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Calendering is an essential process step to manufacture electrodes for lithium-ion batteries. The relationship be-

tween the various component material properties and calendering conditions has a large impact on the battery

performance. In this work, Discrete Element Method (DEM) was used to investigate the electrode structure evo-

lution under different calendering conditions. The initial positions of active material (AM) particles were ob-

tained from an uncalendered electrode microstructure characterised experimentally by X-ray tomography and

then imported to DEM simulations. Simulated structures under different processing conditions were obtained

by compression tests in DEM. The Edinburgh elasto-plastic adhesive (EEPA) model and bond model were used

to describe the mechanical response of AM particles and binder phase during compression. Detailed stress and

structural evolutions at microscopic scale were further analysed. For the first time, the results demonstrate a

promising way to predict and design battery electrode structures by combining X-ray tomography and DEM

analysis.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Lithium-ion batteries play a crucial role in transforming the energy

storage field. They have beenwidely used in different fields from porta-

ble electronics to electrical vehicles [1]. To improve battery performance

and reduce production costs, substantial efforts have been made to un-

derstand the manufacturing process and to optimise the electrode mi-

crostructures [2,3]. Calendering is an important step of electrode

manufacture, in which the dried electrodes are compressed to control

electrode porosity and improve adhesion. Particle connectivity and vol-

umetric energy density are increased during this process. In addition,

other performance parameters including mechanical properties and

transport properties can also be affected as the electrode structure

evolves during calendering [4,5].

Several experimental studies have investigated how calendering af-

fects electrode structure and subsequent battery performance. Meyer

et al. [6] systematically investigated the calendering process of graphite

anodes and nickel manganese cobalt oxide (NMC) cathodes. The rela-

tion between the coating density and circumferential speed, applied

line load was studied. An exponential relationship was proposed to de-

scribe the compaction force and the measured porosity reduction. The

effects of process parameters were further investigated by Schreiner

[7]. Amachine/material-process-structuremodelwas established to de-

scribe the relations between process and structural properties during

calendering. Recently, the effect of formulation parameters including

activematerial (AM), carbon additive, binder composition on the calen-

dering processability of cathodes was analysed by Primo et al. [8]. It was

found that the electrode mesostructures and the binder phase distribu-

tion affects themechanical properties. It is also important to understand

the impact of the calendering process on the electrical properties of lith-

ium ion batteries. Experimental studies have demonstrated that the

pore size variations, AM particle deformation and breakage during cal-

endering can affect the electrochemical performance (e.g. electrode re-

sistivity [9], rate capability and long term performance [10,11]).

By using non-destructive imaging techniques such as X-ray com-

puted tomography, 3D microstructures of electrodes can be obtained

[12]. Detailed structural information including particle size distribution,

binder phase and pore distributions have been analysed [13–15]. The

correct characterisation of the microstructures offers important infor-

mation to fully understand the battery electrode performance. Lu et al.

[3] proposed a novel X-ray computed tomography dual-scan superim-

position technique to capture the carbon binder domain (CBD) phase

within electrode structures. A 3D microstructure-resolved numerical

model is further developed to investigate the electrochemical perfor-

mance of battery electrodes. Furthermore, in situ calendering experi-

ments were performed to investigate the structural evolutions and

provide insights to optimise 3D electrode microstructures.
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The application of numerical modelling has proved to be useful to

understand the structure evolutions and battery performance. Discrete

Element Method (DEM) models the motion and forces of particles,

both of which are important to understand the evolution of structure

and stress for granular materials [16,17]. DEM has been widely used in

chemical, pharmaceutical and mineral industries to understand differ-

ent particulate processes. Recently it was applied to understand the mi-

crostructures of battery electrodes [18,19]. Using a fabric tensor-based

approach, Stershic et al. [20] investigated the evolution of inter-

particle contact evolutions of electrodes. The mechanical descriptions

of the binder phase were not considered in their research. By purely

considering the electrode structure and AM particle size distribution,

the DEM simulations could not predict the evolution of inter-particle

contacts. Gimenez et al. [19,21] systematically investigated themechan-

ical and electrical properties of electrodes. In their study, the electrode

structures were stochastically generated and the binder phases were

described using bond models. Using DEM, they also studied the struc-

tural changes and stress evolution during the charging-discharging pro-

cess. Srivastava et al. [22] proposed a DEMbased approach to design the

electrode mesostructures. In their work, the initial structures were sto-

chastically generated and themesostructureswere designed by control-

ling the cohesive and adhesive forces of CBD phases and AM particles.

The electrochemical transport-relevant properties were further investi-

gated under different conditions. Recently, Ngandjong et al. [23] devel-

oped a calendering model to evaluate the relationships between

calendering pressure, microstructure and electrochemical performance.

