighted in
yellow and red rectangles, respectively.

To the best of our knowledge, multi-class segmentation that delin-
eates both stones and the laser fiber in ureteroscopy videos has not been
addressed before. Our previous work (Gupta et al., 2020a) proposed
a combination of UNet and DVFNet (Deformation Vector Fields Net)
framework that used cross-entropy and cross-correlation loss for stone
segmentation only. However, segmentation of laser fiber is also impor-
tant considering the fact that inaccurate laser targeting can result in
undesirable excess heat and extended operative times. The study differs
from the previously published work in three major ways: Improved
semantic segmentation framework using residual connections; novel
loss function designed as a combination of smoothness constraint,
cross-correlation loss, focal loss, and boundary loss; and multi-class
segmentation of stone and laser class. Here, we have experimented
with various combinations of residual and recurrent connections, di-
lated convolutions, ASPP layers, and attention modules to identify
the semantic segmentation network with competitive performance. To
further improve the network performance, we make use of the temporal
information in sub-sequences by incorporating a sub-network called
DVFNet that leverages motion between the adjacent frames to compute
end-to-end deformation vector field (DVF) predictions. This motion
information is then used to prune the segmentation map obtained from
the semantic segmentation network, resulting in a context-aware edge
enhanced multi-class segmentation. The main contributions made in
2

this work can be summarized as follows:
• A novel end-to-end CNN-based learning framework with residual
connections that leverages motion between image pairs to over-
come inevitable challenges of motion blur, stone debris, and other
artifacts, and provide real-time multi-class segmentation of both
stone and laser fiber in ureteroscopy and laser lithotripsy dataset.

• A novel compound loss function is proposed that outperforms
traditional loss functions on ureteroscopy and laser lithotripsy
dataset.

• Experimental validations on diverse and challenging in vitro and
in vivo ureteroscopy datasets demonstrate the effectiveness of our
proposed multi-class segmentation approach.

We compare our proposed method with different state-of-the-art
(SOTA) methods to exhibit the competitiveness of the approach on both
in vitro and in vivo datasets. The experiments on the in vitro dataset
ave been presented in the Supplementary material. We conduct an
xtended out-of-sample test of our network on unseen animal data and
atient data to measure the robustness compared to the SOTA methods.
inally, we provide an extensive ablation study that validates our
etwork choices and data augmentation strategies (see Supplementary
aterial). The type of dataset used in this study has not been well-

xplored in literature and is significantly different and challenging
s compared to the other endoscopy datasets (example images are
rovided in Fig. 1).

. Related work

This section builds on recent advances in semantic segmentation
nd image registration. Of particular relevance are those segmentation
nd registration methods that have been developed for endoscopy
maging.

.1. Segmentation in ureteroscopy and other endoscopy

Here, we first outline different methods that have been proposed
or the segmentation of kidney stones. This is then followed by some
eep learning methods used for segmentation of various abnormalities
n endoscopy imaging.
Segmentation of kidney stones. Several methods such as Region

ndicator with Contour segmentation (RICS) (Tamilselvi and Thangaraj,
012b), modified watershed segmentation (Tamilselvi and Thangaraj,
012a), and squared euclidean distance method (Tamiselvi, 2013) have
een implemented for the detection and segmentation of kidney stones
n ultrasound (US) images. Some studies have also explored techniques
uch as intensity, location, and size-based thresholds (Thein et al.,
018), Fuzzy C-means clustering followed by level set (Akkasaligar
t al., 2017), and CNN (Längkvist et al., 2018) for detection and
egmentation of kidney stones in CT images. Rosa et al. (2011) pro-
osed a region growing algorithm for renal calculi segmentation on
reteroscopy images. However, such approaches require user interven-
ion to define seed pixel, similarity criterion, and a stopping criterion
hich is very challenging to determine due to the nature of variability

n kidney stones. Gupta et al. (2020b) proposed an optical flow-based
egmentation technique for binary segmentation of stone fragments in
reteroscopy. All of these methods either use traditional segmentation
pproaches (Rosa et al., 2011; Tamilselvi and Thangaraj, 2012b; Thein
t al., 2018; Akkasaligar et al., 2017), or use unsupervised machine
earning techniques combined with CNN feature extraction (Längkvist
t al., 2018) resulting in low performance and very large compu-
ational time. Previously we presented an end-to-end convolutional
etwork (Gupta et al., 2020a) that leveraged motion differences be-
ween adjacent frames to further improve the segmentation of stones in
reteroscopy and laser lithotripsy data. However, all of these methods
re limited to stone segmentation and a limited set of stone types.
Segmentation of various abnormalities in endoscopy. Hand-

rafted features have been applied for the segmentation and detec-
ion of various abnormalities such as bleeding (Tuba et al., 2017),
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Fig. 1. Exemplary images for in vitro, in vivo (animal) and in vivo (human) clip sequences with corresponding ground truth masks showing stone and laser fiber. Stone debris and
blood are highlighted in yellow and red rectangles (on left), respectively.
polyps (Prasath, 2017), ulcers (Yuan et al., 2015) and tumor re-
gions (Alizadeh et al., 2014) in endoscopy videos. Various deep-
learning-based strategies on automated segmentation of bleeding zones
in wireless capsule endoscopy (WCE) have been proposed (Jia and
Meng, 2017; Ghosh et al., 2018). Ali et al. (2021) presented a compre-
hensive analysis of various approaches that were submitted to EAD2020
challenge for artifact detection and segmentation and EDD2020 chal-
lenge for disease detection and segmentation. A multi-scale context-
guided deep network based on FCN was proposed (Wang et al., 2020)
for lesion segmentation in endoscopy images of the Gastrointestinal
(GI) tract. Jha et al. (2021) presented a deep learning-based approach
for real-time detection, localization, and segmentation of polyps in
colonoscopy. Several groups have investigated the segmentation of
various abnormalities such as bleeding (Jia and Meng, 2017; Ghosh
et al., 2018) and other lesions (Wang et al., 2020) in endoscopy.
However, as far as we know this work has not yet been applied
to segmentation in ureteroscopy. Previously, we only considered the
segmentation of kidney stones (Gupta et al., 2020a,b) ignoring the need
to segment the laser fiber. It is to be noted that the laser fibers can be of
different colors, sizes, and orientations (see Fig. 1). The presented study
is an attempt towards multi-class segmentation of stone fragments and
laser fiber in ureteroscopy and laser lithotripsy.

2.2. Advances in semantic segmentation

This section presents deep learning architectures used for segmen-
tation with a particular focus on advancements in encoder–decoder
networks applied to different medical image segmentation problems
that are relevant to our work. Zhang et al. (2018) improved the
performance of U-Nets by adapting a deep residual U-Net architecture
(DeepResUNet) that combined the strengths of deep residual learn-
ing (He et al., 2016) and a U-Net architecture (Ronneberger et al.,
2015). Peretz and Amar (2019) suggested a hybrid version of U-Nets
called HybResUNet for brain tumor segmentation wherein residual
3

blocks are only used in the encoding path of the U-Net. Alom et al.
(2018) proposed a recurrent residual U-Net (R2-UNet) that uses re-
current convolutional layers with residual connectivity for improved
medical image segmentation. Several studies have proposed that replac-
ing conventional convolutions in CNN models with dilated convolutions
significantly improves the network performance (Yu and Koltun, 2016;
Hamaguchi et al., 2018; Piao and Liu, 2019). Hamaguchi et al. (2018)
claimed that increasing dilation factors tend to increase the sparsity
of the kernel and fail to aggregate local features. They then proposed
a novel architecture for the segmentation of small object instances in
remote satellite imagery by first increasing the dilation factors and
then decreasing them. Recently, a variant of the residual UNet called
ResUNet-a (Diakogiannis et al., 2020) was proposed where atrous con-
volutions and pyramid scene parsing pooling was incorporated in the
network to improve the segmentation accuracy. Attention mechanisms
have proven to be effective in highlighting only the relevant activations
during training and are computationally efficient. An attention gated
model (Oktay et al., 2018) was proposed and integrated into the
standard U-Net for improved pancreas segmentation. This was also
integrated with R2-UNet (Alom et al., 2018) for improved segmenta-
tion (LeeJunHyun, 2019). Jha et al. (2019) proposed ResUNet++ that
took advantage of residual units, ASPP, and attention units to provide
improved segmentation of colorectal polyps.

