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A B S T R A C T   

In the context of rapid urbanization and regional development worldwide, the efficient and rational spatial 
distribution of transportation networks is vitally important in achieving sustainable development. In this study, 
we used an adjusted three-dimensional ecological footprint model (EF3D) to assess regional sustainable devel-
opment. We explored the driving factors and spatial influence of transportation networks on the EF3D in the 
urban agglomerations in the middle reaches of the Yangtze River (UAMRYR), China, in 2010 and 2017, inte-
grating the STIRPAT model and spatial econometric model alongside the transportation network in the research 
framework. The results show that the EF3D has been reduced by 1.46% from 2010 to 2017. Although the overall 
level of sustainable development in UAMRYR has improved, 94.69% of the county units were still in ecological 
overshoot in 2017. In addition, population density, GDP per capita and the proportion of non-tertiary industries 
had positive local influences on EF3D. At the county level, EF3D had positive spatial autocorrelation, and the 
spatial spillover effect of EF3D was confirmed through the transportation network, indicating that the spatial 
influence of the transportation network was an important factor in explaining EF3D. Population density and GDP 
per capita had negative and positive indirect spatial effects, respectively. In the future, the function of trans-
portation systems should be improved to transfer the population pressure of cities and increase natural capital 
flexibility to reduce the EF and ultimately achieve balanced development.   

1. Introduction 

In the context of globalization and regional integration, the negative 
impacts of infrastructure construction on the environment have received 
much attention in recent years (Zambrano-Monserrate et al., 2020). 
Massive expansion of infrastructure such as roads and railways poses a 
threat to ecosystems globally, but such development are also needed to 
support development. In China, the rapidly expanding transportation 
network is a key element in supporting urbanization but causes various 
ecological problems, including habitat destruction, biodiversity decline, 
land degradation, shortage of natural resources, and environmental 
pollution (Yang et al., 2020). To promote Sustainable Development 
Goals (SDGs) that focus on ecological sustainability, the function of 
transportation networks should be considered to meet the diverse needs 
of urbanization while minimizing adverse ecological impacts (Ahmed 
et al., 2020b; Erdogan, 2020). 

The ecological footprint (EF), a holistic indicator for tracking the 
effects of human activities on ecosystems, has been increasingly used to 
assess the level of regional sustainable development (Rees, 1992; Uddin 
et al., 2017; Ulucak & Khan, 2020; Zafar et al., 2019). Recently, the 
exploitation of global natural resources that promotes socio-economic 
development has accelerated declines in ecological carrying capacity 
(EC) while increasing the EF (Ulucak & Khan, 2020). The latest data of 
the Global Footprint Network (GFN) reveals that the equivalent of 1.73 
planets is needed to provide the necessary resources and absorb waste, 
indicating that natural resource regeneration has lagged behind the 
needs of socio-economic development (GFN, 2020). Currently about 
75% of countries are facing ecological deficits (GFN, 2020). To 
compensate for natural capital in the process of economic growth, many 
countries turn to trade or internal resource allocation through their 
transportation networks. China is one of the world’s largest ecological 
overshoot countries. A global consumption level in line with China will 
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require 2.22 planets (GFN, 2020). Given that natural resources and the 
EC of megacities are so threatened, China’s Ministry of Natural Re-
sources and the 14th Five-year National Plan have emphasized that 
efficient transportation systems should ensure rational allocation of re-
sources in urban agglomerations and metropolitan areas. In this sense, 
improving and upgrading the transportation network is essential for 
cities and societies attempting to transition to sustainable development. 

The EF in different regions interacts spatially through transportation 
networks. This indicates that the consumption of natural resources will 
be affected by neighbors through transportation infrastructures such as 
roads and railways. Transportation is vital to increase the mobility of 
capital, natural resources, information, and technology, thus strength-
ening regional cohesion and weaken administrative boundaries (Arbués 
et al., 2015; Xu et al., 2019). In this sense, a transportation network is 
bound to function as a “channel” of spatial spillover effects on the EF. 
Despite these relationships, the spatial spillover effects of transportation 
networks on the EF are often ignored (Zambrano-Monserrate et al., 
2020). This article takes up this challenge, which is the innovation of 
this study to explore the magnitude of the spatial spillover effects on EF 
by treating the transportation network as a “channel” for cross-regional 
spatial interaction. 

To address this issue, China’s UAMRYR is used as the case study area 
to examine the spatial spillover effects of transportation networks on EF 
in 2010 and 2017. An original quantitative evaluation framework to link 
transportation networks with EF is provided. The transportation 
network is embedded into a spatial econometric model to measure its 
spatial influence on EF. The outline of the paper is presented as follows. 
Section 2 reviews the existing literature on this topic. Section 3 in-
troduces our method of integrating the STIRPAT model and a spatial 
econometric model to test the magnitude of the spatial influence. This 
section also presents the study area and the data used in our analysis. 
Section 4 reports the results of the spatio-temporal variation of the EF 
and complex road and railway networks, as well as the regression results 
from the spatial econometric model. Sections 5 and 6 provide the dis-
cussion and conclusion, respectively. 

2. Literature review 

2.1. Evaluation model of EF 

The EF has emerged as an extensive and comprehensive measure of 
sustainable development level in the recent literature (Hassan et al., 
2019; Ulucak & Khan, 2020). The EF was proposed by Rees and 
Wackernagel in the early 1990 s (Rees, 1992; William & Mathis, 1996), 
when it compared profit and loss of natural capital relationships. Since 
then, numerous scholars have further adjusted the model, using 
input–output analysis (Liu et al., 2018), energy accounting (Li et al., 
2019), system dynamics models (Guan et al., 2011), life cycle assess-
ment (Liu et al.,2017), and the EF3D model (Xun & Hu, 2019). One of the 
most noteworthy improvements has been the transformation from the 
traditional EF to the EF3D (Xun & Hu, 2019). Environmental economists 
have reached a consensus that the minimum level of sustainable 
development is the non-consumption of natural capital stock (Ekins 
et al., 2003). However, the importance of keeping the natural capital 
stock constant to maintain the stability of ecosystems is difficult to 
reflect in the traditional EF (Fang, 2013; Niccolucci et al., 2009). To 
address these inherent defects, Niccolucci et al. (2009) proposed an EF3D 
model by using EFdepth and EFsize to reflect the depletion of capital stock 
and capital flow, thereby providing a multi-dimensional perspective for 
sustainable development assessment. The EF3D can track specific bio-
physical thresholds. Exceeding the threshold value indicates a shift away 
from using natural capital flows toward using natural capital stocks, an 
approach that destroys the long-term ability of the natural system to 
provide ecosystem services (Mancini et al., 2017). Fang (2013) devel-
oped an optimized EF3D which solved the limitation of offsetting the 
ecological deficit (where natural capital demand exceeds supply) and 