In their DEM model, Hertizan theory and simplified Johnson-Kendall-

Roberts (JKR) model were used to describe the mechanical responses

of particles, and they stated the simulation results matched well with

experiments. Another piece of work of calendering model using DEM

was recently reported by Schreiner et a. [24]. All the above demonstrate

the potential to understand the calendering process and to optimise

electrode microstructures by DEM. To successfully model the calender-

ing process, appropriate contact mechanics models need to be consid-

ered to describe both the mechanical responses of AM particles and

CBD phase. Furthermore, electrode structures used for simulations to

date are stochastically generated by filling spherical particles with a

controlled size distribution in a cubic volume, to achieve desired volume

fractions. However, in a physical sample undergoing calendering the

AM particles are spaced further apart, and the volume fractions of

low-density CBD and pore phase need to be considered. The virtual

structures in previous works with an incorrect calculation of volume

fractions will therefore provide an unrealistic representation of the cal-

endering process and can hamper the accurate performance compari-

son of simulation results with battery electrodes in reality.

In this contribution, an experimentally prepared cathode structure,

characterised by X-ray tomography was used as an initial structure for

a DEM calendering simulation. The tomography data collected by

Ebner et al. [12] is used in this work. Simulated structures and relevant

properties were compared with the corresponding experimentally

characterised structures under different calendering pressures. Detailed

force networks were calculated, and the anisotropy of electrode struc-

tures were analysed by using vectorial quantities, i.e. fabric tensor and

stress tensor. Furthermore, the tortuosity factors under different condi-

tions were calculated and compared with corresponding experimental

results. Overall, this research demonstrates a promising way to quanti-

tatively analyse the structural,mechanical and transport properties dur-

ing electrode calendering by X-ray tomography and high fidelity DEM.

2. Methodology

2.1. Experimental data

In the researchwork proposed by Ebner et al. [12], the uncalendered

structures and structures calendered at different pressures of approxi-

mately 300, 600, and 2000 bar were characterised by Synchrotron

radiation X-ray tomography. The cathode structures were made of

NMC 333 (LiNi1/3Mn1/3Co1/3O2), C65 carbon black and polyvinylidene

fluoride (PVDF). In this work, structures with a mass ratio of NMC par-

ticles, carbon black and binder of 90:5:5 are considered. Samples were

prepared by placing the electrodes in 15 mm diameter cylindrical

molds, immersing them in epoxy resin and heating them at 55 °C for

24 h under vacuum. They were then milled to 0.7 mm width. Finally,

the tomography scans with 0.37 μm voxel resolution were obtained.

In addition to the raw tomography data, the 3D reconstructed to-

mography scans were post processed using image segmentation algo-

rithm, and the labelled particles with coordinates and volumes were

offered by the database [12]. This information is directly used in this

study.

2.2. DEM modelling method

By using DEM, the translational and rotational motion of an individ-

ual particle in the structure can be described by:

mk dv
k

dt
¼ Fk

b þ Fk
p ð1Þ

Ik
dωk

dt
¼ Mk

b þMk
p ð2Þ

wheremk and Ik are the kth particle mass andmoment of inertia. vk and

ω
k are the translational velocity and angular velocity. Fb

k andMb
k are the

bond force and bond torque that describe the CBD phase interactions in

this work. Fp
k is the contact force of the neighbouring particles, andMp

k is

the contact torque that originate from the tangential contact force and

rolling friction between neighbouring particles. For simplicity, the

superscript k of an individual particle is omitted in the following

sections.

2.2.1. The particle interactions

An Edinburgh elasto-plastic adhesive (EEPA) model is used to de-

scribe the interactions of micron sized AM particles [25].

The normal force Fn,p is the sum of hysteretic spring force fhys and

damping force fnd that can be calculated by:

Fn,p ¼ f hys þ f nd

� �

n ð3Þ

where n is the unit normal vector from the contact point to the particle

centre. The force-displacement relationship of fhys can be expressed by:

f hys ¼

f 0 þ k1δ
n if k2 δn−δnp

� �

≥k1δ
n

f 0 þ k2 δn−δnp

� �

if k1δ
n>k2 δn−δnp

� �

>−kadhδ
n

f 0−kadhδ
n if kadhδ

n≥k2 δn−δnp

� �

8

>

>

>

<

>

>

>

:

ð4Þ

where f0 is constant adhesion force, δ is total normal overlap, and δp
n is

plastic overlap. k1 is the loading stiffness, k2 is the unloading stiffness,

and kadh is the adhesive stiffness, n is the non-linear index parameter.

The loading stiffness k1 is calculated by:

k1 ¼
2E∗R∗ if n ¼ 1
4

3

ffiffiffiffiffi

R∗
p

E∗ if n>1

(

ð5Þ

where E ∗ and R ∗ are the equivalent Young's modulus and radius. In this

work, a non-linear slope exponent n=1.5 is chosen.

