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ABSTRACT

Single-image generative adversarial networks learn from

the internal distribution of a single training example to gen-

erate variations of it, removing the need of a large dataset.

In this paper we introduce SpecSinGAN, an unconditional

generative architecture that takes a single one-shot sound ef-

fect (e.g., a footstep; a character jump) and produces novel

variations of it, as if they were different takes from the same

recording session. We explore the use of multi-channel

spectrograms to train the model on the various layers that

comprise a single sound effect. A listening study comparing

our model to real recordings and to digital signal processing

procedural audio models in terms of sound plausibility and

variation revealed that SpecSinGAN is more plausible and

varied than the procedural audio models considered, when

using multi-channel spectrograms. Sound examples can be

found at the project website. 1

1. INTRODUCTION

With the ever-growing complexity and length of video

games and related media, balancing the quality and quantity

of audio content has become a bigger challenge. As players

may repeat actions in games, it is common that multiple

sound files are used to sound design different audio varia-

tions of a single in-game interaction. Usually, this is done to

prevent listener fatigue and avoid repetition [1], as well as

to mimic reality (increase verisimilitude), where two sounds

are hardly identical. To provide more variation to the sonic

interactions, the sound design process regularly involves the

use of different sound layers for a single sound effect [1].

For instance, a footstep sound effect can be broken down

into the tip, the heel and the shoe fabric layers. Sound de-

signers generally use audio assets from pre-recorded sound

libraries and/or record the sounds on demand. Some sounds,

however, may be rare, difficult or time-consuming to obtain,

especially if multiple variations of them in the same style

are needed. Considering some modern video games may

have thousands of different sonic interactions within the

*This work was undertaken during an internship at Sony Interactive
Entertainment Europe.
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game environment, the amount of assets required becomes

an issue in the development process.

An alternative to using pre-recorded sound samples is the

use of sound synthesis to source the sound assets. In the

context of game audio, this is often called generative or

procedural audio [2]. Procedural audio usually refers to the

use of real-time digital signal processing (DSP) systems

such as sound synthesisers, while generative (audio) can

be defined as “algorithms to produce an output that is not

explicitly defined” [3, p.1]. Apart from sound synthesisers,

other DSP methods involve the manipulation of audio files

in order to obtain a desired effect, transforming the source

asset [4, 5]. Generative and procedural audio allow the

dynamic creation of sound assets on demand. However,

creating or using procedural or generative audio models

may be challenging for sound designers. With the surge in

interest in deep learning, novel sound synthesis techniques

are being developed which can be seen as an alternative to

traditional DSP methods such as [6], opening the possibility

to synthesise sounds that may be challenging to achieve

otherwise. Deep learning systems also blur the line between

generative and procedural audio, with some architectures

being able to synthesise audio on-demand with low latency

[7] or even in real-time [8].

Here, we use single-image generative adversarial networks

to synthesise novel variations of a single training sound ef-

fect. Generative adversarial networks (GANs) [9] are a

generative modeling technique where – typically – two neu-

ral networks (generator and discriminator) compete against

each other. The generator tries to capture the data distribu-

tion by fooling the discriminator, and the discriminator tries

to distinguish between real training data and the output pro-

duced by the generator. The end goal consists of having a

generator capable of producing plausible novel content with

a similar distribution as the training data, and this usually

involves training on large datasets over extended periods

of time. On the other hand, single-image GANs, such as

SinGAN [10], are trained on overlapping patches of a single

training image, modeling its underlying internal distribution

and producing novel samples with similar visual content,

but without the need of a large dataset. We apply the same

principle to the audio domain, resulting in an alternative

way to generate sound assets.

2. RELATED WORK

There are multiple studies on the use of DSP systems for

the synthesis of sound effects, such as in the synthesis of

footsteps [11] or aeroacoustic sounds [12]. DSP-based
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synthesis of sound effects has been demonstrated to be

perceptually effective when suitable sound synthesis meth-

ods are used [13]. Guidelines to choose a suitable sound

synthesis method to synthesise a target sound have been

proposed also [2] [14] [15]. There have also been DSP sys-

tems catered to generate variations of target pre-recorded

impact sounds, such as in [4] and, after we conducted our

listening study, in [5].

Audio synthesis using deep learning, often called neural

audio synthesis, is a very active field of research. These

techniques usually work either directly on the time domain

(waveforms) or in the frequency domain (spectrograms).