surplus (natural capital supply exceeds demand) of different land types. 
The EF3D has become widely used in sustainable development assess-
ment across many locations, including cases at the global scale (Bi et al., 
2021; Niccolucci et al., 2009), national scale (Fang, 2015; Wu et al., 
2021), provincial scale (Xun & Hu, 2019), and city scale (Chen et al., 
2019). 

2.2. Determinants of EF 

Despite improvements to the EF model, analysis of EF determinants 
has remained contentious. The most widely used techniques for exam-
ining driving forces of EF are Decomposition Analysis (IDA), Structural 
Decomposition Analysis (SDA), Logarithmic-Mean Divisia Index (LMDI) 
and Stochastic Impacts by Regression on Population, Affluence, and 
Technology (STIRPAT) (Liu et al., 2018; Zhao et al., 2014). However, 
the first three methodologies are incapable of taking stochastic shocks 
and statistical inference into account, which are always regarded as 
useful for policy implication (Zhang et al., 2017). The STIRPAT model is 
dedicated to exploring the impact of population (P), affluence (A) and 
technology (T) on the EF. Compared with the other three methods, the 
STIRPAT model allows for the expansion of more factors and less data 
limitation, providing more specific and reliable information for shaping 
strategies for sustainable development (Zhao et al., 2014; Wang et al., 
2019). Due to its flexibility, the STIRPAT model is commonly used for 
examining the drivers of the EF (Jia et al., 2009). 

Findings from studies using STIRPAT have yielded wide discrep-
ancies given the complexity of geographic dynamics (Nathaniel & Khan, 
2020). Many scholars have explored the determinants of the EF on a 
global scale. York et al. (2003) pioneered the application of the STIRPAT 
model for the analysis of the influencing factors of the EF. The diversi-
fied influences of socio-economic development on the EF have subse-
quently been revealed (Ahmed et al., 2020b). For example, Nathaniel 
and Khan (2020), and Destek and Okumus (2019) both validated the 
negative influence of GDP and urbanization on environmental quality 
for ASEAN countries and newly industrialized countries respectively, 
whereas economic development and urbanization were shown to 
improve sustainable development in BRICS countries (Ulucak & Khan, 
2020) and Europe (Alola et al., 2019). Trade and the use of renewable 
energy have received special attention (Nathaniel & Khan, 2020; Zafar 
et al., 2019). Trade between countries supported by global trans-
portation networks has caused dirty imports to increase environmental 
degradation in developing countries with weaker environmental regu-
lations and enforcement (You & Lv, 2018). However, improvement 
techniques also increase the use of renewable energy, reducing the 
carbon footprint (Nathaniel & Khan, 2020; Zafar et al., 2019). Together, 
these studies have identified some important ways forward for the 
realization of SDGs, in terms of increasing the budget allocation of 
renewable energy projects to reduce the adverse effects of development, 
and strengthening international cooperation to reduce environmental 
pollution. 

Another body of studies has considered the determinants of the EF at 
a national scale or its internal regions. Studies have identified the role of 
GDP (Jia et al., 2009), urbanization (Nathaniel & Khan, 2020), popu-
lation size (Jia et al., 2009; Kongbuamai et al., 2020), and industrial 
structure (Jia et al., 2009). As the country with the largest EF, China has 
received extensive attention. Ahmed et al. (2020a) found that urbani-
zation and economic growth hindered sustainable development, while 
human capital alleviated environmental degradation in China. Popula-
tion size is the main driving force for the growth of EF nationally. It is 
also found that affluence is playing an increasingly prominent role in the 
growth of EF in the eastern and northeastern provinces, while technol-
ogy restrains the increase in EF in the western provinces. This provides a 
realistic and reliable reference for the identification of the positive and 
negative factors of sustainable development. 

T. Lv et al.                                                                                                                                                                                                                                        
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2.3. EF and transportation network 

In addition to the common factors revealed to influence EF, a further 
body of work has focused on the influence of transportation infrastruc-
ture on the EF. Transportation infrastructure is the key to a sustainable 
city and society (Erdogan, 2020). However, limited research has 
explored the influence of transportation infrastructure on the EF. The EF 
of transportation infrastructure is an important part of the total EF of 
tourist cities. In Amsterdam, approximately 70% of the environmental 
pressure of inbound tourism stems from transportation system (Peeters 
& Schouten, 2006). A similar positive correlation between transport and 
the EF has been confirmed in Lanzarote (Martín-Cejas & Sánchez, 2010). 
The positive relationship between aeroplanes, trains, and automobiles in 
relation to the EF of tourism was also captured in Shanghai (Lin et al., 
2018b). By tracking various types of transportation in OECD countries, 
the role of railway infrastructure investments in reducing EF and envi-
ronmental degradation was recognized because of the clean technology, 
cost-effectiveness, and scale effect of the railway system (Erdogan, 
2020). Conversely, investment in road and air infrastructure was found 
to exacerbate environmental degradation (Erdogan, 2020). Considering 
the role of public transportation in achieving sustainable development, 
Gassner et al. (2018) captured the environmental impact of different 
public transportation systems in Vienna. They found that the subway 
was the primary contributor to the EF, but the contribution of trams and 
buses was much lower (Gassner et al., 2018). 