The contact plasticity ratio, λp is calculated using the following

equation:

λp ¼ 1−
k1
k2

� �

ð6Þ
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The damping force fnd can be calculated by:

f nd ¼ −βnvn ð7Þ

where vn is the relative normal velocity, and βn is the normal damping

coefficient:

βn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m∗k1

1þ π= ln eð Þ2

s

ð8Þ

where e is the coefficient of restitution.

The contact tangential force Ft,p is calculated by the sumof tangential

spring force, fts and tangential damping force, ftd:

Ft,p ¼ f ts þ f tdð Þ ð9Þ

The tangential spring force is expressed as:

f ts ¼ f ts n−1ð Þ þ Δf ts

� �

ð10Þ

where fts(n−1) is the force of previous time step, and the incremental

tangential force ∆fts is calculated by:

∆f ts ¼ −ktvtΔt ð11Þ

where kt is the tangential stiffness, vt is the velocity in tangential

direction, and Δt is the time step. The tangential stiffness can be

calculated using the following equation:

kt ¼ ζ tm

k1 if n ¼ 1

8G∗
ffiffiffiffiffiffiffiffiffiffi

R∗δn
p

if n>1

(

ð12Þ

where ζtm is the tangential stiffness multiplier, and G ∗ is the equivalent

shear modulus. The tangential damping force ftd is calculated by:

f td ¼ −βtvt ð13Þ

The tangential damping coefficient βt can be calculated by:

βt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m∗kt

1þ π= ln eð Þ2

s

ð14Þ

The critical tangential force value fct is set equal to:

f ct≤μ f hys þ kadhδ
n−f 0

�

�

�

� ð15Þ

where μ is the friction parameter. The total applied torque, ηi is

calculated by:

ηi ¼ −μr f hys
�

�

�

�siωi ð16Þ

where μr is the rolling friction parameter, si is the distance from contact

point to the particle center, andωi is unit angular velocity at the contact

point.

2.2.2. The binder phase interactions

The bond model firstly developed by Potyondy and Cundall [26] is

used to describe the mechanical responses of the inter particle binder

phase.

The normal force Fn,b can be expressed as a sumof the previous time

step bond force Fn(n−1),b and the incremental tangential force ΔFn,b:

Fn,b ¼ Fn n−1ð Þ,b þ ΔFn,b

� 	

ð17Þ

∆Fn,b ¼ −kn,bvn,bΔt ð18Þ

where kn,b is the bond normal stiffness, and vn,b is the velocity in normal

direction.

The tangential spring force Ft,b is calculated as:

Ft,b ¼ Ft n−1ð Þ,b þ ΔFt,b

� 	

ð19Þ

∆Ft,b ¼ −kt,bvt,bΔt ð20Þ

where Ft(n−1),b is the bond tangential force of the previous time step,

ΔFt,b is the incremental tangential force, kt,b is the bond tangential

stiffness, and vt,b is the tangential velocity.

The bond tangential momentsMt,b and bond normal momentsMn,b

calculated based on the incremental value from the previous time step

can be expressed as:

Mt,b ¼ Mt n−1ð Þ,b þ ΔMt,b

� 	

ð21Þ

∆Mt,b ¼ −kt,bAbωt,bΔtIb ð22Þ

Mn,b ¼ Mn n−1ð Þ,b þ ΔMn,b

� 	

ð23Þ

∆Mn,b ¼ −kn,bAbωn,bΔtJb ð24Þ

where Ab is the bond cross sectional area, Ib and Jb are the moment of

inertia and the polar moment inertia of the bond, ωt,b and ωn,b are

relative angular velocities in tangential and normal directions.

The bond strength is calculated according to the beam theory as:

−
Fn,b

Ab

þ Mt,b

�

�

�

�Rb

Ib
<σn ð25Þ

Ft,b

�

�

�

�

Ab

þ Mn,b

�

�

�

�Rb

Ib
<σ t ð26Þ

where σn and σt are the tensile and shear strength of the bond,

respectively.

2.3. Structure generation and DEM simulation setup

For the structure used in DEM simulation, a subdomain of an

uncalendered structure containing a number of Np = 5106 NMC 333

(LiNi1/3Mn1/3Co1/3O2) particles was chosen from the database [12]

(Fig. 1 a). As illustrated in Fig. 1 (a), the structure with detailed

particle position and diameter was imported into DEM simulations.

Due to the high sphericity of NMC particles, spherical approximations

were used for these particles. The particle size distribution by diameter

is illustrated in Fig. 1 (c).

