The
University
s Of

)

2" Sheffield.

This is a repository copy of Discrete element method (DEM) analysis of lithium ion battery
electrode structures from X-ray tomography-the effect of calendering conditions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190077/

Version: Published Version

Article:

Ge, R., Cumming, D.J. and Smith, R.M. orcid.org/0000-0003-2340-0042 (2022) Discrete
element method (DEM) analysis of lithium ion battery electrode structures from X-ray
tomography-the effect of calendering conditions. Powder Technology, 403. 117366. ISSN
0032-5910

https://doi.org/10.1016/j.powtec.2022.117366

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/




Powder Technology 403 (2022) 117366

s

Contents lists available at ScienceDirect = POWDER
TECHNOLOGY

! & il
o L
]

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

Discrete element method (DEM) analysis of lithium ion battery electrode M)

Check for

structures from X-ray tomography-the effect of calendering conditions s

Ruihuan Ge *, Denis J. Cumming *°, Rachel M. Smith **

2 Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S10 2TN, UK
Y The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot 0X11 ORA, UK

ARTICLE INFO ABSTRACT

Atrticle history:

Received 22 December 2021

Received in revised form 25 March 2022
Accepted 3 April 2022

Available online 14 April 2022

Calendering is an essential process step to manufacture electrodes for lithium-ion batteries. The relationship be-
tween the various component material properties and calendering conditions has a large impact on the battery
performance. In this work, Discrete Element Method (DEM) was used to investigate the electrode structure evo-
lution under different calendering conditions. The initial positions of active material (AM) particles were ob-
tained from an uncalendered electrode microstructure characterised experimentally by X-ray tomography and
then imported to DEM simulations. Simulated structures under different processing conditions were obtained
by compression tests in DEM. The Edinburgh elasto-plastic adhesive (EEPA) model and bond model were used
to describe the mechanical response of AM particles and binder phase during compression. Detailed stress and
structural evolutions at microscopic scale were further analysed. For the first time, the results demonstrate a
promising way to predict and design battery electrode structures by combining X-ray tomography and DEM
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1. Introduction

Lithium-ion batteries play a crucial role in transforming the energy
storage field. They have been widely used in different fields from porta-
ble electronics to electrical vehicles [1]. To improve battery performance
and reduce production costs, substantial efforts have been made to un-
derstand the manufacturing process and to optimise the electrode mi-
crostructures [2,3]. Calendering is an important step of electrode
manufacture, in which the dried electrodes are compressed to control
electrode porosity and improve adhesion. Particle connectivity and vol-
umetric energy density are increased during this process. In addition,
other performance parameters including mechanical properties and
transport properties can also be affected as the electrode structure
evolves during calendering [4,5].

Several experimental studies have investigated how calendering af-
fects electrode structure and subsequent battery performance. Meyer
et al. [6] systematically investigated the calendering process of graphite
anodes and nickel manganese cobalt oxide (NMC) cathodes. The rela-
tion between the coating density and circumferential speed, applied
line load was studied. An exponential relationship was proposed to de-
scribe the compaction force and the measured porosity reduction. The
effects of process parameters were further investigated by Schreiner
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[7]. A machine/material-process-structure model was established to de-
scribe the relations between process and structural properties during
calendering. Recently, the effect of formulation parameters including
active material (AM), carbon additive, binder composition on the calen-
dering processability of cathodes was analysed by Primo et al. [8]. It was
found that the electrode mesostructures and the binder phase distribu-
tion affects the mechanical properties. It is also important to understand
the impact of the calendering process on the electrical properties of lith-
ium ion batteries. Experimental studies have demonstrated that the
pore size variations, AM particle deformation and breakage during cal-
endering can affect the electrochemical performance (e.g. electrode re-
sistivity [9], rate capability and long term performance [10,11]).

By using non-destructive imaging techniques such as X-ray com-
puted tomography, 3D microstructures of electrodes can be obtained
[12]. Detailed structural information including particle size distribution,
binder phase and pore distributions have been analysed [13-15]. The
correct characterisation of the microstructures offers important infor-
mation to fully understand the battery electrode performance. Lu et al.
[3] proposed a novel X-ray computed tomography dual-scan superim-
position technique to capture the carbon binder domain (CBD) phase
within electrode structures. A 3D microstructure-resolved numerical
model is further developed to investigate the electrochemical perfor-
mance of battery electrodes. Furthermore, in situ calendering experi-
ments were performed to investigate the structural evolutions and
provide insights to optimise 3D electrode microstructures.