The EF may be affected not only by the endogenous characteristics of 
the transportation infrastructure, but also by the exogenous spatial 
spillover effect of the transportation network on neighboring units. 
Extensive literature has confirmed the spatial spillover effect of trans-
portation on CO2. For example, Yang et al. (2019) found a spatial 
spillover effect of transportation infrastructure on CO2 in China. Wang 
(2019) also confirmed transportation factors have positive and signifi-
cant spillover effects on CO2 emissions. In particular, the railway 
network has more obvious impacts than the road factor. Nevertheless, 
very few studies have focused on the spatial influence of transportation 
networks on EF, let alone on the EF3D. 

Although previous studies have identified common driving forces of 
EF and the function of transportation infrastructure, the spatial spillover 
effect generated from the transportation networks has not yet been 
systematically studied. It is admitted that population, urbanization, 
economic structure, trade, and energy use are taken as the driving fac-
tors of EF (Ahmed et al., 2020b; Alola et al., 2019; You & Lv, 2018). The 
EF captures the demand from human activities for natural capital during 
which a spatial interaction may occur between production and con-
sumption of goods and services across regions (Baloch et al., 2019). 
Empirical studies have demonstrated that a transportation network 
promotes the inter-regional movement of production factors and in-
creases the availability of resources in the destination location (Pradhan 
& Bagchi, 2013; Wu et al., 2017), thereby supporting the spatial inter-
action of the EF. If the spatial effect of the EF is justified and measured, 
policies are thus formulated to achieve balanced regional development 
with the consideration of this spatial effect (Zambrano-Monserrate et al., 
2020). In summary, the spatial interactions through transportation 
among the observations have seldom been investigated when studies are 
made on EF. To bridge these gaps, this study integrates the STIRPAT 
model, transportation network into the spatial econometric model, with 
the hypothesis of the spatial influence on the EF3D. 

3. Materials and methods 

3.1. Materials 

3.1.1. Study area 
The urban agglomerations in the middle reaches of the Yangtze River 

(UAMRYR, 108.37–119.66◦E; 24.50◦–34.66◦ N) are located in the cen-
tral regions of the Yangtze River Economic Belt of central China. The 

area includes three urban agglomerations: the Wuhan agglomeration 
(WHA) in Hubei Province, the Chang-Zhu-Tan urban agglomeration 
(CZTA) in Hunan Province, and the urban agglomeration around Poyang 
lake (APL) in Jiangxi Province (Fig. 1). The UAMRYR has a total area of 
32.7 × 104 km2 with 153 million permanent residents and a GDP of 7.9 
trillion yuan (321.61 billion USD) in 2017. The location accounts for 
3.41% of the total area, 11.01% of the total population, and 9.58% of the 
GDP of China. Given its central position in China, the UAMRYR has 
become a transportation hub with an integrated traffic corridor. The 
total mileage of roads in the UAMRYR increased from 68,890 km to 
91,046 km with a growth rate of over 32% from 2010 to 2017. The total 
railway length increased from 6430 km in 2010 to 9694 km in 2017 with 
a growth rate of over 50%. The area is also rich in biodiversity and has a 
variety of ecosystems (Dai et al., 2020). However, challenges in 
achieving sustainable development abound as the area faces critical 
tensions between high-speed economic growth and limited EC. 

Cities within the UAMRYR are spatially interconnected, geographi-
cally compact, economically comparable, and highly dependent on a 
developed transportation network, while the UAMRUR is traversed by 
the Yangtze River and is a key area for maintaining ecological functions. 
According to the above description, the UAMRYR offers a suitable area 
for studying transportation networks and EF from a spatial perspective, 
particularly given its steep development trajectory. 

3.1.2. Data description 
The spatial unit of our analysis is the county level, an administrative 

level lower than the city. The UAMRYR consisted of 206 county units in 
2010 and 207 county units in 2017 due to the adjustment of adminis-
trative divisions. The data used in this study include that on the pro-
duction of biological resources, energy consumption, socio-economic 
data, land use data, road network layer data, and railway network layer 
data. We use the production of biological resources instead of con-
sumption because no detailed county-level trade data is available (Yang 
et al., 2018) and trade data has a negligible impact on the local EF (Gu 
et al., 2015). Statistical data from the counties of UAMRYR could not 
directly meet our requirements to calculate the EF in terms of the fossil 
energy account, so we utilized statistical data for “energy consumption 
per unit GDP”, “composition of energy consumption”, “GDP”, and “GDP 
Index” from the Statistical Yearbooks of Hubei, Hunan, and Jiangxi to 
calculate energy consumption at the county scale (Yang et al., 2018). 
The “GDP Index” was employed to calculate the GDP Index for which the 
value was designated at 100 in 2010. Each county’s GDP in 2017 was 
converted into 2010 prices by using “GDP index = 100” and “county 
GDP”. After multiplying the above GDP by the energy consumption per 
unit of the GDP, the energy consumption of each county can be calcu-
lated. Finally, the consumption values of raw coal, oil, natural gas, and 
electricity were determined for each county’s outputs from the prov-
ince’s energy consumption ratios. Detailed data sources and descriptions 
are shown in Table 1. 

3.2. Methods 

A complex network model and EF3D model were integrated into the 
spatial econometric model to explore pathways to sustainable develop-
ment by considering both direct and indirect spatial influences. Direct 
spatial influences refer to the influence of neighboring EFs on the local 
EF through the transportation network. Indirect spatial influences refer 
to the driving forces of neighboring population, economic, and technical 
aspects under the STIRPAT model that influence the local EF. To study 
the spatial influence, the spatial weight matrix based on the trans-
portation network was embedded into a spatial econometric model to 
explore the spatial spillover effect of the transportation network on the 
EF. The establishment and the integration of EF3D model, STIRPAT 
model, complex road and railway network model, and the spatial 
econometric model are described in detail in the following sub-sections. 