As shown in Fig. 1, inter-particle bondswere generated betweenAM

particles to describe themechanical response of CBD phase within elec-

trode structures. The bonds are considered to be generated when the

centre to centre distance of two neighbouring particles denoted by PA
and PB meet the following criteria:

‖PA−PB‖≤ζb∙ RA þ RBð Þ ð27Þ

where RA and RB are the particle radius. The bond radius is calculated as:

Rb ¼ λb∙min RA,RBð Þ ð28Þ

In this work, the two multipliers are set as ζb=1.67, λb=0.5. The

multipliers are chosen to ensure all the particles can be bonded

together without unbonded particles. In addition, the multipliers were

calculated to ensure the total bond volume is equivalent to the

calculated CBD phase volume, according to the method in [19]. The

inter-particle bondswere assigned to the particle assembly before com-

pression, i.e., the multipliers were used to generate the initial bonded

particle assembly, and they do not play a part during compression.

The assigned inter-particle bonds show deformation/breakage during

compression that correspond to the CBD phase mechanical properties

in reality.
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An illustration of DEM simulation setup is shown in Fig. 2. Simula-

tions were carried out using Altair EDEM 2021. The top plate is made

of steel to represent the roller during calendering, and the bottom

plate is aluminium to represent the current collector. Periodic bound-

aries were applied on the sides. To mimic the calendering process, the

electrode structure was gradually compressed by moving the top plate

with a constant speed of 0.01 m s−1. The bond parameters are based

on calibration results as illustrated in the following Fig. 4. The bond stiff-

ness (kb) values are 1.5 × 1014Nm−3, and the bond strength (σn) values

are 3 × 108 Pa. Other simulation parameters used in this work are listed

in Table 1. Parameters were mainly taken from previous research work

in this field. Mechanical properties of the top and bottom plate were

from the EDEM material library.

2.4. Structure analysis method

After the DEM simulation, the electrode structures under different

calendering levels were further analysed by calculating porosity and

tortuosity factors.

2.4.1. Porosity analysis

Due to the soft particle model used in DEM simulations, the AM par-

ticles undergo deformations during calendering, and overlaps between

AM particles can occur. Therefore, the accurate calculation of porosity

is non-trivial and cannot be directly calculated using an analytical

method. In this work, two statistical methods were considered to

properly calculate the structure porosity, i.e. grid approach and Monte

Carlo approach [37](Fig. 3).

(a) Grid approach.

As illustrated in Fig. 3 (a), a grid of simple cubic lattice points was

generated in the calculated region. The porosity of the granular struc-

ture ε can be calculated by:

ε ¼ 1−NGrid,Particle=NGrid,Total ð29Þ

where NGrid,Particle is the number of grid points falling in the particle

region, NGrid,Total is the total number of grid points in the whole region.

(b) Monte Carlo approach.

As for the Monte Carlo approach, a number of random points were

generated in the calculated region (See Fig. 3 b). The porosity is calcu-

lated in a similar way as the grid method:

ε ¼ 1−NMC,Particle=NMC,Total ð30Þ

where NMC,Particle is the number of random points in the particle region,

and NMC,Total is the number of random points in the whole region.

Fig. 1. Electrode structure generation used in DEM (a) tomography data processing (b) illustration of bond formation in DEM (c) active material (AM) particle size distribution [12].

Fig. 2. DEM simulation setup of compression test.

Table 1

DEM simulation parameters used in this work [19,27] [16,20].

Description Parameter Value Source

Particle Young's modulus (GPa) EPar 144 [19,27]

Particle density (kg m−3) ρPar 4750

Particle Poisson's ratio (−) υPar 0.25

Particle-particle static friction (−) μp,s 0.25 [16,20]

Particle-particle rolling friction (−) μp,r 0.01

Coefficient of restitution (−) e 0.5

Plate Young's modulus

(Steel) (GPa)

ESt 208 Material library

Plate density (Steel) (kg m−3) ρSt 7900

Plate Poission's ratio

(Steel) (−)

υSt 0.3

Plate Young's modulus

(Aluminium) (GPa)

EAl 68.9

Plate density (Aluminium) (kg m−3) ρAl 2700

Plate Poission's ratio

(Aluminium) (−)

υAl 0.3
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To evaluate the reliability of these two methods, non-overlapping

particles with 2–30 μm diameter were randomly generated in a 50 μm

length cube. The porosity was analytically calculated by summing all

the spherical particle volumes for comparison with the numerical pre-

dictions. As illustrated in Fig. 4, the relative errors of these two numer-

ical methods were estimated considering different number of points.