There are multiple architectures and applications that have

been explored, such as autoregressive models for waveform

synthesis [16], GANs for unconditional [17] and condi-

tional [18] waveform synthesis or for frequency-domain

conditional synthesis [19] [20] or diffusion models for con-

ditional and unconditional waveform synthesis [21]. Other

architectures, such as Differentiable DSP (DDSP) [22],

incorporate DSP methods like spectral modeling synthe-

sis [23] into the deep learning domain. All these architec-

tures need a training dataset of some sort.

Single-image GANs exploit the internal statistics of a sin-

gle training example to generate novel variations from it.

An example of these architectures is SinGAN [10]. SinGAN

is an unconditional generative model that uses a progressive

growing multi-scale approach, training a fully convolutional

GAN on a different resolution at each stage. The model

starts producing small-sized images, which are upsampled

and fed to the next stage alongside a random noise map.

SinGAN uses patch-GANs [24], training on overlapping

patches of the training image at the different stages. Given

the GAN receptive field is fixed with respect of the image

size, the model learns to capture finer details as the training

progresses. This fully convolutional design also enables

image generation of arbitrary size just by changing the di-

mensions of the input noise maps. ConSinGAN [25] is

another single-image GAN architecture. Built upon Sin-

GAN, the authors proposed some improvements to it, such

as concurrent training of the different stages or the resiz-

ing approach when building the image “pyramid” for the

different resolutions, reducing the number of parameters

and the training time. These architectures are also capable

of performing other tasks such as retargeting, animation

or super-resolution. There are several other single-image

architectures, such as Hierarchical Patch VAE-GAN [26],

which is capable of producing not only images but videos.

Other single-image methods, such as Drop the GAN [27]

use patch-nearest-neighbors instead.

Catch-A-Waveform (CAW) [28] is a recent audio time-

domain architecture inspired by single-image GANs that

is capable of producing novel audio samples of arbitrary

length with just 20 seconds of training data. They show-

case the architecture’s performance on music, speech and

environmental sounds (such as applause or thunderstorm),

yielding promising results. CAW is also capable of perform-

ing different tasks directly on the audio domain, such as

bandwidth extension, denoising or audio inpainting. In our

case, we focus the modeling at the individual sound effect

level with the aim of producing novel one-shots instead of

streams of audio such as music excerpts or speech.

3. METHOD

3.1 Audio Representation

While a 2-channel frequency-domain representation con-

sisting of a magnitude spectrogram and instantaneous fre-

quency (IF) has been used to achieve state-of-the-art results

on GAN audio synthesis of pitched musical notes [19] [29],

recently, [30] studied the use of 1-channel phaseless log-

magnitude spectrograms as an alternative for synthesising

non-harmonic sounds (such as chirps or pops), achieving

better perceptual results in this context. To invert the spec-

trogram back to audio, they reconstruct the phase using the

Phase Gradient Heap Integration (PGHI) algorithm [31].

Another popular phase reconstruction method is the Griffin-

Lim [32] algorithm. We tested a phaseless log-magnitude

spectrogram representation with both the PGHI the Griffin-

Lim algorithms and, in our preliminary tests, Griffin-Lim

produced better perceptual results using a 75% frame over-

lap. The FFT size choice also has a significant impact on

the results, being 512 the size that produced the best consis-

tent results in our tests. We opted then to use a phaseless

log-magnitude spectrograms with a FFT size of 512, 75%

overlap, a Hanning window of the same size of the FFT and

reconstructing the phase with Griffin-Lim.

Similar to [33], we use multi-channel spectrograms as the

input to our model. While in [33] the authors use the multi-

channel spectrograms to represent the pitch and intensity

of musical notes, we use them to represent the different

layers of the sound effect. To be precise, multi-channel

spectrograms are built by stacking multiple sound layers

along the channel axis, and these layers are provided by the

user to the network directly (they are not extracted program-

matically from layered sounds). We use the multi-channel

spectrogram term (instead of multi-layer) for consistency

with the literature. The use of multi-channel spectrograms

instead of single-channel spectrograms in the context of

sound effects synthesis presents some benefits. For instance,

they allow for some parametrisation of the sound synthesis

as the layers could be synced to an animation, triggered

asynchronously, have different volume from each other, etc.