Methods for detecting bleeding (Jia and Meng, 2017; Ghosh et al.,
2018), segmentation of various lesions such as ulcer, cancer, etc in
the GI tract (Wang et al., 2020) and polyp segmentation (Jha et al.,
2021) can also be investigated in the context of ureteroscopy. The
ureteroscopy and laser lithotripsy data is significantly different and
challenging as compared to the other endoscopy datasets in numerous
aspects that include: a significant amount of stone, blood, and other de-
bris that obscure the target; dynamic background; high variation in the
appearance, size, shape, and composition of stone; specular highlights;
high motion blur; and additional image artifacts from turbid fluid
inside the target cavity. In this study, we have tried to overcome some
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of these challenges by experimenting with various combinations of
residual and recurrent connections (Peretz and Amar, 2019; Alom et al.,
2018; Diakogiannis et al., 2020), ASPP (Chen et al., 2018), dilated
convolutions (Hamaguchi et al., 2018) and attention gate model (Oktay
et al., 2018) that has been integrated into the base network U-Net to
obtain an improved multi-class semantic segmentation in ureteroscopy
and laser lithotripsy data.

2.3. Image registration

Several studies have shown the complementarity of image registra-
tion and segmentation tasks, meaning the features learned in image
registration can be also used to improve the segmentation result (Qin
et al., 2018; Mahapatra et al., 2018). To tackle limitations of simple
rigid transformations, deformable image registration (DIR) methods are
used for most works in medical image analysis (Cao et al., 2018; Ali
and Rittscher, 2019). Some non-learning based approaches for DIR such
as diffeomorphic Demons (Vercauteren et al., 2009), HAMMER (Shen
and Davatzikos, 2002) and FNIRT (Andersson et al., 2008) have gained
tremendous popularity. However, such traditional methods of image
registration are iterative, time-consuming, and can fail when there is
large variation in appearance between the source and the target images.

Supervised learning-based DIR methods. A CNN-based regres-
ion model was developed for brain MR images to directly learn the
apping between source and target images to their corresponding
VFs (Cao et al., 2018). Yang et al. (2017) also proposed a network

o predict deformable registration followed by its refinement using a
orrection network for brain MR images. However, such neural network
ethods rely on strong supervision for training. The use of supervised
ethods are majorly limited by the fact that they require ground-truth
eformation vector fields (DVFs) for model training which is difficult
o obtain, especially in the case of medical datasets.
Unsupervised learning-based DIR methods. In order to handle

arge non-linear deformations, de Vos et al. (2019) used B-spline for
ransformation and interpolation for the predicted deformation fields
nd presented results on much complex datasets. Here, B-spline does
ot pass through all data points and can often lead to large inter-
olation errors (Ali and Rittscher, 2019). Ali and Rittscher (2019)
resented an unsupervised end-to-end CNN framework for image reg-
stration that used a bicubic Catmul-Rom spline resampler to reduce
he errors in the resampling of deformation fields. They also added
series of deformable convolutional filters to better capture complex

eformations.
Building on the work of Ali and Rittscher (2019), our proposed

ramework involves a sub-network called DVFNet that leverages motion
etween the adjacent frames to compute end-to-end deformation vector
ield (DVF) predictions which are then used to prune the results of our
emantic segmentation network.

. Materials and method

This section presents a description of the dataset which is used in
ur study and details our proposed framework for multi-class segmen-
ation in ureteroscopy and laser lithotripsy.

.1. Materials

The data used in this study has been acquired using single-use
ithoVueTM scope and Lithovue Elite scope (Boston Scientific). The
n vitro dataset was acquired under controlled settings wherein laser
ithotripsy of four different human kidney stones was individually
erformed inside a container with irrigation fluid flowing through it.
he in vivo dataset was provided by the Oxford University Hospitals
nd Boston Scientific. Sub-sequences containing intense lasering and
tone movement were extracted and clip sequences containing 5 adja-
ent frames of these sub-sequences were used. One frame from each
4

(

lip sequence (1 out of 5) was manually labeled using the following
hree class labels: stone fragments, laser fiber, and background. In
ig. 1, in vitro, in vivo (animal), and in vivo (human) samples have

been highlighted in gray, blue, and red boxes, respectively. The VGG
Image Annotator (VIA) tool (Dutta and Zisserman, 2019) was used
to obtain a ground truth mask for each clip sequence as shown in
Fig. 1. The annotations used in this study were performed by a Ph.D.
student working on computer vision in ureteroscopy and independently
verified by two experts, a senior research associate with over 5 years
of experience in endoscopy and a senior urologist. A few samples did
have disagreements but the senior urologist’s decision was considered
to be final in case of any disagreement.

The division of both in vitro and in vivo datasets into training,
validation and test sets has been illustrated in Fig. 3. The in vitro dataset
consists of 52, 18 and 18 clip sequences in train, validation and test
splits, respectively while the in vivo consists of data from 4 subjects
with 92, 32, and 30 clip sequences in train, validation, and test-I splits,
respectively. As shown in Fig. 3 and mentioned in Table S8 Supple-
mentary material, 13% of the combined train, validation, and test-I
set consists of ureteroscopy images obtained from animal studies per-
formed at Boston Scientific, and 87% consists of clinical ureteroscopy
images collected at the Oxford University Hospitals. In the case of in
ivo, we have also included an extra dataset (Test-II) that consists of
0 unseen new samples and is used in the final part of this study to
alidate our model as compared to existing SOTA approaches. Test-
I consists of unseen ureteroscopy images obtained from another set
f animal studies performed at Boston Scientific. An overview of the
ataset configuration has also been shown in Table S1 Supplementary
aterial. For a better understanding of the datasets, box-plots showing

he relative size distribution of stone and laser class across training,
alidation, and test sets in the in vitro and in vivo datasets, respectively,
as been shown in Fig. 2. Here, the size distribution, refers to the ratio
f the object size in pixels to the size of the image (256 × 256). As
vident from Table S1 Supplementary material and Fig. 2, the high
tandard deviation of the stone indicates high variability of kidney
tones in each dataset. It can also be seen that the mean of stone is
ifferent for train, validation, and test sets, indicating that they come
rom different videos.

We understand that the patient-specific features can be very im-
ortant and unique in certain image modalities. However, in the case
f ureteroscopy, images from the same patient can have a lot of
ariability in terms of tissue appearance, illumination conditions, stone
ariability, and different viewpoints with respect to the camera. These
actors together create a dynamic scene in every frame. Figure 4 in
upplementary material illustrates random image frames from three
atients with observable intra and inter patient variability across data.
herefore, our dataset was randomly split on sample level into train
60%), validation (20%), and test (20%) for both in vivo and in vitro
ata. To justify our experiments and demonstrate that no data leak has
ccurred in our test samples, we have: (i) evaluated model performance
n 18 samples obtained from a separate unseen test patient data (see
atient 3 in Supplementary Figure 4) that was not included in our
raining and held-out test dataset, and (ii) performed patient wise 4-
old cross validation on the in vivo data (Table S9 Supplementary
aterial).

The in vitro dataset supports preliminary investigation using dif-
erent stone shapes, sizes, and compositions, and debris levels. This
llowed us to understand the performance of segmentation methods
nd their ability to differentiate between background, stone, and instru-
ent under controlled settings. Clinical human kidney stones were used

or in vitro experiments to mimic more realistic imaging conditions.
s can be seen from Fig. 2 and t-SNE plot (Figure 3 Supplementary
aterial), there is a large variability between the in vitro and in vivo

atasets. We, therefore, conducted independent experiments for in vitro
nd in vivo datasets in our work. To further justify our approach and
nderstand the role of in vitro data, we trained HybResUNet model with
he in vitro and in vivo datasets: trained separately and trained together

Table S7 and Figure 2 Supplementary material).
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Fig. 2. Box-plots showing the size distribution of stone and laser class across training, validation, and test sets in in vitro and in vivo datasets. It can be seen that the size distribution
of kidney stones is different across train, validation, and test sets, indicating that they come from different videos. The large variability between in vitro and in vivo datasets is also
clearly evident, explaining why we ran experiments independently for the in vitro and in vivo datasets. All in-vitro experiments are provided in the Supplementary material.
Fig. 3. Pie charts showing the division of in vitro and in vivo datasets. The proportion
of both human and animal samples has also been illustrated for the in vivo dataset. All
in-vitro experiments are provided in the Supplementary material.

3.2. Method

Our proposed framework utilizes two sub-networks: HybResUNet,
which is a hybrid version of a residual U-Net that uses residual connec-
tions in the encoder path only; and a DVFNet that leverages motion
between adjacent frames to compute end-to-end deformation vector
fields. This motion information obtained from a DVFNet is used to
prune the segmentation mask obtained from the semantic segmentation
network resulting in an improved multi-class segmentation. The entire
framework is designed as an end-to-end CNN model that optimizes our
proposed compound loss function. In this section, the semantic segmen-
tation network module, DVFNet, and the compound loss function are
presented.