In general, theMonte Carlo approach can have a better prediction of po-

rosity when using the same number of sampling points. Therefore, in

the following the Monte Carlo approach is applied to calculate the po-

rosity under different conditions. As each grid point can be treated as

a voxel, the grid approach was used to generate voxelised volumes of

particle structures, and then used for further tortuosity analysis and

binder phase generation. A 0.5 μm pixel length was chosen to ensure

the reliability of results. As shown in Fig. 4, when the number of points

is larger than 1× 106 (the corresponding pixel length is 0.5 um), the rel-

ative error of grid approach can fall below 2%. A further increase of the

resolution to 0.1 um can slightly reduce the relative error to less than

1%, but the number of grid points is larger than 1 × 108 corresponding

to a significant increased computation time.

2.4.2. Tortuosity analysis

The tortuosity factor τ has a significant impact on the transport

properties of porous structures. It can be defined as:

Deff ¼ D
ε

τ
ð31Þ

whereDeff is the diffusivity of the porous structure, D is the intrinsic dif-

fusivity of the porous phasematerial. As illustrated in Fig. 5, the tortuos-

ity can also be geometrically explained as:

τgeo ¼ Le=L0 ð32Þ

where Le is the actual length of the path through the porous structure,

and L0 is the straight-line length across the structure in the direction

of flow (See Fig. 5). For all systems τ ≥ 1, and the flow paths are direct

when τ = 1. Various analytical, experimental and numerical methods

have been proposed to calculate the tortuosity of porous structures

[28–30]. In this work, the diffusion approach is considered. A MATLAB

application TauFactor, based on numerically solving steady diffusive

equations, was used for tortuosity analysis [29].

3. Results and discussion

3.1. Porosity comparison and voxelised structure generation

In DEM simulations, the electrode structures were compressed to

achieve different calendering levels. The corresponding top plate pres-

sures at different calendering levels were recorded. Four different com-

pression pressures were used to generate electrode structures, as

illustrated in Fig. 6. Using the Monte Carlo approach presented in

Section 2.4.1, the porosities under different conditions were calculated

and compared with the corresponding experimental results [12]. For

making a quantitative comparison with the corresponding tomography

scans, a proper definition and calculation of electrode structure porosity

is necessary. In this section, the porosity εPore+binder was defined as the

void volume fraction between AM particles considering both the pore

and binder phase:

εPoreþbinder ¼ 1−φPar ð33Þ

whereφPar is the volume fraction of AMparticles. As shown in Fig. 7, the

porosity changes in DEM simulations are in good agreement with the

corresponding tomography data at the respective stress levels. A slight

deviation at the initial stage can be observed, and there are two likely

primary reasons for this. Firstly, when using spherical approximations

of AM particles in DEM simulations there is some volume loss. In addi-

tion, the experimental results are affected by the inhomogeneity of elec-

trode structures in reality, which can be used to explain the unexpected

variation tendency from 0 bar to 400 bar [12].

By using the grid approach presented in Section 2.4.1, the AM parti-

cle structures were converted to a stack of voxelised images. The 3D

Fig. 3. Illustration of two porosity analysis methods (the lattice or random points in the

particle region are colored in light green, while the points in the empty space are in blue).

Fig. 4. Relative error analysis of porosity analysis for both grid and Monte Carlo methods.

Fig. 5. Illustration of tortuosity within porous structures (tortuosity is a ratio of the actual

path length Le and the straight-line length L0).
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volume was chosen with a cross-section of 150 μm × 150 μm and it

spans the entire thickness of the electrode (∼30–70 μm). The voxelised

3D structures and corresponding 2D cross sectional images are illus-

trated in Fig. 8. It can be clearly observed from the 2D cross sectional im-

ages that the AM particle volume fraction increases with increased

compression pressures. The generated voxelised 3D volumes are used

for tortuosity analysis in the following section.

3.2. Stress and fabric tensor analysis

As the particles within the electrodes are connected by bond con-

tacts, a complex network is formed. In this section, the contact force net-

works under different conditions were calculated from the particle

contact data obtained by DEM simulations. Furthermore, vectorial

quantities (i.e. contact normals n and contact forces) were analysed by

using fabric tensor and stress tensor [31–33].

Fig. 9 illustrates the contact force network under different compres-

sion pressures. The force vectors at each particle contact pair are aver-

aged and normalised as:

F i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2x,i þ F2y,i þ F2z,i

q

i ¼ 1, 2⋯Nc ð34Þ

F i,normalised ¼ F i=max F1⋯FNc
ð Þ i ¼ 1, 2⋯Nc ð35Þ

where Fx,i, Fy,i and Fz,i are the contact force components of each particle

contact in Cartesian coordinate system,Nc is the total number of particle

contacts. The line weight in Fig. 9 is scaled by the magnitude of the

normalised force Fi,normalised at each contact. With increased

calendering stress, the particle contact force becomes more obvious,

and force chains are formed. Calendering affects the particle contact

distributions, and more homogeneous inter-particle contacts can be

generated with increased calendering levels as shown in Fig. 9.