0032-5910/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The application of numerical modelling has proved to be useful to
understand the structure evolutions and battery performance. Discrete
Element Method (DEM) models the motion and forces of particles,
both of which are important to understand the evolution of structure
and stress for granular materials [16,17]. DEM has been widely used in
chemical, pharmaceutical and mineral industries to understand differ-
ent particulate processes. Recently it was applied to understand the mi-
crostructures of battery electrodes [18,19]. Using a fabric tensor-based
approach, Stershic et al. [20] investigated the evolution of inter-
particle contact evolutions of electrodes. The mechanical descriptions
of the binder phase were not considered in their research. By purely
considering the electrode structure and AM particle size distribution,
the DEM simulations could not predict the evolution of inter-particle
contacts. Gimenez et al. [19,21] systematically investigated the mechan-
ical and electrical properties of electrodes. In their study, the electrode
structures were stochastically generated and the binder phases were
described using bond models. Using DEM, they also studied the struc-
tural changes and stress evolution during the charging-discharging pro-
cess. Srivastava et al. [22] proposed a DEM based approach to design the
electrode mesostructures. In their work, the initial structures were sto-
chastically generated and the mesostructures were designed by control-
ling the cohesive and adhesive forces of CBD phases and AM particles.
The electrochemical transport-relevant properties were further investi-
gated under different conditions. Recently, Ngandjong et al. [23] devel-
oped a calendering model to evaluate the relationships between
calendering pressure, microstructure and electrochemical performance.
In their DEM model, Hertizan theory and simplified Johnson-Kendall-
Roberts (JKR) model were used to describe the mechanical responses
of particles, and they stated the simulation results matched well with
experiments. Another piece of work of calendering model using DEM
was recently reported by Schreiner et a. [24]. All the above demonstrate
the potential to understand the calendering process and to optimise
electrode microstructures by DEM. To successfully model the calender-
ing process, appropriate contact mechanics models need to be consid-
ered to describe both the mechanical responses of AM particles and
CBD phase. Furthermore, electrode structures used for simulations to
date are stochastically generated by filling spherical particles with a
controlled size distribution in a cubic volume, to achieve desired volume
fractions. However, in a physical sample undergoing calendering the
AM particles are spaced further apart, and the volume fractions of
low-density CBD and pore phase need to be considered. The virtual
structures in previous works with an incorrect calculation of volume
fractions will therefore provide an unrealistic representation of the cal-
endering process and can hamper the accurate performance compari-
son of simulation results with battery electrodes in reality.

In this contribution, an experimentally prepared cathode structure,
characterised by X-ray tomography was used as an initial structure for
a DEM calendering simulation. The tomography data collected by
Ebner et al. [12] is used in this work. Simulated structures and relevant
properties were compared with the corresponding experimentally
characterised structures under different calendering pressures. Detailed
force networks were calculated, and the anisotropy of electrode struc-
tures were analysed by using vectorial quantities, i.e. fabric tensor and
stress tensor. Furthermore, the tortuosity factors under different condi-
tions were calculated and compared with corresponding experimental
results. Overall, this research demonstrates a promising way to quanti-
tatively analyse the structural, mechanical and transport properties dur-
ing electrode calendering by X-ray tomography and high fidelity DEM.

2. Methodology
2.1. Experimental data
In the research work proposed by Ebner et al. [12], the uncalendered

structures and structures calendered at different pressures of approxi-
mately 300, 600, and 2000 bar were characterised by Synchrotron

Powder Technology 403 (2022) 117366

radiation X-ray tomography. The cathode structures were made of
NMC 333 (LiNiy;3Mn4,5C04/30,), C65 carbon black and polyvinylidene
fluoride (PVDF). In this work, structures with a mass ratio of NMC par-
ticles, carbon black and binder of 90:5:5 are considered. Samples were
prepared by placing the electrodes in 15 mm diameter cylindrical
molds, immersing them in epoxy resin and heating them at 55 °C for
24 h under vacuum. They were then milled to 0.7 mm width. Finally,
the tomography scans with 0.37 pum voxel resolution were obtained.

In addition to the raw tomography data, the 3D reconstructed to-
mography scans were post processed using image segmentation algo-
rithm, and the labelled particles with coordinates and volumes were
offered by the database [12]. This information is directly used in this
study.

2.2. DEM modelling method

By using DEM, the translational and rotational motion of an individ-
ual particle in the structure can be described by:

dvk
mk—lt = F{§+Fg (1)

da¥
J8 T M,l; + Mg (2)

where m* and I are the k™ particle mass and moment of inertia. v* and
" are the translational velocity and angular velocity. FS and ME are the
bond force and bond torque that describe the CBD phase interactions in
this work. F*{, is the contact force of the neighbouring particles, and M‘{, is
the contact torque that originate from the tangential contact force and
rolling friction between neighbouring particles. For simplicity, the
superscript k of an individual particle is omitted in the following
sections.

2.2.1. The particle interactions

An Edinburgh elasto-plastic adhesive (EEPA) model is used to de-
scribe the interactions of micron sized AM particles [25].