3.2.1. HybResUNet
Base network. The first sub-network of our segmentation frame-

work is an encoder–decoder-based network called HybResUNet (Peretz
and Amar, 2019). It is basically a 9-level deep U-Net architecture
wherein residual blocks are used instead of traditional feed-forward
units in the contracting (encoder) path as shown in Fig. 4. This is
because the replacement of all feed-forward units in conventional
encoder–decoder network with residual blocks increases the network
complexity and tend to overfit the training data (Peretz and Amar,
2019). Each of the four residual units in the encoder consists of re-
peated application of two 3 × 3 convolutions, followed by a Batch
Normalization (BN) and a Rectified Linear Unit (ReLU). These convo-
lutions are followed by the addition of output to its initial input as
5

residual units and a 2 × 2 max pooling operation with a stride of 2
for downsampling. The decoder in the HybResUNet uses transposed
and regular convolutions to gradually increase the image size while
reducing the number of features. The network also consists of skip
connections that circumvent the information loss during downsampling
by concatenating the output obtained from each residual block with
the output of transposed convolution from the up-scaled features at
the decoder layers. Each of these concatenations is further followed
by the sequential application of two regular convolutions. For a fair
comparison, other networks namely U-Net (Ronneberger et al., 2015),
DeepResUNet (Zhang et al., 2018), and R2-UNet (Alom et al., 2018)
are all implemented as 9 levels deep architecture to obtain the best
performing base network for our dataset.

Dilations, ASPP, and Attention gate. To further improve our
base network, we have tried incorporating dilated convolutions, Atrous
Spatial Pyramid Pooling (ASPP), and attention gate mechanisms (Oktay
et al., 2018). Replacing conventional convolutions in CNN models
with dilated convolutions is known to improve the aggregation of
multi-scale contextual information without losing resolution (Yu and
Koltun, 2016; Hamaguchi et al., 2018; Piao and Liu, 2019). Hamaguchi
et al. (2018) introduced a novel architecture for segmentation of small
object instances in remote satellite imagery by first increasing the
dilation factors and then decreasing them. Inspired by this idea, we
have empirically obtained a series of dilation rates that work best
for our data: [1, 2, 3, 4, 3, 2, 1, 2, 1]. These networks also consist of an
Atrous Spatial Pyramid Pooling (ASPP) module at the end of the
encoding path with an output stride (ratio of the input image size
to the output feature map size) of 16 and six parallel convolutions
with dilation rates [1, 2, 4, 8, 16, 32]. To sum up, the experiments labeled
with ASPP in Table 3 (and Supplementary material Table S4 and
Table S5) comprise a series of dilated convolutions and an ASPP
module at the end of the encoding path. To leverage the attention
gate mechanism (Oktay et al., 2018), we add attention gates to the
skip connections just before the concatenation operation (refer to Att
in Table 3 and Supplementary material Table S4 and Table S5).
Such a mechanism suppresses the propagation of irrelevant and noisy
responses in the network. We further tried to incorporate ASPP, series
of dilated convolutions, and attention gate all together to observe if
this improves the segmentation accuracy ( Table 3 and Supplementary
material Table S4 and Table S5).

3.2.2. DVFNet
Building on the work of Ali and Rittscher (2019), our DVFNet is

also based on an encoder–decoder architecture where the parameters
of the spline resampler are learned from training data. It consists of
a total of 12 layers, that include three linear convolutional layers,
two average pooling layers, and two deformable convolutional layers
in the encoder. Each of these convolutional layers is combined with
Batch Normalization (BN) and exponential linear unit (ELU) as shown
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in Fig. 4. The decoder layer consists of a Catmull–Rom spline resampler
to rescale the obtained DVF from the encoder, which is then further
resampled with two additional layers that consist of a convolution
layer, an ELU activation, and the spline resampler. The final DVF
obtained at 0th scale is then applied on the original image to obtain
the corresponding warped image 𝐼𝑤𝑎𝑟𝑝.

.2.3. Loss function
Although commonly used, the cross-entropy loss does not differenti-

te between easy (correctly-classified) and hard (misclassified) samples
ausing the easily classified negatives in hard samples to compromise
he majority of the loss and dominate the gradient (Lin et al., 2017).

Focal loss (FL), which is an improved version of CE loss was intro-
uced by Lin et al. (2017). The focal Loss is defined as:

𝐹𝐿 = −(1 − �̂�𝑦)𝛾 log(�̂�𝑦), (1)

here 𝑦 ∈ {0, . . . , C-1} is an integer class label (C denotes the number
f classes), �̂� = {(�̂�0, . . . , �̂�𝐶−1)} ∈ [0,1]𝐶 is a vector representing an
stimated probability distribution over the C classes and 𝛾 ≥ 0 is the
ree focusing parameter (set to default value of 2) wherein higher the
, the higher is the rate at which easy-to-classify examples are down-
eighted. FL is a dynamically scaled CE loss where the scaling factor
decays to zero as confidence in the correct class increases (Eq. (1)).

ntuitively, the scaling factor 𝛾 automatically down-weights the easy
xamples and forces the model to focus on hard examples (Lin et al.,
017).

Bokhovkin and Burnaev (2019) proposed a novel loss function that
s essentially a differentiable surrogate of a metric accounting accuracy
f boundary detection. Let us say 𝑦𝑝𝑑 and 𝑦𝑔𝑡 represent the binary map
redicted by a neural network and ground truth map, respectively for
rbitrary class c for an image. The boundaries 𝑦𝑏𝑔𝑡 and 𝑦𝑏𝑝𝑑 can then be
efined as:
𝑏
𝑔𝑡 = 𝑝𝑜𝑜𝑙(1 − 𝑦𝑔𝑡, 𝜃◦) − (1 − 𝑦𝑔𝑡) and
𝑏
𝑝𝑑 = 𝑝𝑜𝑜𝑙(1 − 𝑦𝑝𝑑 , 𝜃◦) − (1 − 𝑦𝑝𝑑 ), (2)

where (1-𝑦𝑔𝑡,𝑝𝑑) refers to the inversion of any pixel of the map and pool
(⋅, ⋅) denotes a pixel-wise max-pooling operation to the inverted binary
map with a sliding window of size, 𝜃◦ set to 3. The euclidean distances
between pixels to boundaries requires computation of a supporting map
which is the map of extended boundary given by 𝑦𝑏,𝑒𝑥𝑡𝑔𝑡 = 𝑝𝑜𝑜𝑙(𝑦𝑏𝑔𝑡,𝜃) and
𝑦𝑏,𝑒𝑥𝑡𝑝𝑑 = 𝑝𝑜𝑜𝑙(𝑦𝑏𝑝𝑑 ,𝜃), where 𝜃 set to 5.

The precision 𝑃 𝑐 and recall 𝑅𝑐 can then be defined as:

𝑃 𝑐 =
𝑠𝑢𝑚(𝑦𝑏𝑝𝑑◦𝑦

𝑏,𝑒𝑥𝑡
𝑔𝑡 )

𝑠𝑢𝑚(𝑦𝑏𝑝𝑑 )
(3)

𝑅𝑐 =
𝑠𝑢𝑚(𝑦𝑏𝑔𝑡◦𝑦

𝑏,𝑒𝑥𝑡
𝑝𝑑 )

𝑠𝑢𝑚(𝑦𝑏𝑔𝑡)
, (4)

where ‘◦’ denotes the pixel-wise multiplication of two binary maps
and sum(.) refers to the pixel-wise summation of a binary map. The
reconstructed boundary metric, 𝐵𝑐 is averaged over all classes and is
then used to formulate the loss function, 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 that can be defined
as:

𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 1 − 𝐵𝑐 with boundary metric 𝐵𝑐 = 2𝑃 𝑐𝑅𝑐

𝑃 𝑐 + 𝑅𝑐 (5)

here 𝑃 𝑐 and 𝑅𝑐 refer to the precision and recall. Bokhovkin and
urnaev (2019) performed a comparative analysis of their proposed
oundary loss with various loss functions such as IOU loss, Dice loss,
nd Sensitivity–Specificity (SS) loss. In the first part of our study
here we use non-sequence data, we aim to find the best performing
aseline network by using a compound loss function that combines this
oundary loss with SOTA Focal loss. For the second part of this study
here we have integrated DVFNet for motion estimation, we propose to
se our extended novel compound loss function which is a combination
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n

of Focal loss, Boundary loss, Cross-correlation loss between warped
and target image, and smoothness constraint (Zhang, 2018) on the
predicted deformation fields. The cross-correlation loss is computed
between the warped images (𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)

and 𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)
) with their

corresponding source images (𝐼𝑖 and 𝐼(𝑖+2)), respectively and is given
by:

𝐿𝑠𝑖𝑚 = 𝐿𝑠𝑖𝑚1(𝐼𝑖, 𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)
) + 𝐿𝑠𝑖𝑚2(𝐼(𝑖+2), 𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)

) (6)

i.e.,

𝐿𝑠𝑖𝑚 = 1
2𝑁

∑

(

𝐼𝑖(𝑥) − 𝜇1
√

𝜎12 + 𝜖2
−

𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)
(𝑥) − 𝜇𝑤𝑎𝑟𝑝𝑖←(𝑖+2)

√

𝜎𝑤𝑎𝑟𝑝𝑖←(𝑖+2)
2 + 𝜖2

)2
+

1
2𝑁

∑

( 𝐼(𝑖+2)(𝑥) − 𝜇2
√

𝜎22 + 𝜖2
−

𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)
(𝑥) − 𝜇𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)

√

𝜎𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)
2 + 𝜖2

)2
, (7)

where 𝜇 and 𝜎 are the mean and standard deviation, 𝑁 is the total
number of pixels and 𝜖 = 10−3 to avoid division by zero. The estimated
deformation vector fields (DVFs) can be locally smoothed using a
smoothness constraint on its spatial gradients. Further, the smoothness
constraint on the estimated deformation vector fields (𝐷𝑉 𝐹𝑖←(𝑖+2) and
𝐷𝑉 𝐹(𝑖+2)←(𝑖+4)) can be expressed as:

𝐿𝑠𝑚𝑜 =
∑

( ‖‖
‖

∇ 𝐷𝑉 𝐹𝑖←(𝑖+2)
‖

‖

‖

2

2
+ ‖

‖

‖

∇ 𝐷𝑉 𝐹(𝑖+2)←(𝑖+4)
‖

‖

‖

2

2
), (8)

where ∇ indicates the gradient of flow fields and ‖.‖ indicates its 𝐿2
norm.

Finally, our proposed compound loss function can be formulated as:

𝐿 = 𝐿𝐹𝐿 + 𝛼𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + 𝛽𝐿𝑠𝑖𝑚 + 𝜁𝐿𝑠𝑚𝑜, (9)

where 𝛼, 𝛽, and 𝜁 are the hyper-parameters used to balance the con-
tribution from the boundary loss, similarity loss and smoothness loss,
respectively with initial values set to 1, 0.5 and 1, respectively.

3.2.4. Proposed framework
Our proposed framework is shown in Fig. 4. Each clip sequence

comprises of five images, 𝐼𝑖 to 𝐼(𝑖+4) wherein image pairs (𝐼𝑖, 𝐼(𝑖+2)) and
(𝐼(𝑖+2), 𝐼(𝑖+4)), respectively, are provided as an input in gray-scale format
to different DVFNet networks during training. As shown in Fig. 4, we
skip over 𝐼(𝑖+1) and 𝐼(𝑖+3) in order to have significant stone and debris
movement across images fed into DVFNet. Each DVFNet computes a
Deformation Vector Field (DVF) map (𝐷𝑉 𝐹𝑖←(𝑖+2) and 𝐷𝑉 𝐹(𝑖+2)←(𝑖+4))
and their corresponding warped image (𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)

and 𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)
).

he obtained DVFs are locally smoothed via a smoothness constraint
𝑠𝑚𝑜 on its spatial gradients. Further, Normalized Cross Correlation

NCC) is used as a similarity metric to minimize shape differences
etween the obtained warped images (𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)

and 𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)
) and

heir corresponding source images 𝐼𝑖 and 𝐼(𝑖+2), respectively, as shown
n Fig. 4 (𝐿𝑠𝑖𝑚1 and 𝐿𝑠𝑖𝑚2 correspond to these losses).

As illustrated in Fig. 4, the mean of the warped images (𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)
nd 𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)

) is fed to the HybResUNet network to obtain the first
semantic map, 𝑝1𝑖 . A second semantic map, 𝑝2𝑖 is obtained by using the
fifth input image 𝐼(𝑖+4) in the RGB format to another HybResUNet. Fi-
nally, the two semantic maps are averaged to obtain a final map, 𝑝𝑖. The
etwork then optimizes the final output semantic map by minimizing
combined loss function represented in Eq. (9). The DVFNet part of

he framework is only used during network training (indicated by solid
ath in Fig. 4) while the learned weights of the HybResUNet are used
uring frame-wise inference (indicated by dotted path in Fig. 4).

Table 1 presents the number of trainable parameters for different

etworks discussed in this paper.
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Fig. 4. Proposed framework: (a) Overall proposed semantic segmentation framework illustrating both training and inference paths presented in this study. Here, DVFNet utilizing
image pairs is only used for training shown by solid path while the learned weights of HybResUNet are used during frame-wise inference indicated by the dotted line. (b) Network
representation of the HybResUNet used in this work. It is a 9 level deep U-Net architecture with residual connections in the encoder path and (c) an encoder–decoder DVFNet
architecture used to compute deformation vector fields (DVFs) between image pairs that are used to prune the segmentation results obtained from the HybResUNet.
4. Results

In this section, before comparing our proposed compound loss
function with the SOTA focal loss (Lin et al., 2017), we outline our ex-
perimental set-up and data-augmentation strategy. Subsequently, quan-
titative and qualitative results of the proposed networks against existing
SOTA networks on our laser lithotripsy and ureteroscopy datasets are
presented. Finally, we provide an extended out-of-sample test of our
proposed framework followed by a quantitative comparison of infer-
ence time of the networks. Additional details and experiments that
support our algorithmic development are provided in the Supplemen-
tary material. This includes ablation studies for data augmentation
strategies, network design and model performance on in vitro dataset.
Also, Section 6 of the Supplementary material includes justification
for our set experimental modes, i.e., rational behind not merging in vitro
and in vivo datasets. Further, cross validation results of models trained
on patient-wise split in in vivo data are also provided (Supplementary
material, Section 8).

4.1. Experimental setup

All image samples were each resized to 256 × 256 pixels in a 3-
channel RGB format to train the deep learning models (original image
size depended on the acquisition settings of the source ranging from
394 × 392 to 1080 × 1080). Networks were trained with a batch size
of 2 on NVIDIA Quadro RTX 6000 for 100 epochs using Adam optimizer
with a learning rate of 1e−3, initial decay rates were set to default 0.9
and 0.999 for estimation of the first and second moments of gradient
respectively, with validation performed after every epoch.

4.2. Data augmentation

Data augmentation techniques such as flips, random crops, rotate
and color jittering have been commonly used for deep learning in
medical imaging. In this study, we first intend to determine the optimal
7

Table 1
Number of trainable parameters for different CNN networks explored in this work.

Network # Trainable params

UNet (Ronneberger et al., 2015) 31,390,851
HybResUNet (Peretz and Amar, 2019) 31,564,995
DeepResUNet (Zhang et al., 2018) 32,613,193
R2-UNet (Alom et al., 2018) 39,091,523
HybResUNet+DVFNeta 31,916,421
ASPP-HybResUNet+DVFNeta 59,194,757
Att-HybResUNet+DVFNeta 32,442,033
Att-ASPP-HybResUNet+DVFNeta 59,720,369

aThe SOTA methods have been accordingly referenced and our experimental methods.

augmentation choices by studying the effect of different strategies
on segmentation accuracy. Initially, we performed 8 training exper-
iments for both in vitro and in vivo datasets, where each experiment
involved training HybResUNet on one of the aforementioned augmen-
tation types. Refer to the Supplementary material Table S2 for the
list of augmentation techniques with their corresponding settings used
in our study. Dice similarity coefficient (DSC) was recorded for each
experiment for the stone and laser-class (refer to the Supplemen-
tary material Table S3). It can be seen that the Random Brightness
Contrast(RBC) and Equalize transformation improve the segmentation
accuracy in the in vitro datasets as compared to no augmentation
scenario(refer to the Supplementary material Table S3). On the
other hand, RBC and Contrast Limited Adaptive Histogram Equalization
(CLAHE) both provide a higher DSC compared to no augmentation in
the in vivo datasets (refer to the Supplementary material Table S3).
The difference in the results of the in vitro and in vivo can be majorly
attributed to the difference in background appearance between the
two datasets (refer to Fig. 1). Further experiments in this study have
therefore used RBC+Equalize and RBC+CLAHE for augmentation of the
in vitro and in vivo datasets, respectively.
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Table 2
Comparison of loss functions showing accuracy improvement with compound loss as opposed to state-of-the-art focal loss.