To build the multi-channel spectrograms first we load and

normalise the sound layers in a range of [−1, 1]. Next, we

measure the longest sound effect layer in the time-domain

and zero-pad the remaining layers to this length. Then, we

transform the multiple audio layers into log-magnitude spec-

trograms, discarding the phase information and stacking

them along the tensor channel axis as if they were different

channels of an image. Finally, we normalise the spectro-

gram (mean 0, standard deviation 1). During inference we

revert this normalisation, invert the logarithm, permute the

channel and batch dimensions (so the layers appear as dif-

ferent sounds in a batch) and transform the spectrograms

back to audio. If the training sound effect has only one

layer, a single-layer spectrogram is used. Unless stated

otherwise, all sound layers are mono, with a sampling rate

of 44.1 kHz.



3.2 Architecture

SpecSinGAN is built upon the ConSinGAN [25] architec-

ture. As depicted in Figure 1, the SpecSinGAN discrimina-

tor will have as many input blocks in parallel as the number

of channels (sound effect layers) of the training spectro-

gram, each one of them consisting of a convolutional layer

followed by a Leaky ReLU activacion. For instance, for

a 3-channel spectrogram, the discriminator will have 3 in-

put blocks, and each channel of the spectrogram will be

processed individually by just one of them in parallel. The

resulting feature maps are stacked along the batch axis, in a

somewhat similar manner to [33]. Then, the feature maps

go onto 3 groups of convolutional layers followed by Leaky

ReLU activations, and finally onto a last convolutional layer.

All the convolutional layers have a kernel size of 3, stride

1 and 1 dilation rate. We use a 0.05 alpha value for the

Leaky ReLU non-linearity. As suggested by the ConSin-

GAN authors [25], we implemented a second discriminator

for the final training stages, finding slight improvements

on the results. The second discriminator is identical to the

first one, but with dilation on all its convolutional layers to

increase its receptive field.

The SpecSinGAN generator is similar to the growing gen-

erator in ConSinGAN. For the first training stage, the gener-

ator has 4 convolutional layers, each one of them followed

by batch normalisation and a Leaky ReLU activation, and a

final output convolutional layer. As we do not constrain the

range of the spectrograms, we do not use a hyperbolic tan-

gent activation in the output of the generator. Each training

stage, 3 more convolutional layers with batch normalisa-

tion and Leaky ReLU activations are added just before the

output convolutional layer, increasing the generator capac-

ity as the training progresses. All layers have the same

hyperparameters as the layers in the first discriminator.

By default, we set the training stages in the training pro-

cess to 10. At the start, an ‘image pyramid’ of training

spectrograms is built, going from the first stage where the

images are downsampled to a coarser scale, to the last stage,

where the images are at the original resolution. We set the

maximum size of the image to their original resolution, and

the minimum size depending on the sound. The training

starts at the coarsest scale, where the generator receives

the noise maps corresponding to that stage and produces

spectrograms at that size, while the discriminator classifies

their different overlapping patches against the spectrogram

from the training pyramid at that scale. As can be seen in

Figure 3.2, at the consecutive stages and until reaching the

last one, the features maps from previous stages are upsam-

pled and passed directly to the current stage, mixing them

with the corresponding noise at that scale to increase diver-

sity. We set the default noise amplification (a multiplier

to weight the noise against the feature maps) to 0.1. The

feature maps from the previous stage are also upsampled

and summed after the convolutional block at each stage.

Overall, the training process is identical to ConSinGAN,

with the exception we add a second discriminator halfway

through training.

As with [25], we train 3 stages concurrently, using a learn-

ing rate of 0.0005 for the current stage and 0.1 scaling

Figure 1. SpecSinGAN architecture. For simplicity, the

internal upsampling and padding operations in the generator

are not represented in the image (details in Section 3.2).

for the other 2 stages below. We use WGAN-GP [34] for

the adversarial loss, in combination with a reconstruction

loss with a weight of 10. We also use the ConSinGAN up-

samplig strategy for the generator, where the feature maps

after the first convolutional block are slightly upsampled to

increase the diversity at the edge of the images (refer to [25]

for details). More details of the training hyperparameters

can be found in Section 4.