The normal force F,, is the sum of hysteretic spring force fi,ys and
damping force f,,4 that can be calculated by:

Fap = (fiys +foa ) 3)

where n is the unit normal vector from the contact point to the particle
centre. The force-displacement relationship of f,ys can be expressed by:

fo + k] o" if ’(2 o" —52 Zk] "
Frgs =4 fo+k (a"—ﬁg) if ky8">ko (6”—6E)>—kadh6" (4)
fO_kathn if ](adh8n2k2 (6” —83>

where f; is constant adhesion force, 6 is total normal overlap, and & is

plastic overlap. ky is the loading stiffness, k; is the unloading stiffness,

and kaqp, is the adhesive stiffness, n is the non-linear index parameter.
The loading stiffness k; is calculated by:

42E*R* ifn=1
ki = §\/E*'E" if n>1 ©)

where E “and R " are the equivalent Young's modulus and radius. In this
work, a non-linear slope exponent n=1.5 is chosen.

The contact plasticity ratio, A, is calculated using the following
equation:
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The damping force f,4 can be calculated by:
fnd = _ann (7)

where v, is the relative normal velocity, and (3, is the normal damping
coefficient:

4m=k,
— et N 8
P 1+ (m/In e)? ®)

where e is the coefficient of restitution.
The contact tangential force F, is calculated by the sum of tangential
spring force, fis and tangential damping force, fiq:

Fip = (fis +fw) 9)
The tangential spring force is expressed as:

fis= (fts(n—l) + Afts) (10)

where fis(n—1) is the force of previous time step, and the incremental
tangential force Afis is calculated by:

Af o = —keveAt (11)
where k; is the tangential stiffness, v; is the velocity in tangential

direction, and At is the time step. The tangential stiffness can be
calculated using the following equation:

k] ifn=1

ke =
' SV““{sc’u/k*sn if n>1

where ¢y, is the tangential stiffness multiplier, and G * is the equivalent
shear modulus. The tangential damping force fiq is calculated by:

Jua=—Bve (13)

(12)

The tangential damping coefficient [3; can be calculated by:

[ Amrk,

The critical tangential force value f, is set equal to:
fctsﬂ‘ fhys + kadhﬁl1 _fo| (15)

where pu is the friction parameter. The total applied torque, 7; is
calculated by:

N = _:ur|fhys|siwi (16)

where 1, is the rolling friction parameter, s; is the distance from contact
point to the particle center, and ; is unit angular velocity at the contact
point.

2.2.2. The binder phase interactions

The bond model firstly developed by Potyondy and Cundall [26] is
used to describe the mechanical responses of the inter particle binder
phase.

The normal force F,}, can be expressed as a sum of the previous time
step bond force F,,—1)p and the incremental tangential force AF;

Fn,b = (Fn(n—l),b + AFn,b) (17)
AFn'b = —kn,bvn,bAt (]8)

where k,, is the bond normal stiffness, and vy, is the velocity in normal
direction.
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The tangential spring force F;}, is calculated as:
Fip, = (Fyn—1)p + AFyp) (19)
AF, = —kepvepAt (20)

where Fh—1)p is the bond tangential force of the previous time step,
AF;), is the incremental tangential force, k., is the bond tangential
stiffness, and vy, is the tangential velocity.

The bond tangential moments M}, and bond normal moments M,
calculated based on the incremental value from the previous time step
can be expressed as:

M, = (Mt(n—l),b + AMt,b) (21)
AM,p, = —kipAp@¢pAtl) (22)
My, = (Myn—1)b + AMyp) (23)
AM,,;, = —knpAp@np AL, (24)

where Ay is the bond cross sectional area, I, and J, are the moment of
inertia and the polar moment inertia of the bond, @}, and @, are
relative angular velocities in tangential and normal directions.

The bond strength is calculated according to the beam theory as:

— @ + |Mt'b‘Rb <

A, 5, <O (25)
|Ft,b|+}Mn,b\Rb “o, (26)
Ap I

where 0, and o are the tensile and shear strength of the bond,
respectively.

2.3. Structure generation and DEM simulation setup

For the structure used in DEM simulation, a subdomain of an
uncalendered structure containing a number of N, = 5106 NMC 333
(LiNi;3Mny/3Co4,30,) particles was chosen from the database [12]
(Fig. 1 a). As illustrated in Fig. 1 (a), the structure with detailed
particle position and diameter was imported into DEM simulations.
Due to the high sphericity of NMC particles, spherical approximations
were used for these particles. The particle size distribution by diameter
is illustrated in Fig. 1 (c).