Network Loss function DSC

In vitro In vivo

Stone Laser Mean Stone Laser Mean

UNet
𝐿𝐹𝐿 0.8544 0.7643 0.8094 0.7257 0.6991 0.7124
𝐿𝐹𝐿+𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 0.8631 0.8401 0.8516 0.7948 0.7657 0.7803
𝐿𝐹𝐿+ 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦+𝐿𝑠𝑖𝑚+𝐿𝑠𝑚𝑜 0.8892 0.8582 0.8737 0.7825 0.8144 0.7985

HybResUNet
𝐿𝐹𝐿 0.8698 0.8026 0.8362 0.7712 0.7110 0.7411
𝐿𝐹𝐿+𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 0.9037 0.8854 0.8945 0.8011 0.8100 0.8055
𝐿𝐹𝐿+ 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦+𝐿𝑠𝑖𝑚+𝐿𝑠𝑚𝑜 0.9055 0.8842 0.8948 0.8251 0.8413 0.8332
4.3. Loss function

We introduce a novel compound loss function that is a combina-
tion of focal loss, boundary loss, cross-correlation loss, and a smooth-
ness loss for improved segmentation performance as described in Sec-
tion 3.2.3. Table 2 presents a quantitative comparison of the segmenta-
tion results obtained when a U-Net and HybResUNet was trained with
the focal loss vs when trained with a combination of other losses in the
case of both in vitro and in vivo test datasets.

It can be observed for UNet that the combination of focal loss and
boundary loss improved the mean DSC by nearly 5.2% and 9.5% in
the case of in vitro and in vivo datasets, respectively. While for the
HybResUNet, this improvement was recorded to be 6.5% and 7.9%
for in vitro and in vivo datasets, respectively. It can also be seen that
incorporating similarity loss and smoothness loss to this combination
of focal and boundary loss further boosted the mean DSC by 2.6%
and 2.3% for the UNet and in case of HybResUNet, it provided a DSC
boost of nearly 0.03% and 3.3% in case of in vitro and in vivo datasets,
respectively. When combined losses are used instead of focal loss, the
DSC for the laser class is boosted by a higher margin as compared to
the boost in the stone class.

4.4. Quantitative results

We have evaluated our proposed method and compared it with
other existing SOTA approaches using standard computer vision metrics
such as Dice similarity coefficient (DSC), Jaccard index (JI), Hausdorff
distance (HD), positive predictive value (PPV) and sensitivity (defined
per pixel) in Table 3. We have established a quantitative comparison
of our proposed framework against SOTA network architectures for
the in vivo dataset in Table 3 (and for in vitro dataset in Table S5
Supplementary material). Similarly, Our Supplementary material
Table S4 presents an ablation study for integration of dilations, ASPP,
and attention gate in our network.

(I) Base network: SOTA methods are compared as the base network
of choice for our proposed assembled network. For this case, it
can be observed that the HybResUNet provided a significantly
higher DSC with a value of 0.829 for the in vivo dataset. A
higher JI, lower HD, higher overall PPV, and sensitivity were
also seen as compared to other baseline networks included in the
experiment (U-Net, DeepResUNet, R2UNet, DeepLabv3+, and
Joint model).

(II) Base network with DVFNet (with DVF): In this set of exper-
iments, we propose to incorporate DVFNet together with the
best base network in (I), i.e., HybResUNet. For this network,
the mean of 𝐷𝑉 𝐹𝑖←(𝑖+2) and 𝐷𝑉 𝐹(𝑖+2)←(𝑖+4) is fed as input to
the first HybResUnet as shown in Fig. 4. Although DVFNet
(with DVF) can be seen to improve the stone segmentation of
HybResUNet in the in vivo, it showed no overall improvement in
the segmentation results.

(III) Base network with DVFNet (with warped images): This set of
experiments involved the incorporation of DVFNet (with warped
image) together with the best base network HybResUNet and its
8

derivatives. Here, warped image corresponds to the case when
mean of 𝐼𝑤𝑎𝑟𝑝𝑖←(𝑖+2)

and 𝐼𝑤𝑎𝑟𝑝(𝑖+2)←(𝑖+4)
is fed to the input of the

first HybResUNet as shown in Fig. 4. For the in vivo data, it
can be observed that DVFNet (with warped image) improved the
performance of all networks: HybResUNet, ASPP-HybResUNet,
Att-HybResUNet, Att-ASPP-HybResUNet, particularly for HybRe-
sUNet where DSC, JI, and HD were improved by nearly 1.15%,
2.2%, and 2.83%, respectively. In addition to this, DVFNet (with
warped image) can be seen to increase the sensitivity of all
networks in this set.

4.5. Qualitative results

In this section, we have presented the qualitative results of segmen-
tation obtained from our proposed framework as opposed to the ground
truth and other SOTA approaches in the in vivo dataset (qualitative
results on the in vitro dataset presented in Figure 1 Supplementary
material). Fig. 5 shows that our model outperforms the existing ap-
proaches by overcoming the challenges and providing a more accurate
delineation of stone and laser fiber. As evident in Fig. 5, it can be clearly
seen that laser fiber is nearly segmented well by all models except
for some difficult frames like the first image wherein it is only our
model that is able to clearly segment the laser. It can also be observed
from Fig. 5 that the existing approaches are not able to provide a
clear segmentation of stone in most frames and hence some debris is
segmented as part of the stone, resulting in either underestimation or
overestimation of the stone size.

4.6. Extended out-of-sample assessment

We evaluate our proposed in vivo framework on a separate out-of-
sample dataset (Test-II) which is acquired from a second site at Boston
Scientific. We established our proposed method comparison with ex-
isting SOTA approaches. As shown in Table 4, the proposed model
HybResUNet+DVFNet (with warped image) provided a significant DSC
improvement of 9.61%, 11%, 8.31%, 9.86% and 5.24% over UNet,
HybResUNet, DeepResUNet, R2-UNet and DeepLabv3+, respectively in
case of the stone class. While for the laser class, DSC saw an improve-
ment of 31.79%, 22.15%, 30.13%, 14.52% and 10.42% over UNet,
HybResUNet, DeepResUNet, R2-UNet and DeepLabv3+, respectively.
Further, we can also see from Table 4 that the ASPP module further
improved the performance of HybResUNet+DVFNet by 1.62% in dice
score and 1.74% in Jaccard index for the laser class. Qualitative results
in Fig. 6 also demonstrate that our proposed model is able to provide
the most accurate segmentation of all frames as compared to the other
existing approaches.

To justify our experiments, we also evaluated our trained models
on 18 samples obtained from a separate unseen test patient data (ex-
emplary samples of patient 3 are shown in Supplementary Figure 4).
It can be seen in Table 5 and Fig. 7 that our proposed approach on out-
of-sample patient data outperforms SOTA approaches. Additionally, in
order to demonstrate that no data leak has occurred in our test samples,
we also performed a patient wise 4-fold cross validation on the in vivo
data and our proposed approach provided an average (across folds) DSC
improvement of 9.98% and 11.5% over SOTA UNet for the stone and
laser classes, respectively (Table S9 Supplementary material).
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Table 3
Quantitative comparison of proposed network architectures against existing approaches on our ureteroscopy and laser lithotripsy in vivo test set (Test-I) where listed values represent
average performances. Here, ‘I’ in the table represents performance of various baseline models, ‘II’ represents combination of the best performing baseline model (HybResUNet)
and DVFNet (with DVF) under different configurations, and ‘III’ represents combination of the best performing baseline model (HybResUNet) and DVFNet(with warped image)
under different configurations.
In vivo (Test-I)

Class Method DSC 𝑝-values JI HD PPV Sensitivity

Stone

I

UNet (Ronneberger et al., 2015) 0.8129 ± 0.13 0.5556 0.7025 ± 0.16 5.4626 ± 1.40 0.8312 ± 0.19 0.8374 ± 0.12
HybResUNet (Peretz and Amar, 2019) 0.8339 ± 0.15 0.2862 𝟎.𝟕𝟑𝟖𝟏 ± 0.17 5.3870 ± 1.75 𝟎.𝟖𝟒𝟔𝟐 ± 0.21 0.8525 ± 0.09
DeepResUNet (Zhang et al., 2018) 0.8214 ± 0.13 0.8819 0.7140 ± 0.15 5.4958 ± 1.33 0.8167 ± 0.18 0.8543 ± 0.11
R2-UNet (Alom et al., 2018) 0.7734 ± 0.16 0.0162* 0.6536 ± 0.18 6.0680 ± 1.35 0.7580 ± 0.21 0.8328 ± 0.11
DeepLabv3+(ResNet-50) (Chen et al., 2018) 0.7653 ± 0.16 0.0008* 0.6438 ± 0.19 5.7150 ± 1.32 0.7573 ± 0.24 0.8375 ± 0.13
Joint model (Qin et al., 2018) 0.6900 ± 0.22 0.0007* 0.5660 ± 0.23 5.8173 ± 1.44 0.7218 ± 0.26 0.7003 ± 0.23
MI-UNet (Gupta et al., 2020a) 0.7126 ± 0.20 0.0017* 0.5852 ± 0.21 6.0840 ± 1.43 0.6875 ± 0.24 0.7938 ± 0.19