The fabric tensor Φij is used to study the directionality of particle

contacts, which can be defined as the average of outer product of the

contact normal n [31]:

Φij ¼
1

Nc
∑
Nc

α¼1
ninj ð36Þ

where ni and nj are the projection of the unit contact normal n in

Cartesian coordinate system. In this work, the contact normal n

denotes thenormal vectors of particle pairs, inwhichparticles are either

bonded or in contact with each other. The fabric tensor can be

decomposed into isotropic and deviatoric part:

Φij ¼
1

3
δij þΦ0

ij ð37Þ

Fig. 6. Schematic of DEM simulation results under different compression pressures. The particle diameter is illustrated by changing colour from blue to green to red.

Fig. 7. Comparison of porosity εPore+binder under different compression pressures, the

tomography data is from Ebner et al. [12].

Fig. 8. Voxelised 3D electrode structures and 2D cross sections from DEM simulations

under different compression pressures (In the 2D cross section, the white voxels are AM

particles, and black voxels are voids).
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where δij is the Kroenecker delta, and Φ′ij is the deviatoric part. The

particle contact information under different conditions is analysed and

the diagonal components of deviatoric part Φ′ij are shown in Fig. 10. In

Fig. 10, Φ′xx and Φ′yy represent the direction parallel to the current

collector, and Φ′zz is the normal direction of compression. It can be

observed that Φ′xx and Φ′yy increase gradually with increased

compression pressure. The Φ′zz in the normal direction shows a

contrary tendency as it decreases from −0.018 to −0.04 with the

increased compression pressures. As the Φ′xx and Φ′yy indicate the

homogeneity of particle contacts through the x-y plane, they show very

similar value range and variation trends. However, it is interesting to see

that Φ′xx is slightly higher than Φ′yy for all structures under different

compression pressures. This is possibly because of the particle contact

difference from the original electrode structures. It is worth to

investigate if this difference can be related to the manufacturing

process in reality. As illustrated in Fig. 10, the diagonal components of

deviatoric part Φ′ij and the calendering conditions are strongly related.

In future it is also worthwhile to investigate the effect of the particle

size distribution on the particle contacts and correspondingΦ′ij.

The stress tensor σij within a representative elementary volume V

can be described as [33,34]:

σ ij ¼
1

2V
∑
Nc

α¼1
r1iF1j þ r2iF2j
� 	

ð38Þ

where r1i and r2i are the relative positions of the two particles in a pair,

and F1j and F2j are the interaction forces acting on each other. The

calculated results of diagonal components are presented in Fig. 11. The

stress within the electrodes increases with increased calendering

levels. σxx and σyy are approximately the same, and σzz in the normal

direction is higher for all calendering conditions. The fabric tensor and

corresponding stress indicate the topological and anisotropic features

of particle contacts within electrode structures that may affect the

electrode performance considering different directions.

3.3. Tortuosity analysis

The tortuosity factor can represent the lithium ion transport feasibil-

ity in the electrolyte phase. It is an important property as it limits the

maximum charge/discharge rate for battery electrodes [28]. In this

work, the average tortuosity factor τPore+binder in which the porous

phase containing both the pore and binder were calculated and

presented in Fig. 7. In this figure, the average tortuosity factors of DEM

simulated structures are compared with the results from X-ray tomog-

raphy under the same stress levels. Representative volume analysis re-

sults of the tortuosity factor τPore+binder from 20% to 100% volume

fractions of the electrode structure shown that the varied volume

fractions have minimal effects (less than 5%) on the tortuosity factor

values. As illustrated in Fig. 12, the tortuosity factor increases with the

increased calendering pressures. The tortuosity factor from DEM simu-

lations shows a very similar variation tendency with the results from

the 3D structures characterised by X-ray tomography [12]. The slight

discrepancymay be due to plastic deformation and breakage of AMpar-

ticles in calendering experiments, which was not captured in the simu-

lation results here [12]. Another cause for discrepancy reason is the non-

uniform, non-spherical shape of AMparticles,which cannot be captured

by current DEM simulations.

The reconstructed structure and relative properties, i.e. εPore+binder

and τPore+binder only contain the geometrical features of AM particles.

As the CBD phase is not visible from the tomography data, a binder gen-

eration algorithm was developed to evaluate the effect of binder phase

on tortuosity factors. Pendular ring shaped binder phases were gener-

ated between AM particles using a level-set method recently proposed

by Trembacki et al. [35]. The binder phase ψBinder can be defined as:

ψBinder ¼ min ψP,i þ O
� 	

∗ ψP,j þ O
� �

−S,⋯, ψP,Np
þ O

� �

∗ ψP,Np
þ O

� �

−S
h i

, i≠j

ð39Þ

Fig. 9. Contact force network under different compression pressures.