T. Lv et al.                                                                                                                                                                                                                                        
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3.2.1. The EF3D accounting 
The EF measures the impact of human activities according to six 

account categories: cultivated land, grassland, woodland, water, con-
struction land, and fossil energy land, which is ultimately unified as a 
single indicator of global land (Ahmed et al., 2020b). EC pertains to the 
largest supply of natural resources available for current consumption 
and waste assimilation (Li et al., 2019; Uddin et al., 2017). The general 
form of EF and EC is: 

EF = N⋅ef = N⋅
∑

6

j=1

[

rj⋅
∑

n

i=1

(
ci

pi
)

]

(1)  

EC = N⋅
∑

6

j=1

(aj⋅rj⋅yj) (2)  

where N is total population, j is the consumer goods category, and rj is 
the equalization factor. In EF, pi is the average production capacity of 
the ith consumer good, ci is the per capita consumption of the ith 
commodity, and ef is the per capita EF. In EC, aj is the per capita bio-
logical production area and yj is the yield factor. 

To distinguish between the flow and stock of natural capital, the EF3D 
model is used. The calculation formulas are as follows: 

EFsize =
∑

n

i=1

min{EFi,ECi} (3)  

EFdepth = 1+

∑n

i=1max{EFi − ECi, 0}
∑n

i=1ECi
(4)  

EF3D = EFsize × EFdepth (5)  

where EFdepth is the consumption level of capital stock, expressed as a 
multiple of the production land area required to maintain the current 
resource consumption level. EFsize is the consumption level of capital 
flow, which represents the inter-annual demand for biological produc-
tion land by human beings (Fang, 2013). EF3D represents the three- 
dimensional ecological footprint, i denotes the different ecologically 
productive land types, and EFi and ECi represent the EF and EC of the 
given land category, respectively. An EFdepth value of 1 indicates sus-
tainable development in relation to the unconsumed natural capital 
stock. An EFdepth value exceeding the original value of 1 indicates 
ecological overshoot (Xun & Hu, 2019). 

3.2.2. Construction of the transportation complex network 
The transportation system is essentially a complex network and so 

Fig. 1. The study area of (A) the administrative division, (B) the land use map, (C) the road transportation network, and (D) the railway transportation network of 
UAMRYR in 2017. 
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topological analysis can be used to reveal its pattern and structure 
(Wang et al., 2017). This research regards road intersections and railway 
station as nodes and the road and railway as edges to construct road 
complex networks and railway complex networks, respectively. In 
addition, the complex network constructed in this work is unidirectional 
and unweighted. We use the average degree in the complex network 
model to construct the spatial interaction of the transportation network. 
The degree of a node represents the number of edges owned by node i. 
The degree is the most intuitive and simplest statistic used to measure 
the importance of a node in the network. More specifically, the greater 
the degree of the node, the higher the importance of the node. The 
calculation of the degree is specified as follows: 

ki =
∑

ai (6) 
where ki the degree of node i; ai is the edge connected to node i. 
The average degree is the average of the degrees of all nodes in the 

network. The calculation of the average degree is specified as follows: 

d =
1

N

∑

i

ki (7) 

where N is the number of nodes in the network. 

3.2.3. Intra-Interaction of transportation network 
The EF change is a spatially dependent process combined with the 

influence of other counties through the transportation network. Hypo-
thetically, the transportation network is a “channel” that promotes the 
spatial interaction of the regional EF3D. The eigenvalues of the trans-
portation network according to the complex network were calculated, 
and then the gravity model was employed to evaluate the intensity of the 
transportation interactions between regional spatial units. 

Based on the gravity model, we use the integrated average degree of 
roads and railways to establish the spatial interactions between the 
county units. The average degree is an important indicator to describe 
the dominant position of regional transportation and reflect the poten-
tial of regional external accessibility. Considering the differences be-
tween roads and railways, we use passenger traffic of each as weights to 
construct the integrated average degree (Eqs. (8)) so as to reveal the 
external access potential of a road–rail system. Then, we employed a 
gravity model to construct a spatial weight matrix of the transportation 
network based on the integrated average degree. The gravity model is 
designed to calculate the volume of flow or the interaction of specific 
properties between different regional spatial units (Zeng et al., 2019) 
and has been successfully applied in many fields such as the economy, 
trade (Mátyás, 1997), and transportation (Zeng et al., 2019). Gravity 
value is positively correlated with the volume of flow or attribute and 
negatively correlated with distance. We use the gravity model to 
correlate the integrated average degree of county units to construct the 
spatial weight matrix because the county units with high traffic supe-
riority and high external accessibility tend to produce stronger spatial 
interaction of EF3D. Eqs. (9) is used to generate the spatial interaction. 
d = w1droad +w2drailway (8)  

Dij = r ×
didj

d2
ij

(9) 

where d is the integrated average degree, droad is the average degree 
of road, drailway is the average degree of railway, w1 is the proportion of 
road traffic passengers, w2 is the proportion of railway traffic passen-
gers, Dij is the traffic gravitation between i and j, di and dj are the in-
tegrated average degree of i and j, respectively. r is the gravitational 
coefficient, usually taken as 1. 

3.2.4. Driving factors and spatial influences  

(1) STIRPAT Model-based driving factor of EF3D 

The STIRPAT model examines environmental impacts from the 
perspective of three aspects: population (P), affluence (A), and tech-
nology (T). The model also allows for empirical hypothesis testing to 
incorporate the potential impacts of human-driven factors on the envi-
ronment (Zeng et al., 2021). Consequently, the STIRPAT model has 
become one of the most commonly used models in the study of EF 
driving factors (Jia et al., 2009). The logarithm on both sides of the 
equation reduces heteroscedasticity because the STIRPAT model is 
nonlinear (Zeng et al., 2021). The model expression after taking the 
logarithm is as follows: 

Table 1 
Data source overview.  