As shown in Fig. 1, inter-particle bonds were generated between AM
particles to describe the mechanical response of CBD phase within elec-
trode structures. The bonds are considered to be generated when the
centre to centre distance of two neighbouring particles denoted by P4
and Pz meet the following criteria:

IPa—Pg||<{p+(Ra + Rp) (27)
where R, and Rg are the particle radius. The bond radius is calculated as:

Ry, = Ap-min (Ry, Rp) (28)

In this work, the two multipliers are set as ¢,=1.67, A\,=0.5. The
multipliers are chosen to ensure all the particles can be bonded
together without unbonded particles. In addition, the multipliers were
calculated to ensure the total bond volume is equivalent to the
calculated CBD phase volume, according to the method in [19]. The
inter-particle bonds were assigned to the particle assembly before com-
pression, i.e., the multipliers were used to generate the initial bonded
particle assembly, and they do not play a part during compression.
The assigned inter-particle bonds show deformation/breakage during
compression that correspond to the CBD phase mechanical properties
in reality.
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Fig. 1. Electrode structure generation used in DEM (a) tomography data processing (b) illustration of bond formation in DEM (c) active material (AM) particle size distribution [12].

An illustration of DEM simulation setup is shown in Fig. 2. Simula-
tions were carried out using Altair EDEM 2021. The top plate is made
of steel to represent the roller during calendering, and the bottom
plate is aluminium to represent the current collector. Periodic bound-
aries were applied on the sides. To mimic the calendering process, the
electrode structure was gradually compressed by moving the top plate
with a constant speed of 0.01 m s~ . The bond parameters are based
on calibration results as illustrated in the following Fig. 4. The bond stiff-
ness (ky) values are 1.5 x 10" N m 3, and the bond strength (o,,) values
are 3 x 108 Pa. Other simulation parameters used in this work are listed
in Table 1. Parameters were mainly taken from previous research work
in this field. Mechanical properties of the top and bottom plate were
from the EDEM material library.

2.4. Structure analysis method

After the DEM simulation, the electrode structures under different
calendering levels were further analysed by calculating porosity and
tortuosity factors.

2.4.1. Porosity analysis

Due to the soft particle model used in DEM simulations, the AM par-
ticles undergo deformations during calendering, and overlaps between
AM particles can occur. Therefore, the accurate calculation of porosity
is non-trivial and cannot be directly calculated using an analytical
method. In this work, two statistical methods were considered to

(a) Inter particle
bond

(b) DEM simulation setup

Fig. 2. DEM simulation setup of compression test.

properly calculate the structure porosity, i.e. grid approach and Monte
Carlo approach [37](Fig. 3).

(a) Grid approach.

As illustrated in Fig. 3 (a), a grid of simple cubic lattice points was
generated in the calculated region. The porosity of the granular struc-
ture & can be calculated by:

& = 1—Ngiid particte /NeridTotal (29)

where Ngyig particle 1S the number of grid points falling in the particle
region, Ngriaotal 1S the total number of grid points in the whole region.

(b) Monte Carlo approach.

As for the Monte Carlo approach, a number of random points were
generated in the calculated region (See Fig. 3 b). The porosity is calcu-
lated in a similar way as the grid method:

e=1 _NMC,Particle/NMC,Total (30)

where Nyic particte 1S the number of random points in the particle region,
and Nyictotar IS the number of random points in the whole region.

Table 1

DEM simulation parameters used in this work [19,27] [16,20].
Description Parameter Value Source
Particle Young's modulus (GPa) Epar 144 [19,27]
Particle density (kg m—3) Dpar 4750
Particle Poisson's ratio (—) Upar 0.25
Particle-particle static friction (—) Mp.s 0.25 [16,20]
Particle-particle rolling friction (—) Hp.r 0.01
Coefficient of restitution (—) e 0.5
Plate Young's modulus Es¢ 208 Material library
(Steel) (GPa)
Plate density (Steel) (kg m—>) Pst 7900
Plate Poission's ratio Vse 0.3
(Steel) (—)
Plate Young's modulus En 68.9
(Aluminium) (GPa)
Plate density (Aluminium) (kg m~3) Pal 2700

Plate Poission's ratio Val 0.3
(Aluminium) (—)




R. Ge, D,J. Cumming and R.M. Smith

(a) Grid approach (b) Monte Carlo approach

Fig. 3. lllustration of two porosity analysis methods (the lattice or random points in the
particle region are colored in light green, while the points in the empty space are in blue).

To evaluate the reliability of these two methods, non-overlapping
particles with 2-30 pm diameter were randomly generated in a 50 pm
length cube. The porosity was analytically calculated by summing all
the spherical particle volumes for comparison with the numerical pre-
dictions. As illustrated in Fig. 4, the relative errors of these two numer-
ical methods were estimated considering different number of points.
In general, the Monte Carlo approach can have a better prediction of po-
rosity when using the same number of sampling points. Therefore, in
the following the Monte Carlo approach is applied to calculate the po-
rosity under different conditions. As each grid point can be treated as
a voxel, the grid approach was used to generate voxelised volumes of
particle structures, and then used for further tortuosity analysis and
binder phase generation. A 0.5 um pixel length was chosen to ensure
the reliability of results. As shown in Fig. 4, when the number of points
is larger than 1 x 10° (the corresponding pixel length is 0.5 um), the rel-
ative error of grid approach can fall below 2%. A further increase of the
resolution to 0.1 um can slightly reduce the relative error to less than
1%, but the number of grid points is larger than 1 x 10 corresponding
to a significant increased computation time.