Figure 2. Multi-channel synthesis during inference: the generator produces multi-channel spectrograms that are slightly

different in length on their x-axis. They are transformed back to audio using the Griffin-Lim algorithm [32], shuffling the

different length layers afterwards. We finally apply a randomised delay and gain to the individual layers that comprise the

sound effect, combining them to render the final audio files.

As depicted in Figure 2, during inference we randomise

the x-axis dimension of the noise maps that go into the

generator. Note we do not randomise the x-axis dimension

of the noise maps during training, but only during inference

once the model is trained. As a result, each multi-channel

spectrogram of the batch has a different length. This is

thanks to the fully-convolutional nature of the network,

where the input noise maps are not constrained to be of a

specific shape. We transform the spectrograms into audio

and shuffle the layers of the batch, combining the different-

length layers. Finally, we randomise the delay and gain of

the layers with respect to each other and sum the layers into

a single audio file.

4. EXPERIMENTS

We selected four one-shot sound effect categories that are

commonly found in video games and media, using three

sound layers for each of them: footsteps on concrete (heel,

tip and shoe fabric), footsteps on metal (heel, tip and metal

rattle), gunshots (noise/body, mechanic component and tail)

and character jump (human efforts, foley of the charac-

ter clothes and metal clinks of character equipment). We

collected the training sound effects from the Freesound

website [35]. To assess the effect of the multi-channel

spectrogram approach, we trained two models per sound

effect: one with single-channel spectrograms and another

with multi-channel spectrograms. The models trained with

single-channel spectrograms use a single training audio file

with all the different layers combined.

SpecSinGAN allows the input of both arbitrary length

audio files and arbitrary numbers of layers. However, we

found that different sound effects require different training

hyperparameters, depending on the number of layers, the

shape of the training sound, the frequency content, and the

desired degree of variation. For our purposes, three lay-

ers of relatively short one-shots (≈200-750 ms) are a good

compromise. In general, more layers or reverberant sounds

will require a higher number of iterations per training stage.

For sounds with very sharp transients at the beginning,

adding a small zero-padding at the start of the audio file be-

fore training can prevent artifacts. Other parameters could

be changed to accommodate longer or more challenging

sounds, such as the the number of training stages or even

the sampling rate or the FFT size.

In our experiments, we trained both the single and multi-

channel spectrograms of the footsteps on concrete and metal

for 2,000 iterations per stage, using 64 filters in the convolu-

tional layers, a dilation rate of 3 in the second discriminator

and setting the minimum tensor size of the training pyra-

mid (on any axis) to 50. Gunshots were trained for 8,000

iterations per stage using 128 filters, a dilation rate of 2

in the second discriminator and setting the minimum size

to 11. Finally, the character jumps were trained for 8,000

iterations per stage using 128 filters, a dilation rate of 3 in

the second discriminator and setting the minimum size to

25. As an indication, training on an NVIDIA Tesla V100

took approximately 50 minutes for single and multi-layer

footsteps on concrete and metal, 200 minutes for single-

layer gunshots, 600 minutes for multi-layer gunshots and

240 and 500 minutes for single and multi-layer character

jumps respectively.

During inference we randomise the delay and gain of the

different layers so they are coherent with the aesthetics of

the final sound effect. In terms of retargeting, we apply

no more than a randomised ±15% range multiplier to the

x-axis (corresponding with the spectrogram time axis) of

the input noise maps. Multiplying the input noise maps

by a larger number may result in audible artifacts. For

reference, synthesising 1,000 sounds on a NVIDIA Tesla

V100 took approximately 60 and 100 seconds for single

and multi-channel footsteps in concrete respectively.

5. EVALUATION & RESULTS

We designed a listening study to evaluate the sounds result-

ing from the experiments in Section 4, for the 4 catgeories

of footsteps on concrete, metal, gunshot, and character

jump. We compared 4 different systems on plausibility and

variation: real recordings (hereafter, Real), SpecSinGAN

with single and multi-channel spectrograms (denoted by the

subscript “s” or “m” respectively), and Nemisindo [6, here-



Figure 3. Listening study results for the different sound effects and systems considered. Real recordings are denoted by

‘Real’, Nemisindo by ‘NM’ and SpecSinGAN using either single or multi-channel spectrograms by ‘SpecSinGANs’ and

‘SpecSinGANm’ respectively. Participants were asked to rate each stimuli on both plausibility and variation in a [1..7] scale.