Data Data type Data source 
Land use 

classification data 
(Interpreted from 
Landsat TM/ETM 
images in 2010 
and 2017 with a 
spatial resolution 
of 30 m) 

Cropland, 
grassland, forest, 
urban and build-up 
land, water, and 
unclassified land 

Geographical Information 
Monitoring Cloud Platform 
(http://www.dsac. 
cn/DataProduct/Index/200804) 

Road and railway 
network data 

Dataset of roads 
and railways 

Geographical Information 
Monitoring Cloud Platform 
(http://www.dsac. 
cn/DataProduct/Detail/201843) 

Biological resource 
production data 

Production data of 
rice, wheat, corn, 
soybeans, cotton, 
vegetables and 
melons, pork, beef, 
lamb, poultry, 
eggs, tung oil tree 
seeds, tea, fruits, 
wood, and aquatic 
products 

The Statistical Yearbooks of Hubei, 
Hunan, and Jiangxi Province in 2010 
and 2017, the Rural Statistical 
Yearbook of Hubei in 2010 and 
2017, the Statistical 
Yearbooks of the UAMRYR 
prefecture-level cities in 2010 and 
2017 

Energy consumption 
data 

Consumption data 
of coal, coke, crude 
oil, gasoline, 
kerosene, diesel, 
fuel oil, and natural 
gas 

The Statistical Yearbooks of Hubei, 
Hunan and Jiangxi Province in 2010 
and 2017 

Socio-economic 
dataset 

Population, GDP, 
and sector 
structure 

The Statistical Yearbooks of Hubei, 
Hunan, and Jiangxi Province in 2010 
and 2017, the Rural Statistical 
Yearbook of Hubei in 2010 and 2017 

Administrative 
division dataset 

Provincial, city, 
and county 
boundaries 

Map World in National Platform for 
Common Geospatial Information 
Services(https://www.tianditu.gov. 
cn/) 

Equivalence factor Cultivated land 
(2.52), grassland 
(0.46), woodland 
(1.29), water areas 
(0.37), fossil 
energy land (1.29), 
and construction 
land (2.52) 

《National Ecological 
Footprint Accounting Guidance 
2018》(Lin et al., 2018a) 

Yield factor Cultivated land 
(1.74), grassland 
(0.51), woodland 
(0.86), water areas 
(0.74), fossil 
energy land (0), 
construction land 
(1.74) 

《Estimation of China ecological 
footprint production coefficient 
based on net primary productivity》 
(Liu et al., 2010) 

Note: Equivalence factor is the conversion coefficient for converting the bio-
logical productivity area of six types of land with different biological pro-
ductivities to the area with the same biological productivity. The yield factor 
serves to convert various types of local land area into a corresponding overall 
area. 
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lnI = a+ b(lnP)+ c(lnA)+ d(lnT)+ e (10) 
where I is the environmental impact, P is the population size, A is the 

affluence,and T is technology level. b, c, and d are the coefficients of P, 
A, and T, respectively. a is the constant term, and e is the error term. In 
this study, I is the EF3D. 

According to data availability, P is set as the population density (PD), 
A is the GDP per capita (PGDP), and T is the proportion of non-tertiary 
industry in relation to the GDP (NTGDP), that is, the proportion of pri-
mary and secondary industries in GDP. The specifications of adjusted 
STIRPAT model are as Eqs. (10). Three explanatory variables were 
selected. First, PD refers to the number of people per square kilometer of 
land (Ahmed et al., 2019). The multiple effects of PD on sustainable 
development have been confirmed in the literature. Kongbuamai et al. 
(2020) found that PD has an inhibitory effect on Thailand’s EF. By 
contrast, Ahmed et al. (2019) confirmed that Malaysia’s EF is positively 
influenced by PD. When we focus on the UAMRYR in China, the positive 
or negative impact of PD on the EF remains unclear. Therefore, we 
incorporate PD as a proxy variable of P into the STIRPAT model. Second, 
GDP is the most commonly used indicator to measure the overall per-
formance of a country (Zeng et al., 2020). GDP per capita has been 
widely used as a wealth proxy indicator under the STIRPAT framework. 
Third, the industrial structure is usually regarded as the technological 
level. The economic shift from extractive, manufacturing, and con-
struction industries toward service industries (such as computer, ware-
housing, and catering industries) may reduce environmental 
degradation (Dietz et al., 2007). For some regions, the rise of tertiary 
industry means the transfer of material production to other regions to 
achieve economic “dematerialization” (Ausubel, 1996). Therefore, the 
proportion of non-tertiary industries in relation to GDP may have a 
positive influence on the EF, as confirmed by Wu (2020) and Dietz et al. 
(2007). 
lnEF3D = a+ b(lnPD)+ c(lnPGDP)+ d(lnNTGDP)+ e (11)    

(2) Spatial econometric model specification 

In spatial econometrics, it is assumed that certain attribute values of 
regional spatial units may be affected by neighboring observation values 
(Anselin, 2013). To explore the spatial influence of transportation 
network on EF3D, a spatial econometric model was used after identifying 
the existence of spatial autocorrelation. The spatial weight matrix is key 
to establishing the spatial econometric model, which represents the 
spatial interaction mode among observation values of different regional 
spatial units. Eqs. (9) is used to generate the spatial weight matrix of the 
spatial econometric model. The general form of the spatial econometric 
model is as follows: 

y = β0 + αW1y
′

+ λixi+
∑

m

i=1

W2βix
′

i + ηW3ε+ ε (12)  

where y is ln(EF3D) and yʹ is its neighboring value. xi and xiʹ denote the 
local and neighboring explanatory variables, which are PD, PGDP, and 
NTGDP, respectively. α is the coefficient of the spatial lag term of 
dependent variable, λi represents the coefficients of the explanatory 
variables, βi is the spatial lag coefficient of explanatory variables, β0 is a 
constant term. ε is the error, and η is the spatial error coefficient. W is a 
206 × 206 spatial weight matrix in 2010 and 207 × 207 in 2017. W1 is 
the spatial weight matrix for the lag term, W2 is the spatial weight for the 
explanatory variable, and W3 is the spatial weight matrix for the error 
term. When W1 and W2 are equal to 0, the general form is transformed 
into a spatial error model (SEM). When W2 and W3 are equal to 0, the 
general form is transformed into a spatial lag model (SAR). When W3 is 
equal to 0, the general form is transformed into the spatial Durbin model 
(SDM). 