II

HybResUNet+DVFNet (with DVF)a 0.8347 ± 0.14 0.3036 0.7357 ± 0.17 5.3560 ± 1.47 0.8429 ± 0.19 0.8473 ± 0.09
ASPP-HybResUNet+DVFNet (with DVF)a 0.8115 ± 0.18 0.4706 0.7127 ± 0.20 𝟓.𝟑𝟏𝟐𝟑 ± 1.73 0.8148 ± 0.23 0.8430 ± 0.15
Att-HybResNet+DVFNet (with DVF)a 0.7996 ± 0.16 0.2450 0.6914 ± 0.19 5.6316 ± 1.47 0.7506 ± 0.22 𝟎.𝟗𝟎𝟐𝟔 ± 0.09
Att-ASPP-HybResUNet+DVFNet (with DVF)a 0.8072 ± 0.17 0.3592 0.7036 ± 0.19 5.4765 ± 1.60 0.7881 ± 0.22 0.8668 ± 0.13

III

HybResUNet+DVFNet (with warped image)a 0.8203 ± 0.14 – 0.7158 ± 0.17 5.4264 ± 1.43 0.8226 ± 0.20 0.8562 ± 0.12
ASPP-HybResUNet+DVFNet (with warped image)a 0.7992 ± 0.16 0.1227 0.6911 ± 0.19 5.5953 ± 1.55 0.7817 ± 0.23 0.8682 ± 0.11
Att-HybResUNet+DVFNet (with warped image)a 0.8183 ± 0.16 0.8483 0.7156 ± 0.18 5.5431 ± 1.65 0.8032 ± 0.21 0.8713 ± 0.09
Att-ASPP-HybResUNet+DVFNet (with warped image)a 0.8016 ± 0.15 0.0975 0.6918 ± 0.18 5.3543 ± 1.59 0.8062 ± 0.21 0.8382 ± 0.12

Laser

I

UNet (Ronneberger et al., 2015) 0.7974 ± 0.21 0.0548* 0.7043 ± 0.24 4.1557 ± 1.48 0.8050 ± 0.24 0.8137 ± 0.20
HybResUNet (Peretz and Amar, 2019) 0.8241 ± 0.18 0.0331* 0.7328 ± 0.21 3.9540 ± 1.35 0.8640 ± 0.17 0.8214 ± 0.20
DeepResUNet (Zhang et al., 2018) 0.7851 ± 0.27 0.0277* 0.7023 ± 0.26 4.2869 ± 1.40 0.8084 ± 0.27 0.7783 ± 0.27
R2-UNet (Alom et al., 2018) 0.7678 ± 0.22 0.0315* 0.6636 ± 0.23 4.4229 ± 1.14 0.7875 ± 0.22 0.7979 ± 0.23
DeepLabv3+(ResNet-50) (Chen et al., 2018) 0.7144 ± 0.29 0.0148* 0.6200 ± 0.29 4.4581 ± 1.06 0.7287 ± 0.29 0.7111 ± 0.29
Joint model (Qin et al., 2018) 0.6348 ± 0.30 0.0001* 0.5271 ± 0.29 4.7468 ± 0.98 0.6991 ± 0.28 0.6111 ± 0.31
MI-UNet (Gupta et al., 2020a) 0.7249 ± 0.22 0.0009* 0.6082 ± 0.24 4.8526 ± 1.31 0.7445 ± 0.23 0.7635 ± 0.19

II

HybResUNet+DVFNet (with DVF)a 0.7834 ± 0.26 0.0245* 0.6965 ± 0.25 4.3907 ± 1.41 0.7748 ± 0.23 0.8409 ± 0.27
ASPP-HybResUNet+DVFNet (with DVF)a 0.8048 ± 0.18 0.0999 0.7034 ± 0.21 4.4334 ± 1.04 0.7826 ± 0.17 0.8385 ± 0.20
Att-HybResUNet+DVFNet (with DVF)a 0.8017 ± 0.24 0.0234* 0.7144 ± 0.23 4.3347 ± 1.20 0.8352 ± 0.19 0.8300 ± 0.26
Att-ASPP-HybResUNet+DVFNet (with DVF)a 0.8374 ± 0.13 0.5780 0.7397 ± 0.17 4.2352 ± 0.81 0.7979 ± 0.17 𝟎.𝟖𝟗𝟕𝟓 ± 0.12

III

HybResUNet+DVFNet (with warped image)a 0.8568 ± 0.21 – 𝟎.𝟕𝟖𝟕𝟖 ± 0.21 3.6501 ± 0.99 𝟎.𝟖𝟖𝟗𝟒 ± 0.18 0.8487 ± 0.22
ASPP-HybResUNet+DVFNet (with warped image)a 𝟎.𝟖𝟔𝟓𝟖 ± 0.15 0.7439 0.7852 ± 0.17 𝟑.𝟔𝟑𝟔𝟏 ± 0.64 0.8634 ± 0.16 0.8770 ± 0.15
Att-HybResUNet+DVFNet (with warped image)a 0.8389 ± 0.19 0.0701 0.7558 ± 0.20 3.9573 ± 0.95 0.8798 ± 0.17 0.8370 ± 0.21
Att-ASPP-HybResUNet+DVFNet (with warped image)a 0.8478 ± 0.18 0.7321 0.7662 ± 0.20 3.9358 ± 0.90 0.8276 ± 0.20 0.8784 ± 0.18

*𝑝-values that represent statistical significance between proposed method and other implementations with 𝑝-value < 0.05 are computed using paired t-test.
aThe SOTA methods have been accordingly referenced and our experimental methods.
Fig. 5. Qualitative analysis of our proposed method HybResUNet+DVFNet (with warped image) for the in vivo against existing SOTA methods on our ureteroscopy and laser
lithotripsy test sets (Test-I). Each row shows a test image, followed by its ground truth segmentation mask (showing laser fiber and stone), followed by SOTA approaches: UNet,
HybResUNet, Deep-ResUnet, R2-UNet, and DeepLabv3+, and finally our proposed model which is HybResUNet+DVFNet (with warped image).
9
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Table 4
Quantitative comparison of proposed network architecture for in vivo data against existing approaches on an unseen in vivo test dataset (Test-II) where listed values represent
verage performances.
In vivo (Test-II)

Class Method DSC 𝑝-values JI HD PPV Sensitivity

Stone

UNet (Ronneberger et al., 2015) 0.3516 ± 0.22 0.3185 0.2382 ± 0.19 8.8137 ± 1.69 0.4192 ± 0.30 0.3426 ± 0.22
HybResUNet (Peretz and Amar, 2019) 0.3471 ± 0.25 0.0400* 0.2413 ± 0.21 9.0627 ± 1.95 0.3977 ± 0.31 0.3451 ± 0.24
DeepResUNet (Zhang et al., 2018) 0.3558 ± 0.24 0.1138 0.2471 ± 0.21 8.5908 ± 1.63 0.4071 ± 0.31 0.3518 ± 0.23
R2-UNet (Alom et al., 2018) 0.3508 ± 0.23 0.0954 0.2406 ± 0.20 8.9529 ± 1.73 0.4221 ± 0.30 0.3513 ± 0.26
DeepLabv3+(ResNet-50) (Chen et al., 2018) 0.3662 ± 0.24 0.0062* 0.2520 ± 0.20 8.6843 ± 1.73 0.4288 ± 0.30 0.3480 ± 0.21
HybResUNet+DVFNet (with warped image)† 𝟎.𝟑𝟖𝟓𝟒 ± 0.25 0.1227 0.2728 ± 0.22 8.6852 ± 1.90 0.4262 ± 0.29 𝟎.𝟑𝟖𝟕𝟑 ± 0.25
ASPP-HybResUNet+DVFNet (with warped image)† 0.3852 ± 0.25 – 𝟎.𝟐𝟕𝟑𝟑 ± 0.22 𝟖.𝟓𝟗𝟎𝟒 ± 1.80 𝟎.𝟒𝟑𝟖𝟑 ± 0.31 0.3775 ± 0.24
Att-HybResUNet+DVFNet (with warped image)† 0.3757 ± 0.25 0.1599 0.2656 ± 0.22 8.9544 ± 2.03 0.4228 ± 0.30 0.3794 ± 0.24
Att-ASPP-HybResUNet+DVFNet (with warped image)† 0.3607 ± 0.25 0.8447 0.2538 ± 0.22 8.7278 ± 1.96 0.4157 ± 0.32 0.3432 ± 0.23