2.4.2. Tortuosity analysis
The tortuosity factor T has a significant impact on the transport
properties of porous structures. It can be defined as:

@® Grid approach
°® O Monte Carlo approach
- = 2% Relative error
015 ® .0
= G--g------®¢&e-----
S 0.014 e,
£ - i )
o a
() u
= g
5 0.001 4 .
m ".
Dn
1E-4 4 o
m}
1E-5 T T T T T 1
100 1000 10000 100000 1000000 1E7 1E8

Number of points N (-)

Fig. 4. Relative error analysis of porosity analysis for both grid and Monte Carlo methods.
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pef —p? (31)
T

where DT is the diffusivity of the porous structure, D is the intrinsic dif-
fusivity of the porous phase material. As illustrated in Fig. 5, the tortuos-
ity can also be geometrically explained as:

Tgeo = Le/Lo (32)

where L. is the actual length of the path through the porous structure,
and Ly is the straight-line length across the structure in the direction
of flow (See Fig. 5). For all systems 7 > 1, and the flow paths are direct
when 7 = 1. Various analytical, experimental and numerical methods
have been proposed to calculate the tortuosity of porous structures
[28-30]. In this work, the diffusion approach is considered. A MATLAB
application TauFactor, based on numerically solving steady diffusive
equations, was used for tortuosity analysis [29].

3. Results and discussion
3.1. Porosity comparison and voxelised structure generation

In DEM simulations, the electrode structures were compressed to
achieve different calendering levels. The corresponding top plate pres-
sures at different calendering levels were recorded. Four different com-
pression pressures were used to generate electrode structures, as
illustrated in Fig. 6. Using the Monte Carlo approach presented in
Section 2.4.1, the porosities under different conditions were calculated
and compared with the corresponding experimental results [12]. For
making a quantitative comparison with the corresponding tomography
scans, a proper definition and calculation of electrode structure porosity
is necessary. In this section, the porosity &pore+inder Was defined as the
void volume fraction between AM particles considering both the pore
and binder phase:

EPore-t+binder = ]_‘PPar (33)

where @p,, is the volume fraction of AM particles. As shown in Fig. 7, the
porosity changes in DEM simulations are in good agreement with the
corresponding tomography data at the respective stress levels. A slight
deviation at the initial stage can be observed, and there are two likely
primary reasons for this. Firstly, when using spherical approximations
of AM particles in DEM simulations there is some volume loss. In addi-
tion, the experimental results are affected by the inhomogeneity of elec-
trode structures in reality, which can be used to explain the unexpected
variation tendency from 0 bar to 400 bar [12].

By using the grid approach presented in Section 2.4.1, the AM parti-
cle structures were converted to a stack of voxelised images. The 3D

Fig. 5. [llustration of tortuosity within porous structures (tortuosity is a ratio of the actual
path length L. and the straight-line length Lo).
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600 Bar 2000 Bar

Diamq’!esro(g s
2.26e-05
1.72e-05
1.18e-05
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1.07e-06

h.= 49 ym h. = 36.5 ym

Fig. 6. Schematic of DEM simulation results under different compression pressures. The particle diameter is illustrated by changing colour from blue to green to red.

volume was chosen with a cross-section of 150 pm x 150 um and it
spans the entire thickness of the electrode (~30-70 um). The voxelised
3D structures and corresponding 2D cross sectional images are illus-
trated in Fig. 8. It can be clearly observed from the 2D cross sectional im-
ages that the AM particle volume fraction increases with increased
compression pressures. The generated voxelised 3D volumes are used
for tortuosity analysis in the following section.

3.2. Stress and fabric tensor analysis

As the particles within the electrodes are connected by bond con-
tacts, a complex network is formed. In this section, the contact force net-
works under different conditions were calculated from the particle
contact data obtained by DEM simulations. Furthermore, vectorial
quantities (i.e. contact normals n and contact forces) were analysed by
using fabric tensor and stress tensor [31-33].