Fig. 10. Diagonal components of deviatoric part Φij′ of the fabric tensor under different

compression pressures.

Fig. 11. Diagonal components of the stress tensor σij for the calendered electrodes under

different compression pressures.
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where ψP, i is the level set of an individual particle,Np is the total particle

number. The binder phase is generated for all particle pairs with the

particle number index ranges from 1 to Np. The parameter O and S in

the above equation are used to control the binder morphology and

amount respectively. The particle level sets are shrunk by using offset

O (shape), and then grown by the offset S (size) preferentially

between two neighbour particles. In this work, the shape parameter

O = 30 μm, while the size parameter S is tuned to achieve different

prescribed electrode porosities εPore. The electrode porosity εPore in

which the porous phase containing only pores can be theoretically

estimated by:

εPore ¼ 1−φPar−φPar∙x= 100−2xð Þ∙ ρPar=ρCB þ ρPar=ρPVDFð Þ ð40Þ

where the mass ratio x = 5 (in wt%), NMC density ρPar = 4.7 gcm−3,

carbon black density ρCB = 2 gcm−3 and binder density ρPVDF = 1.78

gcm−3 [12]. Detailed S parameters, and the corresponding particle

volume fraction φPar and porosity εPore are listed in Table 2.

A 2D slice parallel to the through plane direction is illustrated in

Fig. 13 (a). The generated pendular ring shaped binder phase can be ob-

served in this figure. The corresponding potential distributions of the

diffusing species in the porous phase are calculated fromdiffusion equa-

tions and illustrated in Fig. 13 (b). The corresponding tortuosity factors

are plotted in Fig. 13 (c). When considering the effect of binder phase,

the calculated tortuosity factor τpore is higher than the tortuosity

factor τPore+binder containing both the pore and binder in the porous

phase. Traditionally, the Bruggeman effective medium equation τ =

ε−0.5 is used to describe the tortuosity of electrode structures [36]. In

this work, the data of τPore and τPore+binder are fitted by a generalized

equation τ = aεb. As shown in Fig. 13(c), τPore+binder (τPore+binder =

1.02εPore+binder
−0.53 ) has a very consistent tendency with the classical

Bruggeman equation. This is reasonable as the structures generated

from DEM simulations are mono-sized spherical particle packing. After

considering the effect of binder phase, the data is fitted as τPore =

0.885ε−1.068. The fitting curve agrees with the data from experiments

using 90% AM mass loadings [28]. There is some slight discrepancy as

the current simulation results cannot resolve the detailed nano-sized

pores of binder phase. As the results of blue and red curves in Fig. 13

(c) are based on the same AM particle structures, the main difference

of these two curves is from the absence/presence of binder phase. For

the first time the results show the tortuosity of a calendered electrode

can be predicted by combiningDEM simulation and a binder phase gen-

eration algorithm. In future, it is useful to investigate the effect of AM

particle size distribution and binder phase volumes via artificially gen-

erated electrode structures. The generated microstructures under dif-

ferent calendering conditions can be further used to electrochemical

analysis of lithium ion batteries.

4. Conclusions

In this work, DEM simulation was used to study the structure and

corresponding properties of lithium ion battery electrodes under differ-

ent calendering conditions. The mechanical properties of AM particles

and binder phase were described by an EEPA model and a bond

model. Using an uncalendered electrode structure characterised by

X-ray tomography as an initial structure, the DEM simulation results

were compared with experimental results under same calendering

pressures. The main conclusions are:

Fig. 12. Comparison of average tortuosity factor τPore+binder under different compression

pressures.

Table 2

Values of S parameters for binder phase generation, and corresponding AM particle

volume fraction φPar and porosity εPore.

0 Bar 300 Bar 600 Bar 2000 Bar

S 998 976.5 966.5 976

φPar 0.372 0.399 0.43 0.583

εPore 0.525 0.49 0.45 0.255

Fig. 13. Tortuosity factor with/without binder phase (a) 2D visualisation of electrode structure parallel to the through plane direction, the binder phase is colored in red. (b) Normalised

potential distribution without/with binder phase. (c) Tortuosity factor τ plotted as a function of porosity.
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1. The porosity of electrode structures was accurately defined by con-

sidering different phases. Two statistical methods, i.e. Monte Carlo

approach and grid approach were used to accurately calculate the

porosity εPore+binder of simulated structures and generate voxelised

electrode structure. The porosity εPore+binder calculated from DEM

simulations shows good agreement with the corresponding AM par-

ticle structures experimentally obtained from X-ray tomography.

2. The contact force networks under different conditions were calcu-

lated by using data from DEM simulations. Following this the fabric

tensor and stress tensor were analysed. From a point of quantitative

view, the simulation results reveal the inhomogeneous stress distri-

bution and anisotropic properties of electrode structures under dif-

ferent calendering conditions.