Note the scatter plot represents the individual ratings, with jitter added to prevent overlapping as only natural numbers were

given as rating options.



after, NM]. NM is a web-based procedural audio service

that enables the creation of synthesised sound effects using

DSP methods. For the character jump sounds, we only

compared Real and SpecSinGAN variants, as NM does not

offer this type of sound at the time the study was carried

out. Sounds for the Real category were sourced from the

same Freesound [35] training examples used in Section 4,

taking sound variations from the same file or designing

them (e.g., cutting, equalising, fading) when needed. The

SpecSinGAN sounds are those of Section 4. NM sounds

were taken directly from their presets (without searching

the parameter space), finding the closest ones to the target

category of sounds.

The sounds were presented concatenated to make sound

actions (e.g., footsteps turned into walking), resulting in au-

dio clips approximately 5-seconds long. Participants rated

5 sounds per category per system in terms of plausibility

and variation on a scale of 1 (not at all plausible/varied) to

7 (completely plausible/appropriately varied). We used the

Prolific platform to conduct the listening test and recruited

30 participants, compensating them £9/h. We pre-screened

participants such that only those over 18 years old who play

video games for at least 6 hours a week were selected, and

encouraged them to use headphones during the evaluation.

The listening study results are shown in Figure 3.

We used non-parametric Bayes factor analysis (BFA) to

investigate our hypotheses about how the systems would

compare in a listening study. This is because the rating

data cannot be assumed to be normally distributed, and

because Bayesian hypothesis testing is widely regarded

as superior to the frequentist variety, with the former al-

lowing for finding evidence in favour of “no difference

between systems” if the data suggest as much [36]. We

hypothesised that Real would have better plausibility and

variation than any other system, and the BFA found ex-

treme evidence for this (BF10 > 100). We also hypothe-

sised SpecSinGAN would have slightly more plausibility

than NM for footsteps on concrete, finding anecdotal and

strong evidence for this for SpecSinGANs (BF10 = 1.09)

and SpecSinGANm (BF10 = 12.5) respectively. In addi-

tion, we hypothesised that SpecSinGAN would have higher

plausibility ratings than NM for footsteps on metal, and

the BFA found extreme evidence for this (BF10 > 100).

Finally, we hypothesised SpecSinGAN and NM would

have similar plausibility for gunshots, and the BFA re-

jected this (BF10 > 100). The data suggested SpeSin-

GAN having more plausibility than NM for gunshots. Re-

garding variation, we hypothesised SpecSinGAN and NM

would have similar values, confirmed for SpecSinGANs

according to the BFA (BF10 = 0.09) and rejected for

SpecSinGANm (BF10 > 100). In the latter case, the data

suggest SpecSinGANm had higher variation values than

NM.

6. DISCUSSION

Audio asset creation can be a time-consuming process. In

this paper we presented SpecSinGAN, an unconditional gen-

erative architecture capable of synthesising novel variations

of one-shot sound effects with a single training example.

SpecSinGAN performed statistically significantly better

in the listening study, compared to the procedural audio

models considered. We used the NM presets available at

the time of the listening study instead of searching the

parameter space, so, while this is a reasonable choice, it is

possible that NM (or any other DSP tool) would produce

better results following a more exhaustive search of its

parameter space.

In future work, we plan to introduce user control over the

synthesis, alongside increasing its plausibility and variation

to be on par with real recordings. Another improvement

would be the implementation of automatic hyperparam-

eter tuning, given that, as discussed in Section 4, differ-

ent sounds required different hyperparameters and, despite

there being some intuitions on how to tune them, this still

involves a manual process.

We would also observe that, despite showing SpecSin-

GAN is a viable alternative to synthesise arbitrary one-shot

sound effects, DSP-based systems are also capable of pro-

ducing continuous streams of audio, as well as running in

real-time with direct input from either human-interpretable

controls or in-game parameters, granting them great adapt-

ability. We also acknowledge that, while we focused on

arbitrary sound effects, further listening studies need to

be carried out to understand how SpecSinGAN compares

to DSP methods such as [5] for generating variations of

target percussive sounds and to [28], adapting it to work

with shorter sounds at 44.1 kHz. We suggest, however, that

SpecSinGAN can be useful in a contexts where 1) sound

designers need to produce novel variations of a specific

pre-recorded sound, or 2) data is scarce, in which case

SpecSinGAN acts as a data augmentation tool.
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