Fig. 9 illustrates the contact force network under different compres-
sion pressures. The force vectors at each particle contact pair are aver-
aged and normalised as:

Fi=\/Fo;+F}; +F;i=1,2N (34)
Fi,normalised = Fi/ max (Fl'”FNc) i= 1-2"'NC (35)

where Fy;, Fy; and F,; are the contact force components of each particle
contact in Cartesian coordinate system, N, is the total number of particle
contacts. The line weight in Fig. 9 is scaled by the magnitude of the

0.7 1
- 0O - Tomography
-@®-DEM
< 061
3
._%
o
&
W)
> 0.54
‘©
o
o)
ol
0.4 4

0 400 800 1200 1600 2000

Compression pressure (Bar)

Fig. 7. Comparison of porosity €pore+binder Under different compression pressures, the
tomography data is from Ebner et al. [12].

normalised force Finormalisea at each contact. With increased
calendering stress, the particle contact force becomes more obvious,
and force chains are formed. Calendering affects the particle contact
distributions, and more homogeneous inter-particle contacts can be
generated with increased calendering levels as shown in Fig. 9.

The fabric tensor @;; is used to study the directionality of particle
contacts, which can be defined as the average of outer product of the
contact normal n [31]:

(36)

where n; and n; are the projection of the unit contact normal n in
Cartesian coordinate system. In this work, the contact normal n
denotes the normal vectors of particle pairs, in which particles are either
bonded or in contact with each other. The fabric tensor can be
decomposed into isotropic and deviatoric part:

1.
by = 36 + P (37)
3D structure 2D Cross section
0 Bar
300 Bar
600 Bar
2000 Bar

Fig. 8. Voxelised 3D electrode structures and 2D cross sections from DEM simulations
under different compression pressures (In the 2D cross section, the white voxels are AM
particles, and black voxels are voids).
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0 Bar 300 Bar

600 Bar

Fig. 9. Contact force network under different compression pressures.

where §;; is the Kroenecker delta, and @’; is the deviatoric part. The
particle contact information under different conditions is analysed and
the diagonal components of deviatoric part ®}; are shown in Fig. 10. In
Fig. 10, @ and @, represent the direction parallel to the current
collector, and &%, is the normal direction of compression. It can be
observed that @4, and &), increase gradually with increased
compression pressure. The @/, in the normal direction shows a
contrary tendency as it decreases from —0.018 to —0.04 with the
increased compression pressures. As the @4, and @), indicate the
homogeneity of particle contacts through the x-y plane, they show very
similar value range and variation trends. However, it is interesting to see
that &, is slightly higher than &, for all structures under different
compression pressures. This is possibly because of the particle contact
difference from the original electrode structures. It is worth to
investigate if this difference can be related to the manufacturing
process in reality. As illustrated in Fig. 10, the diagonal components of
deviatoric part @} and the calendering conditions are strongly related.
In future it is also worthwhile to investigate the effect of the particle
size distribution on the particle contacts and corresponding ;.

The stress tensor o within a representative elementary volume V
can be described as [33,34]:
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Fig. 10. Diagonal components of deviatoric part @' of the fabric tensor under different
compression pressures.
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where ry; and r; are the relative positions of the two particles in a pair,
and Fy; and Fy; are the interaction forces acting on each other. The
calculated results of diagonal components are presented in Fig. 11. The
stress within the electrodes increases with increased calendering
levels. 0y, and 0y, are approximately the same, and 0 in the normal
direction is higher for all calendering conditions. The fabric tensor and
corresponding stress indicate the topological and anisotropic features
of particle contacts within electrode structures that may affect the
electrode performance considering different directions.

3.3. Tortuosity analysis

The tortuosity factor can represent the lithium ion transport feasibil-
ity in the electrolyte phase. It is an important property as it limits the
maximum charge/discharge rate for battery electrodes [28]. In this
work, the average tortuosity factor Tpore+binder in Which the porous
phase containing both the pore and binder were calculated and
presented in Fig. 7. In this figure, the average tortuosity factors of DEM
simulated structures are compared with the results from X-ray tomog-
raphy under the same stress levels. Representative volume analysis re-
sults of the tortuosity factor Tpore+pinder from 20% to 100% volume
fractions of the electrode structure shown that the varied volume
fractions have minimal effects (less than 5%) on the tortuosity factor
values. As illustrated in Fig. 12, the tortuosity factor increases with the
increased calendering pressures. The tortuosity factor from DEM simu-
lations shows a very similar variation tendency with the results from
the 3D structures characterised by X-ray tomography [12]. The slight
discrepancy may be due to plastic deformation and breakage of AM par-
ticles in calendering experiments, which was not captured in the simu-
lation results here [12]. Another cause for discrepancy reason is the non-
uniform, non-spherical shape of AM particles, which cannot be captured
by current DEM simulations.