4. Results 

4.1. Spatial temporal change of EF3D 

EFsize, EFdepth, and EF3D values exhibited spatial and temporal 
changes between 2010 and 2017 in the UAMRYR. EFsize represents 
capital flow occupancy. Fig. 2 (A and B) present the spatial distribution 
of EFsize in the UAMRYR in 2010 and 2017. The mean values of EFsize in 
the UAMRYR declined from 0.5684 gha/capita to 0.5525 gha/capita 
during this period; thus, the capital flow occupancy was declining. The 
high values of the EFsize were mostly concentrated in suburban districts 
with abundant resources and low PD in the northwestern, southeastern 
and part of the central areas. Low values were clustered in densely 
populated and relatively resource-poor urban districts in the north-
eastern and southwestern areas. Maximum values appeared in Yanling 
County (1.4820 gha/capita in 2010) and Jingshan County (1.3031 gha/ 
capita in 2017), which are located in the southern and northern fringe of 
the UAMRYR, respectively. Donghu District (0.0135 gha/capita in 2010) 
and Jianghan District (0.0144 gha/capita in 2017) had the minimum 
values in 2010 and 2017, and are located in downtown areas of the 
provincial capital cities of Nanchang City and Wuhan City, respectively. 

EFdepth represents the capital stock consumption. Fig. 2 (C and D) 
illustrate the spatial patterns of EFdepth in the UAMRYR in 2010 and 
2017. Mean values of EFdepth in the UAMRYR declined from 12.07 gha/ 
capita to 10.68 gha/capita over the period from 2010 to 2017. There-
fore, the average consumption level of the county’s capital stock 
decreased. The spatial distribution of EFdepth is opposite to that of EFsize, 
with high-value areas mostly distributed in urban areas and low-value 
counterparts mostly concentrated in suburbs. The EFdepth of most 
county units breached 1, an outcome which indicated that without the 
support of capital stock consumption, capital flows were insufficient to 
maintain socio-economic development. In particular, Qingshan District 
has the largest EFdepth in UAMRYR (330.10 gha/capita in 2010 and 
392.94 gha/capita in 2017) and traditionally a heavy industry county. 
Although Qingshan District faces industrial transformation and 
upgrading, its consumption of capital stocks continues to increase. A few 
rural areas in Yichun, Zhuzhou, Shangrao, Jiujiang, and Jingdezhen 
Prefectures had the original EFdepth of 1, and the number of those county 
units with no consumption of capital stock reduced from 12 in 2010 to 
11 in 2017. 

Fig. 2 (E and F) show the spatio-temporal changes of the EF3D in each 
county in 2010 and 2017. From 2010 to 2017, the per capita EF3D in the 
UAMRYR increased from 1.7292 to 1.6631 gha/capita. The spatial dis-
tribution of EF3D is similar to EFdepth as it was high in the urban areas 
and low in the suburbs. Although the average EF3D of the UAMRYR 
decreased from 2010 to 2017, 46% of the counties’ EF3D increased. 
Thus, the gap among different counties widened further. Meanwhile, 
most counties with increased EF3D were concentrated in the APL in the 
southeast of the UAMRYR. However, the average value of the EF3D of the 
APL in 2017 was lower than that of the WHA and the CZTA, indicating 
that despite the high level of sustainable development of the PLA, the 
pressures of natural resource utilization have been highlighted in recent 
years. It is worth noting that, Wannian District, has the largest increase 
in the EF3D from 2010 (0.8904 gha/capita) to 2017 (4.3872 gha/capita) 
and borders the eastern part of the UAMRYR. As a typical resource-based 
industrial city, Wannian District relies on a path of resource dependence 
that exacerbates its ecological deficit. 

4.2. Complex transportation network characteristics 

Fig. 3 illustrates the degree and proportion of the corresponding 
number of nodes in the road and the railway networks in 2010 and 2017. 
In both years, the road network nodes with degrees of 3 dominated, 
followed by those with degrees of 4, showing that most nodes in a 
complex network of roads have 3 or 4 edge connections. Nodes with 
degrees of 6 were least abundant. The railway network has the largest 
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number of nodes with degrees of 2, thereby indicating that most railway 
stations have 2 connecting edges. From 2010 to 2017, the number of 
nodes with degrees of 3 in the road and railway networks increased 
substantially, but the number of nodes with degrees of 2 decreased. 

Fig. 4 shows the topological structure of the complex road network. 
The road network had 4359 nodes and 6546 edges in 2010, and 5684 
nodes and 8854 edges in 2017. The overall road node coverage and 
density of the UAMRYR have increased, and the average degree 
increased from 3 to 3.12. Spatial distribution of the road network shows 
an unbalanced pattern, and the nodes of provincial capital cities 
(Wuhan, Changsha, and Nanchang) are highly clustered, especially in 
Wuhan and Changsha. In 2017, the number of nodes in Nanchang City 
increased, but the average degree didn’t increase substantially. The 

average degree of Wuhan and Changsha increased to a certain extent, 
thereby indicating that Wuhan and Changsha have better topologies and 
higher accessibilities than Nanchang. Notably, the density of nodes be-
tween provincial capital cities increased significantly, and the “trian-
gular, radial” inter-provincial connectivity network between provincial 
capital cities has gradually improved to achieve a two-hour access circle. 

Fig. 5 shows the topology of the complex railway network. From 
2010 to 2017, the nodes of the railway complex network increased from 
109 to 187, edges increased from 119 to 217, and the average degrees 
increased from 2.18 to 2.34. Thus, the scale of the network expanded 
and accessibility was enhanced in UAMRYR. UAMRYR’s railway 
network presents a structure that radiates from Wuhan, Changsha, and 
Nanchang as the center, and connects major cities in UAMRYR. In 

Fig. 2. Spatial patterns of EFsize, EFdepth, and EF3D in UAMRYR.  
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particular, the intercity railways reduce travel time between provincial 
capital cities and surrounding cities. Furthermore, WHA, CZTA, and APL 
present different railway layout modes. WHA and CZTA showed a ten-
dency to gather, but APL revealed a divergent spread to increase the 
railway coverage. 