Laser

UNet (Ronneberger et al., 2015) 0.5564 ± 0.29 0.0284* 0.4385 ± 0.27 5.7087 ± 0.90 0.5824 ± 0.31 0.5746 ± 0.31
HybResUNet (Peretz and Amar, 2019) 0.6003 ± 0.24 0.0988 0.4673 ± 0.22 6.0062 ± 1.11 0.6443 ± 0.29 0.5969 ± 0.25
DeepResUNet (Zhang et al., 2018) 0.5635 ± 0.30 0.0459* 0.4465 ± 0.27 5.9400 ± 0.85 0.6255 ± 0.31 0.5452 ± 0.31
R2-UNet (Alom et al., 2018) 0.6403 ± 0.21 0.0086* 0.5050 ± 0.22 5.4860 ± 1.10 0.6860 ± 0.25 0.6417 ± 0.23
DeepLabv3+(ResNet-50) (Chen et al., 2018) 0.6641 ± 0.11 0.0020* 0.5071 ± 0.12 5.4833 ± 0.91 0.8078 ± 0.14 0.5854 ± 0.14
HybResUNet+DVFNet (with warped image)† 0.7333 ± 0.13 0.7438 0.5956 ± 0.16 𝟓.𝟐𝟗𝟏𝟕 ± 1.09 0.8131 ± 0.17 𝟎.𝟕𝟎𝟓𝟕 ± 0.18
ASPP-HybResUNet+DVFNet (with warped image)† 𝟎.𝟕𝟒𝟓𝟐 ± 0.11 – 𝟎.𝟔𝟎𝟔𝟎 ± 0.14 5.4093 ± 1.14 𝟎.𝟖𝟒𝟏𝟕 ± 0.15 0.7016 ± 0.15
Att-HybResUNet+DVFNet (with warped image)† 0.6742 ± 0.17 0.2658 0.5332 ± 0.19 5.8803 ± 1.01 0.7300 ± 0.22 0.6732 ± 0.20
Att-ASPP-HybResUNet+DVFNet (with warped image)† 0.7164 ± 0.14 0.1468 0.5765 ± 0.16 5.4492 ± 0.95 0.7712 ± 0.17 0.7005 ± 0.17

*𝑝-values represent statistical significance between proposed method and other implementations with 𝑝-value < 0.05.
Table 5
Quantitative comparison of proposed network architecture for in vivo data against baseline methods on 18 samples from an unseen patient data
where listed values represent average performances.
In vivo (Test on unseen patient data)

Class Method DSC JI PPV Sensitivity

UNet 0.8883 ±0.10 0.8121 ±0.15 0.8820 ±0.14 0.9103 ±0.09
HybResUNet 0.9179 ±0.03 0.8500 ±0.06 0.9328 ±0.06 0.9091 ±0.06

Stone HybResUNet+DVFNet(with warped image) 0.9205 ±0.03 0.8545 ±0.06 0.9267 ±0.04 0.9180 ±0.06

UNet 0.8697 ±0.08 0.7775 ±0.11 0.8600 ±0.09 0.8850 ±0.10
HybResUNet 0.8581 ±0.04 0.7539 ±0.06 0.8446 ±0.08 0.8800 ±0.07

Laser HybResUNet+DVFNet(with warped image) 0.8702 ±0.07 0.7769 ±0.11 0.8671 ±0.11 0.8843 ±0.07
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Table 6
Inference time of base network for 10 images of the test set on NVIDIA Quadro RTX
6000.

Network Computation time (s)

UNet (Ronneberger et al., 2015) 0.8427
HybResUNet (Peretz and Amar, 2019) 0.8623
DeepResUNet (Zhang et al., 2018) 0.8736
R2-UNet (Alom et al., 2018) 1.2164
DeepLabv3+(ResNet50) (Chen et al., 2018) 0.7440
HybResUNet+DVFNet 5.2272
ASPP-HybResUNet+DVFNet 5.1638
Att-HybResUNet+DVFNet 5.2366
Att-ASPP-HybResUNet+DVFNet 5.0530

4.7. Inference time analysis

In this section, we have shown a computation time analysis of
different networks involved in this study, and the results are presented
in Table 6. The inference time was calculated by running 10 test images
on NVIDIA Quadro RTX 6000. As mentioned in Section 3.2.4, sequence
samples and DVFNet are only employed during training and not used
during test time. In Supplementary material Table S6, we have
rovided a comparison of DSC and computation time (for 10 samples
n NVIDIA Quadro RTX 6000) for HybResUNet+DVFNet applied on
equence data vs single sample data in the test dataset. Here, one can
bserve that using sequence samples does not show significant im-
rovement with respect to Dice. However, inference time for sequence
ample exceeds 6 times as compared to that when computed with a
ingle frame. Therefore, the weights of the HybResUNet learned using
equence samples during training are used during frame-wise inference.
his allows the network to perform inference in real-time.
10
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5. Discussion

To our knowledge, this study is the first attempt to develop a multi-
class segmentation approach for ureteroscopy and laser lithotripsy. In
this work, we conducted experiments for in vitro and in vivo datasets
ndependently. This is due to the large variability that exists between
he two datasets, as evident from Fig. 2. Table S7 and Figure 2 of the
upplementary material present quantitative and qualitative compari-
on, respectively, for both in vitro and in vivo, trained independently and
ointly. The performance decrease in the case of the joint training can
e attributed to the significant variability between the in vitro and in
ivo datasets as illustrated by a t-SNE plot in Supplementary material
igure 3 which shows a distinct disjoint between in vitro and in vivo
ataset. The variability between the in vitro and in vivo datasets can
lso be seen from Fig. 1, which shows that the in vivo background has
ore textural information, higher heterogeneity, debris from tissue and

lood, and other image artifacts that are almost absent in the in vitro
ataset.

We first trained a HybResUNet (Peretz and Amar, 2019) on our in
itro and in vivo datasets by using different augmentation techniques
nd recorded the DSC for each class to determine the optimized aug-
entation strategy that best captures our target data (refer to the
upplementary material Table S3). It can be observed from Fig. 1 that
he laser fiber is always present in a certain orientation and in the right
art of the image. This explains why networks trained with spatial-level
ransforms such as flips, shift and rotate are not able to perform well
n the test dataset. It can also be seen from Supplementary material
able S3 that the random brightness contrast (RBC) and the histogram
qualization in case of in vitro, and RBC and CLAHE in the case of
n vivo dataset seem to either improve the segmentation accuracy or
rovide a competitive performance as compared to the case with no

ugmentations. Therefore, RBC+Equalize and RBC+CLAHE were used
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Fig. 6. Qualitative analysis of our proposed method (HybResUNet+DVFNet (with warped image)) for in vivo against existing SOTA methods on our unseen in vivo test dataset
(Test-II).
Fig. 7. Qualitative comparison of proposed network architecture for in vivo data
against baseline methods on 18 samples from an unseen patient data (exemplary images
shown in row 3 of Figure 4 Supplementary material).

for data augmentation in all experiments for in vitro and in vivo datasets,
respectively.

A compound loss function has been used to enable better differenti-
ation between easy or hard examples and improve the segmentation
performance. In Table 2, we can see that the boundary loss when
combined with focal loss leads to an improvement in the case of in vitro
and in vivo datasets, respectively. The in vitro dataset has less scope
for improvement as it has no textural information in the background
and relatively more pronounced boundaries for stone and laser class
as compared to the in vivo dataset. This explains the relatively higher
improvement for the in vivo as compared to the in vitro dataset. Incor-
poration of similarity loss and smoothness constraint further boosted
the DSC for both in vitro and in vivo datasets. It can also be noted that
the accuracy of the laser class was boosted by an overall higher margin
as compared to the stone class. We hypothesize that such discrepancy
in the improvement percentage between stone class and laser class is
possibly due to the stone class having more variability in terms of shape
and texture as compared to the laser class.