The reconstructed structure and relative properties, i.e. €pore 4 binder
and Tpore-t binder 0NNy contain the geometrical features of AM particles.
As the CBD phase is not visible from the tomography data, a binder gen-
eration algorithm was developed to evaluate the effect of binder phase
on tortuosity factors. Pendular ring shaped binder phases were gener-
ated between AM particles using a level-set method recently proposed
by Trembacki et al. [35]. The binder phase {spin4er can be defined as:

Wincer = M | (W + O+ (W + 0) =S, = (e, +0) (W, +0) 5], %
(39)
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Fig. 11. Diagonal components of the stress tensor oj; for the calendered electrodes under
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Fig. 12. Comparison of average tortuosity factor Tpore-binder Under different compression
pressures.

Table 2
Values of S parameters for binder phase generation, and corresponding AM particle
volume fraction @p, and porosity &pgre.

0 Bar 300 Bar 600 Bar 2000 Bar
S 998 976.5 966.5 976

Opar 0372 0.399 043 0.583
Epore 0.525 0.49 0.45 0255

where {ip ; is the level set of an individual particle, N, is the total particle
number. The binder phase is generated for all particle pairs with the
particle number index ranges from 1 to Np,. The parameter O and S in
the above equation are used to control the binder morphology and
amount respectively. The particle level sets are shrunk by using offset
O (shape), and then grown by the offset S (size) preferentially
between two neighbour particles. In this work, the shape parameter
O = 30 um, while the size parameter S is tuned to achieve different
prescribed electrode porosities €pore. The electrode porosity €pgre in
which the porous phase containing only pores can be theoretically
estimated by:
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€pore = 1—Opar —@pyrX/(100—2X)-(Ppar /P + Ppar/PpvDE) (40)
where the mass ratio x = 5 (in wt%), NMC density pp,, = 4.7 gcm >,
carbon black density pcg = 2 gcm™> and binder density ppypr = 1.78
gcm™3 [12]. Detailed S parameters, and the corresponding particle
volume fraction @p,r and porosity gpore are listed in Table 2.

A 2D slice parallel to the through plane direction is illustrated in
Fig. 13 (a). The generated pendular ring shaped binder phase can be ob-
served in this figure. The corresponding potential distributions of the
diffusing species in the porous phase are calculated from diffusion equa-
tions and illustrated in Fig. 13 (b). The corresponding tortuosity factors
are plotted in Fig. 13 (c). When considering the effect of binder phase,
the calculated tortuosity factor Tpere is higher than the tortuosity
factor Tpore+pinder CONtaining both the pore and binder in the porous
phase. Traditionally, the Bruggeman effective medium equation 7 =
£795 is used to describe the tortuosity of electrode structures [36]. In
this work, the data of Tpore and Tpore 4 pinder are fitted by a generalized
equation 7 = ae®. As shown in Fig. 13(c), Tpore-+binder (TPore+binder =
1.026p223 binder) has a very consistent tendency with the classical
Bruggeman equation. This is reasonable as the structures generated
from DEM simulations are mono-sized spherical particle packing. After
considering the effect of binder phase, the data is fitted as Tpore =
0.885¢ 058, The fitting curve agrees with the data from experiments
using 90% AM mass loadings [28]. There is some slight discrepancy as
the current simulation results cannot resolve the detailed nano-sized
pores of binder phase. As the results of blue and red curves in Fig. 13
(c) are based on the same AM particle structures, the main difference
of these two curves is from the absence/presence of binder phase. For
the first time the results show the tortuosity of a calendered electrode
can be predicted by combining DEM simulation and a binder phase gen-
eration algorithm. In future, it is useful to investigate the effect of AM
particle size distribution and binder phase volumes via artificially gen-
erated electrode structures. The generated microstructures under dif-
ferent calendering conditions can be further used to electrochemical
analysis of lithium ion batteries.

4. Conclusions

In this work, DEM simulation was used to study the structure and
corresponding properties of lithium ion battery electrodes under differ-
ent calendering conditions. The mechanical properties of AM particles
and binder phase were described by an EEPA model and a bond
model. Using an uncalendered electrode structure characterised by
X-ray tomography as an initial structure, the DEM simulation results
were compared with experimental results under same calendering
pressures. The main conclusions are:
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Fig. 13. Tortuosity factor with/without binder phase (a) 2D visualisation of electrode structure parallel to the through plane direction, the binder phase is colored in red. (b) Normalised
potential distribution without/with binder phase. (c) Tortuosity factor 7 plotted as a function of porosity.



R. Ge, D,J. Cumming and R.M. Smith

1. The porosity of electrode structures was accurately defined by con-
sidering different phases. Two statistical methods, i.e. Monte Carlo
approach and grid approach were used to accurately calculate the
POrosity Epore+binder Of Simulated structures and generate voxelised
electrode structure. The porosity €porebinder Calculated from DEM
simulations shows good agreement with the corresponding AM par-
ticle structures experimentally obtained from X-ray tomography.