Fig. 6 illustrates the integrated average degree of roads and railways. 
The integrated average degree of the UAMRYR dropped from 2.90 in 
2010 to 2.88 in 2017. Thus, when the passenger volume of the trans-
portation is considered, the connectivity of the transportation network 
decreases. This situation may be caused by a mismatch between the 
capacity and spatial distribution of transportation network. The spatial 
distribution of the integrated average degree presents a multi-level cir-
cular distribution structure with a low center that initially increases and 
then decreases. The high-value circle connects three provincial capital 
cities (Nanchang, Wuhan, and Changsha), and the structure becomes 
clearer over time. Qingshan District is the county unit with the highest 
increase in the integrated average degree, which may be caused by the 
demand for industrial development in Qingshan District. 

4.3. Spatial interaction of transportation networks among counties 

Fig. 7 illustrates the portion of gravity generated by the integrated 
average degree of the transportation network between different 
counties. The gravity force between two counties is calculated as spec-
ified in Eqs. (9) and by considering the integrated average degree and 
the geographic distance. The highest gravity forces in 2017 are shown 
for each county’s top three values in Figs. 7 and 8. The Donghu District 
(No.127) of Nanchang City has the largest share of connections with the 
top three values of the other counties, followed by Wuchang District of 
Wuhan City (No. 7), both of which are central urban areas of the pro-
vincial capital. The biggest interactions occurred between Hengshan 
City (No.83) and Nanyue District (No.86) in Hengyang City in 2010, and 
between Qingshanhu District (No.130) and Donghu District (No.127) in 
Nanchang City in 2017. 

Fig. 8 illustrates the visualization of the gravitational connection on 
the map in 2010 and 2017. By analyzing the spatial distribution of the 
gravitational connection in UAMRYR, it is shown that the interaction in 
UAMRYR is unbalanced, and the spatial pattern of “three nuclei” is 
presented. Wuhan, Changsha, and Nanchang occupied the interactive 
core positions, showing that the interactive influence of those cities is 
obviously stronger than for other cities in UAMRYR. The high gravity of 
WHU spreads around Wuhan, the gravity of CZTA spreads from 
Changsha to the south, including Changsha, Xiangtan, Zhuzhou, and 
Nanchang is the pole of high gravity, and it strongly connects the cities 
in the west (Jingdezhen, Yingtan and Shangrao) and the north 

(Jiujiang). Therefore, the distribution of high gravity is polarized in the 
UAMRYR, and transportation are given priority over the connections 
between the central city and surrounding cities. We also find that the 
spatial pattern inside UAMRYR has not undergone fundamental changes 
during the study period, however, the spatial interaction intensity be-
tween surrounding cities and provincial capital cities (Wuhan, Chang-
sha, Nanchang) has enhanced. 

4.4. Spatial influences of the transportation network on EF3D 

The diagnosis of spatial autocorrelation is shown in Table 2. Moran’s 
I was significant in 2010 and 2017, indicating that the spatial econo-
metric model is suitable for analyzing the spatial influence of EF3D. 
Significant spatial correlation was observed in both focal years through 
the Moran’s I test on errors. The Lagrange multiplier (LM) tests of the 
spatial lag and spatial error models are equally significant in 2010 and 
2017. Therefore, we implemented the SDM to examine the spatial 
spillover effects of EF3D through the transportation network and check 
the indirect spatial influence of PD, PGDP, and NTGDP on EF3D. 

Table 2 also shows the OLS regression and SDM regression results of 
the EF3D. From 2010 to 2017, the coefficient of W_ln EF3D decreased 
from 0.6195 to 0.5596 but still remained statistically significant. Thus, 
when a neighboring EF3D increases by 1%, the local EF3D will increase 
by 0.6195% and 0.5596% in 2010 and 2017 respectively through the 
transportation network. PD, PGDP, and NTGDP are significant local 
positive drivers of the EF3D under the STIRPAT framework. Indirect 
spatial spillover effects of PD and PGDP are also observed. PGDP showed 
a significant positive indirect spatial influence in 2010 and 2017, while 
that of PD showed a negative spatial influence and was only significant 
in 2017. 

From 2010 to 2017, three primary changes occurred. First, the local 
and indirect spatial influence of PGDP show an increasing trend, and the 
indirect spatial effects is stronger than local positive influences. Second, 
the local influences of the NTGDP on the EF3D show a declining and 
positive trend, but its influence is the strongest among all explanatory 
variables. Third, although the local influences of PD have positive ef-
fects, the spatial spillover effects of W_PD have become negatively sig-
nificant in 2017. Furthermore, the robustness of the spatial regression 
model is confirmed given that R2 increased significantly in 2005 and 
2010. Given that the R2 in the SDM model was significantly higher than 
the OLS in 2010 and 2017, the robustness of the spatial econometric 
model is established. 

Fig. 3. Network characteristics of degrees in the UAMRYR.  
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5. Discussion 

This study is motivated by an attempt to investigate the spatial in-
fluence on EF3D through the transportation networks by taking trans-
portation networks as the “channel” of spatial influence. The novelty of 
our study lies in our conceptualization of the transportation network as 
“channels” for inter-regional cooperation to achieve sustainable devel-
opment, rather than as a potential driving factor. Our results 

demonstrate that the EF3D is driven by socio-economic factors and 
confirm the existence of spatial spillover effects with varying magni-
tudes through transportation networks. 

EF is a powerful tool to assess the level of sustainable development. 
China proposes an ecological civilization strategy to guide urban sus-
tainable development (Yang et al., 2020). As a key transportation hub in 
China, the sustainable development of the UAMRYR is crucial to 
achieving China’s ecological civilization goals and realizing green 

Fig. 4. Road network in the UAMRYR.  
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transformation. Our findings show that the tensions between the eco-
nomic growth and environmental protection have slightly alleviated in 
the UAMRYR. This finding is attributed to the efforts of the authorities to 
formulate and implement a multi-pronged policy framework. Due to the 
huge differences in the development level and physical geography in 
UAMRYR, there are obvious spatial differences in counties’ EF3D status. 
The EF3D of the UAMRYR shows obvious spatial heterogeneity, exhib-
iting the spatial pattern with high values in provincial capital cities 

(Wuhan, Changsha, Nanchang) and low values in the suburbs. Inner 
central cities have consumed their capital stocks in advance and 
shoulder ecological debts, showing a conflict between economic devel-
opment and a sharp decline in EC. As less natural capital flows become 
available among countries, the spatial correlation of EF between 
counties through the transportation network could further strengthen 
the flexibility of capital circulation between the central city and the 
surrounding areas. Resource movement through transportation 

Fig. 5. Railway network in the UAMRYR.  
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networks is regarded as an essential component of regional cooperation 
and coordination. Therefore, the positive environmental externalities of 
transportation networks is supposed to be utilized to alleviate the 
ecological debt of the central city, and to realize the regional sustainable 
development. 