3. The calculated tortuosity factors τpore+binder from DEM are in agree-

ment with the results calculated from corresponding tomography

structures. By generating the binder phase using a level set method,

tthe tortuosity factors τpore considering binder phase effect were

calculated. The results show similar tendency with the experimental

data of 90% AMmass loading structures.

This work demonstrates, for the first time, the feasibility of combin-

ing X-ray tomography and DEM to quantitatively analyse electrode

structure evolution during calendering. This approach is useful to digita-

lize electrode design, as it incorporates the realistic microstructure and

material properties. The high-fidelity particle scale information can be

obtained under each incremental calendering step, which could be use-

ful to optimise electrode structures with desired mechanical and trans-

port properties. It is important to emphasise that spherical particle

approximations were used in this work, and the effect of particle frac-

ture is not considered. These limitations may affect model prediction,

especially under high calendering pressures. There is opportunity for fu-

ture work to consider non-spherical particle shapes and CBD phase dis-

tribution resolved by tomography in DEM simulations.

Nomenclature

Ab Bond cross sectional area, m2

a Constant, −

b Constant, −

D The intrinsic diffusivity, m2 s−1

Deff The diffusivity of the porous structure, m2 s−1

E* Equivalent Young's modulus, MPa

EPar Particle Young's modulus, MPa

ESt / EAl Plate Young's modulus, MPa

e Coefficient of restitution,−

F Contact force, N

Fx,i, Fy,i, Fz,i The ith contact force components in Cartesian coordinate

system, N

Fi,normalised The ith normalised contact force, N

Fn,p, Fn,b Particle/bond normal force, N

Ft,p, Ft,b Particle/bond tangential force, N

fct Critical tangential force, N

fhys Hysteretic spring force, N

fnd Damping force, N

fts Tangential spring force, N

ftd Tangential damping force, N

f0 Constant adhesion force, N

G* Equivalent shear modulus, MPa

hc Electrode thickness, m

Ib Bond moment of inertia, kg m2

Jb Bond polar moment of inertia, m4

k1 Loading stiffness, N m−1

k2 Unloading stiffness, N m−1

kadh Adhesive stiffness, N m−1

kt Tangential stiffness, N m−1

kn,b Bond normal stiffness, N m−1

kt,b Bond tangential stiffness, N m−1

Lb Bond length, m

Le Actual path length through the porous structure, m

L0 Straight-line length across the structure, m

M Torque, N.m

Mn,b Bond normal moment, N m

Mt,b Bond tangential moment, N m

m Mass, kg

Nc The total number of particle contacts,−

Np The total number pf particles,−

NGrid,Particle The number of grid points in the particle region,−

NGrid,Total The total number of grid points in the whole region,−

NMC,Particle The number of random points in the particle region,−

NMC,Total The total number of randompoints in thewhole region,−

n Unit contact normal vector, −

ni, nj Projection of the unit contact normal, −

O Binder shape parameter, μm

R* Equivalent radius, m

RA, RB Particle radius, m

Rb Bond radius, m

r1i, r2i Relative positions of two particles in a pair, −

S Binder size parameter, μm2

si Distance from contact point to the particle center, m

t Time, s

V Representative elementary volume, m3

v Velocity, m s−1

vn Relative normal velocity, m s−1

vt Relative tangential velocity, m s−1

x Mass ratio, wt%

Greek symbols

βn Normal damping coefficient, −

βt Tangential damping coefficient, −

δ Normal overlap, m

ε Porosity, −

εPore+binder Electrode porosity (Porous phase containing both the

pore and the binder),−

εPore Electrode porosity (Porous phase containing only

pores), −

ζb Bond length multiplier, −

ζtm Tangential stiffness multiplier, −

λb Bond radius multiplier, −

λp Plasticity ratio,−

μs Friction coefficient,-

μr Rolling friction coefficient,-

νPar Particle poission's ratio,-

νSt / νAl Plate poission's ratio,-

ρPar Particle density, m3 kg−1

ρCB Carbon black density, m3 kg−1

ρPVDF Binder density, m3 kg−1

ρSt / ρAl Plate density, m3 kg−1

σn Tensile bond strength, MPa

σt Shear bond strength, MPa

σij Stress tensor, MPa

τgeo Geometric tortuosity, −

τPore+binder Tortuosity factor (Porous phase containingboth the pore

and binder),−

τPore Tortuosity factor (Porous phase containing only pores),−

Φij Fabric tensor,−

Φij
’ Deviatoric part of fabric tensor, −

φPar Volume fraction of AM particles,−

ΨBinder Level set of binder phase, −

ΨP,i Level set of an individual particle, −

ω Angular velocity, s−1
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