HybResUNet has a relatively simpler model with residual blocks
in the encoder path only as opposed to the DeepResUNet (Zhang
et al., 2018) and R2-UNet (Alom et al., 2018). It can also be seen
from Table 1 that the number of trainable parameters is significantly
less for HybResUNet as compared to DeepResUNet and R2-UNet. We
hypothesize that DeepResUNet and R2-UNet make the U-Net network
more complicated and tend to overfit the training data, thereby leading
to poor performance (refer to Table 3 and Table S5 Supplementary
material) as compared to HybResUNet. Atrous Spatial Pyramid Pooling
11
(ASPP) technique uses a series of different dilation rates in parallel
to capture multi-scale contextual information. The use of dilated con-
volutions in an increasing order followed by decreasing order helps
better aggregation of local features and improves detection of small
objects (Hamaguchi et al., 2018). This explains the improvement in
the Dice similarity coefficient and Jaccard index of the laser class for
ASPP-HybResUNet in both in vitro and in vivo datasets (refer to the
Supplementary material Table S4). It can also be observed that when
the attention gate (AG) model is integrated into our encoder–decoder
HybResUNet network, it improved the segmentation of the stone class
and also improved the sensitivity by suppressing irrelevant responses
in the network. However, when we tried integrating the attention
gate mechanism, dilated convolutions, and ASPP, the networks tend to
become overly complicated and hence we did not observe any improve-
ment in the segmentation performance (refer to the Supplementary
material Table S4).

To further improve the segmentation performance of our network,
we integrated DVFNet into our framework. As can be observed in Ta-
ble 3, DVFNet (with warped image) when integrated with HybResUNet
improved its performance by 1.15%, 2.22%, and 2.83% in DSC, JI,
and HD, respectively. In the case of in vitro, HybResUNet+DVFNet
(with DVF) provided an improvement of 1.18%, 1%, and 3.9% in
DSC, JI, and HD, respectively (Supplementary material Table S5).
This network when combined with the attention gate model, Att-
HybResUnet+DVFNet (with DVF), slightly improved the segmentation
performance, thereby providing the best results on the in vitro dataset.
It can also be seen in Table S5 Supplementary material that for the
in vitro data, there is not much difference in the results for DVFNet
(with DVF) and DVFNet (with warped image). On the other hand, it can
be seen in Table 3 that for the in vivo samples, DVFNet (with warped
image) provided significantly better results as compared to DVFNet
(with DVF). Therefore, we hypothesize that as the in vitro lacks any
background texture, it does not make a big difference as to which
DVFNet approach should be adopted. But, for the in vivo that has the
texture-rich background, DVFNet (warped image) performs better as it
retains the high-level background information.

In Table 3 for the clinical data, one can observe that our proposed
method provided a significant improvement (𝑝-value < 0.05) over
all SOTA baseline methods for the laser class and over most SOTA
methods for the stone class. For the in vitro dataset, it can be seen
in Supplementary material Table S5 that in the case of the stone

class, our proposed method ‘‘HybResUNet+DVFNet (with DVF)’’ has
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the least standard deviation (±0.09 in DSC) and p-value < 0.05 for
most SOTA baseline methods. Similarly, for the laser class, our method
achieved a standard deviation of only ±0.14 in DSC. Its variant (Att-
HybResUNet+DVFNet (with DVF)) improved the performance further
and showed the least standard deviation (±0.08 in DSC) as compared
to the SOTA baseline methods. Our in vitro dataset has no textural
information in the background, making it relatively easier for the
networks to learn the segmentation of stone and laser class. This leaves
less scope for improvement, especially for the laser class which has
lesser variability as opposed to the stone class. We, therefore do not
observe any statistically significant improvement (𝑝-values > 0.05) in
the segmentation of laser fiber for the in vitro dataset.

In Fig. 5, our proposed framework is able to outperform other
existing networks by overcoming the effect of debris and other artifacts.
The first image in Fig. 5 gets one of the worst-performing results across
all networks. It can be observed that the small stone on the top part of
the image is less visible due to relatively less light falling on it and is
therefore not getting captured by any models. It can also be observed
that the bright-red tissue protrusion in this image is being misclassified
as a stone by all the networks. This shows that the networks are
sensitive to any tissue protrusions in the images. In addition to this, it
should also be observed in this image that our model is able to provide
the most accurate segmentation of the laser fiber as opposed to the
other networks. We hypothesize that the other models fail to segment
the laser accurately due to the fact that it is transparent in appearance
and the laser light is not activated making it difficult for the network
to spot it. Further, the segmentation prediction on the second and third
in vivo images show that our model is not only able to overcome the
effect of stone debris but also blood and white tissue debris. Based
on the results of the fourth in vivo image, we hypothesize that our
proposed model is able to successfully pick up secondary small stones
and perform well in dynamic illumination situations.

In addition, to further justify that sample-level split presented in the
paper did not cause a data leak in our test results, we evaluated our
trained models on unseen patient data (Table 5 and Fig. 7). It is evi-
dent that our proposed model outperforms the SOTA baseline models.
Similarly, on a 4-fold patient wise cross validation using the in vivo data,
our proposed approach showed consistent performance outperforming
the SOTA methods (Table S9 Supplementary material). We also
performed an extended out-of-sample test study on only animal data
referred to as ‘‘Test-II’’ of our proposed framework. These data were
acquired from a new site (Boston Scientific) and the quantitative results
and qualitative results are presented in Table 4 and Fig. 6, respectively.
As shown in Table 4, our proposed framework outperformed the exist-
ing SOTA approaches on Test-II samples as well, thereby demonstrating
that our proposed model not only outperforms other SOTA networks
but also is robust to new ureteroscopy and lithotripsy datasets. Even
though Table 4 shows a decrease in metric values on the Test-II as
compared to Test-I dataset, it is important to note that the models were
trained on mainly human ureteroscopy samples while Test-II consists of
images of ureteroscopy performed on animal subjects only (Table S8
Supplementary material). Additionally, the hardware settings such as
LED illumination and software configuration settings used at the time
of surgery and image acquisition are different for some animal studies
present in Test-I compared to Test-II dataset. This indicates that the
trained models do not cover all the possible variance scenarios arising
from different image acquisition settings, resulting in a performance
decrease in the Test-II dataset. Increasing the number of animal sam-
ples in the training set and adding variability in training data, for
example, in terms of kidney stone heterogeneity and background scene,
can improve model robustness. Additionally, using learning-based data
augmentation techniques such as generative adversarial networks can
be further investigated to enhance model accuracy and robustness.
Although we have tried to mimic real scenarios in our in vitro dataset
by using real kidney stones for fragmentation, yet it has not been
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possible to capture every aspect of the clinical settings such as tissue
background, proper flow of irrigation fluid, movement constraints on
stone fragments, blood debris and other image artifacts. This possibly
explains why our results and proposed framework is different for both
in vitro and in vivo datasets.

Stone and laser localization and segmentation can assist clinical
stone fragmenting procedures. While the video frame rate of most
ureteroscopy is 30 FPS, our proposed framework achieves 12 FPS.
As can be seen from Table 6, the DVFNet part of the framework
requires over 6× more computation time than that for a single frame.
Also, our Supplementary material Table S6 shows DVFNet during
test inference does not significantly improve the results but adversely
affects the inference time. The DVFNet part of the framework, when
used in conjunction with the HybResUNet during training, helps to
prune the segmentation mask by adjusting/refining the weights of the
network layers of HybResUNet. Therefore, even though we require a
combination of HybResUNet and DVFNet for training, only HybRe-
sUNet is used during test inference minimizing the required time for
segmentation of laser and stone.

6. Conclusion

We believe to be the first to present a multi-class segmentation
method for ureteroscopy and laser lithotripsy imaging that is supported
by a comprehensive experimental analysis. The proposed framework
effectively makes use of residual connections and motion information
between adjacent frames to produce robust and reliable segmentation
of renal stones and laser fiber in real-time. The qualitative and quan-
titative results demonstrate that our algorithm can efficiently tackle
the challenging vision quality within the kidney, resulting in increased
segmentation accuracy as compared to the existing state-of-the-art
methods. Our approach makes effective use of the temporal information
within five adjacent frames only to improve the segmentation results.
Future research direction includes using different forms of recurrent
neural networks in order to improve the temporal information and use
it to further improve the segmentation results. In order to perform
accurate size estimation, the present study serves as a preliminary
work that needs to be extended to 3D. The segmentation method can
also be used in conjunction with depth estimation techniques in order
to estimate parameters like stone size. Future work also includes a
quantitative assessment of the segmented stone fragments and laser
fiber in order to help the clinician gain a better understanding of
the target and improve patient outcomes. Through this study, we also
highlight that the clinical workload of endoscopists can be tackled
by the development of medical image analysis tools that can shorten
procedure time whilst improving diagnosis and therapy.
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