The strong driving force of the socio-economic system on the EF3D is 
confirmed in this study, which provides the empirical evidence for the 
efforts to reduce EF3D. PD, PGDP and NTGDP have played a positive role 
in the EF3D. Overloaded population and excessive economic activities 
will continue to exert pressure on the regional ecosystem, resulting in 
increasing capital consumption and waste discharge while damaging EC 

(Gu et al., 2015). Similarly, unreasonable industrial structure and 
excessive reliance on heavy industry sectors are undoubtedly aggra-
vating regional environmental burdens (Liu et al., 2018). These results 
are conductive for policymakers in identifying priorities for curbing pre- 
consumption of capital stock and making decisions regarding socio- 
economic development to improve sustainable development level. In 
the short term, actions should be taken with respect to the upgrading of 
industrial structure and rational optimization of production capacity. 
High-pollution and low-efficiency industries shall be gradually elimi-
nated. And it is advisable to implement strict population policy and 
population attraction policy in central cities and suburbs (satellite 

Fig. 6. Spatial patterns of the integrated average degree in the UAMRYR. Acronyms: IAD: integrated average degree.  

Fig. 7. Transportation connections for each county in 2017.  
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cities), respectively, so as to the reasonable spatial distribution of pop-
ulation and ecological balance. 

The utilization of the spatial influence of the transportation network 
is a key issue for the implementation of sustainable development policies 
at the regional level. The spatial spillover effect of the transportation 
network on the EF3D was found to be positive and significant and seems 
to aggravate environmental degradation in urban agglomerations. 
However, with the transformation and development of cities, new re-
quirements for modern roads and railways with network, connectivity, 

and ecological attributes, have been proposed, so that the negative 
spatial spillover effect is weakened, and the favorable function of the 
transportation network in urban space is strengthened. Counties with 
high transportation accessibility tend to use various trade-offs to break 
the blockages that restrict the rational flow of resources, correct the 
imbalance and mismatch of resource elements, and strengthen inter- 
regional coordination of the environment in urban agglomerations 
(Yang et al., 2020). Accordingly, long-term planning should emphasize 
various capitals, including natural and human capitals, to complement 

Fig. 8. Traffic gravity network for each county in 2010 and 2017. Acronyms: TG: traffic gravity.  
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one another and to maintain an optimal allocation through trans-
portation network (Mancini et al., 2017). The indirect spatial effect of 
the neighborhood also shows some interesting phenomena. The neigh-
boring PD had a negative influence on the local EF3D while PGDP had a 
positive influence. As a tightly coupled system, the UAMRYR relies on a 
well-developed transportation network. Economic integration seems to 
inevitably put pressure on the environment of the entire urban 
agglomeration. However, the transportation network, especially the 
intercity railway centered on Wuhan, Changsha, and Nanchang, sup-
ported smooth population mobility, helping to alleviate the ecological 
pressure caused by population overload in the central city. Thereby, to 
cope with the spatial effects of the transportation network, urban 
planners, resource managers, and decision makers should consider an 
ecologically efficient transportation system to promote the substantial 
expansion of resource flows between counties. The implementation of 
spatial coordination strategies according to the construction of the inter- 
city transportation network accelerates the circulation of labor, tech-
nology, services, and resources that shorten the urban spatial distance, 
thereby generating a positive spillover effect of the transportation sys-
tem. Furthermore, the transnational environmental impact of trans-
portation networks should be emphasized by international 
organizations and scientists, not least because it has global significance 
in promoting the international transition of sustainable development 
from theory into practice. Transnational ecological cooperation based 
on transportation systems should be urgently added to the global agenda 
to avoid the transnational pollution currently seen under globalization, 
so as to ensure the realization of SDGs. 

6. Conclusion 

This study investigated the spatial spillover effect of a transportation 
network on the EF3D in UAMRYR in 2010 and 2017. Results show that 
although EFsize, EFdepth, and EF3D in 2017 were reduced compared by 
2.80%, 11.49%, and 3.82%, respectively, compared with their 2010 
values, 94.69% of the county units were still in ecological overshoot in 
2017. In 2010 and 2017, the degree of complex networks of roads and 
railways increased from 3 to 3.12 and from 2.18 to 2.34, respectively, 
indicating the transportation network became increasingly advanced 
and effective. The EF3D is also highly influenced by the socio-economic 
system, in which PD, PGDP, and, NTGDP exerted positive influences. 
Meanwhile, neighboring PD has a significant negative spatial influence 
on the EF3D, but PGDP exerts a positive spatial influence. These findings 
are of great importance in building collaborative efforts to achieve the 
SDGs through transportation networks. 

Some limitations still need attention. First, road and railway net-
works should be compared. Road and railway systems are integrated to 

serve as a spatial interaction channel, but the heterogeneity of roads and 
railways has not been distinguished in this research. Second, aviation 
and shipping should also be considered. Work presented here only 
regards the physical network of roads and railways as the channel of 
spatial interaction and disregards the efficiency of the flow (human, 
resource, and technology) because of data unavailability. In the future, a 
comprehensive transportation network including multiple trans-
portation modes should be considered to provide policy suggestions to 
achieve sustainable development under three-dimensional integrated 
transportation. 
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W_ln PGDP  —  —  0.4159*  0.5601** 

W_ln NTGDP  —  —  –0.1755  –0.4644 
Moran’s I  —  —  0.2440***  0.2000*** 

Moran’s I-error  —  —  7.918***  6.608*** 
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