2. The contact force networks under different conditions were calcu-
lated by using data from DEM simulations. Following this the fabric
tensor and stress tensor were analysed. From a point of quantitative
view, the simulation results reveal the inhomogeneous stress distri-
bution and anisotropic properties of electrode structures under dif-
ferent calendering conditions.

3. The calculated tortuosity factors Tpore+binder ffom DEM are in agree-
ment with the results calculated from corresponding tomography
structures. By generating the binder phase using a level set method,
tthe tortuosity factors Tpore considering binder phase effect were
calculated. The results show similar tendency with the experimental
data of 90% AM mass loading structures.

This work demonstrates, for the first time, the feasibility of combin-
ing X-ray tomography and DEM to quantitatively analyse electrode
structure evolution during calendering. This approach is useful to digita-
lize electrode design, as it incorporates the realistic microstructure and
material properties. The high-fidelity particle scale information can be
obtained under each incremental calendering step, which could be use-
ful to optimise electrode structures with desired mechanical and trans-
port properties. It is important to emphasise that spherical particle
approximations were used in this work, and the effect of particle frac-
ture is not considered. These limitations may affect model prediction,
especially under high calendering pressures. There is opportunity for fu-
ture work to consider non-spherical particle shapes and CBD phase dis-
tribution resolved by tomography in DEM simulations.

Nomenclature

Ap Bond cross sectional area, m?

a Constant, —

b Constant, —

D The intrinsic diffusivity, m? s~!

Def The diffusivity of the porous structure, m? s~
E* Equivalent Young's modulus, MPa

Epar Particle Young's modulus, MPa

Es: / Eal Plate Young's modulus, MPa

e Coefficient of restitution, —

F Contact force, N

Fi Fyi Fzi The i contact force components in Cartesian coordinate
system, N

The i normalised contact force, N

Fi,normalised

F.p, Fop Particle/bond normal force, N
Fip, Fp Particle/bond tangential force, N
fet Critical tangential force, N

Joys Hysteretic spring force, N

foa Damping force, N

fis Tangential spring force, N

fia Tangential damping force, N

fo Constant adhesion force, N

G* Equivalent shear modulus, MPa
he Electrode thickness, m

I Bond moment of inertia, kg m?
v Bond polar moment of inertia, m*
ky Loading stiffness, N m™"

ky Unloading stiffness, N m~!

Kadn Adhesive stiffness, N m~!

ke Tangential stiffness, N m ™!

1

knp Bond normal stiffness, N m™

N Grid,Particle
N Grid,Total
N, MC,Particle
N MCTotal

n

n;, n;

0]

R*

Ra, Rp

Ry

i, T2i

S

Si

t

Vv

v

Vn

Ve

X

Greek symbols
PBn

Be
o

&

Epore+binder

gPore

b
Sim
Ap

Ap

Hs

Hy
VPar
Vs / Vap
Y Par
Pcs
PpvpE

Pst/ Par

Op
Ot
(o
Tgeo

Tl’ore+binder

TPore
Dy
@y
(PPar
1I’Binder
W,

w
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Bond tangential stiffness, N m ™"
Bond length, m
Actual path length through the porous structure, m
Straight-line length across the structure, m
Torque, N.m
Bond normal moment, N m
Bond tangential moment, N m
Mass, kg
The total number of particle contacts, —
The total number pf particles, —
The number of grid points in the particle region, —
The total number of grid points in the whole region, —
The number of random points in the particle region, —
The total number of random points in the whole region, —
Unit contact normal vector, —
Projection of the unit contact normal, —
Binder shape parameter, pm
Equivalent radius, m
Particle radius, m
Bond radius, m
Relative positions of two particles in a pair, —
Binder size parameter, um?
Distance from contact point to the particle center, m
Time, s
Representative elementary volume, m>
Velocity, m s
Relative normal velocity, m s~
Relative tangential velocity, m s™
Mass ratio, wt%

1
1

Normal damping coefficient, —

Tangential damping coefficient, —

Normal overlap, m

Porosity, —

Electrode porosity (Porous phase containing both the
pore and the binder), —

Electrode porosity (Porous phase containing only
pores), —

Bond length multiplier, —

Tangential stiffness multiplier, —

Bond radius multiplier, —

Plasticity ratio, —

Friction coefficient,-

Rolling friction coefficient,-

Particle poission's ratio,-

Plate poission's ratio,-

Particle density, m3 kg—1

Carbon black density, m3 kg—1

Binder density, m3 kg—1

Plate density, m3 kg—1

Tensile bond strength, MPa

Shear bond strength, MPa

Stress tensor, MPa

Geometric tortuosity, —

Tortuosity factor (Porous phase containing both the pore
and binder), —

Tortuosity factor (Porous phase containing only pores), —
Fabric tensor, —

Deviatoric part of fabric tensor, —

Volume fraction of AM particles, —

Level set of binder phase, —

Level set of an individual particle, —

Angular velocity, s—1
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