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Abstract 
Background: Requiring access to sensitive data can be a significant 
obstacle for the development of health models in the Health 
Economics & Outcomes Research (HEOR) setting. We demonstrate 
how health economic evaluation can be conducted with minimal 
transfer of data between parties, while automating reporting as new 
information becomes available. 
Methods: We developed an automated analysis and reporting 
pipeline for health economic modelling and made the source code 
openly available on a GitHub repository. The pipeline consists of three 
parts: An economic model is constructed by the consultant using 
pseudo data. On the data-owner side, an application programming 
interface (API) is hosted on a server. This API hosts all sensitive data, 
so that data does not have to be provided to the consultant. An 
automated workflow is created, which calls the API, retrieves results, 
and generates a report. 
Results: The application of modern data science tools and practices 
allows analyses of data without the need for direct access – negating 
the need to send sensitive data. In addition, the entire workflow can 
be largely automated: the analysis can be scheduled to run at defined 
time points (e.g. monthly), or when triggered by an event (e.g. an 
update to the underlying data or model code); results can be 
generated automatically and then be exported into a report. 
Documents no longer need to be revised manually. 
Conclusions: This example demonstrates that it is possible, within a 
HEOR setting, to separate the health economic model from the data, 
and automate the main steps of the analysis pipeline.
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Introduction
The development of economic models generally involves the transfer of sensitive data (e.g. individual patient 

or price data) between parties. This paper demonstrates how the use of application programming interfaces 

(API) allows data-owners in the Health Economics & Outcomes Research (HEOR) industry to collaborate  

with multiple partners on health economic decision models, while, retaining full control of their data. The use 

of an API furthermore makes it possible to streamline and automate reporting as new information becomes  

available, significantly reducing the financial and administrative burden of economic model updates.

To our knowledge this is the first publication to outline a process for automated reporting in HEOR, which we 

term Living HTA, and the first to demonstrate the process of sending health economic model algorithms to  

sensitive data using APIs.

Two other bodies of work are particularly relevant. The first is the OpenSafely initiative, which inspired this 

work. Williamson et al.1 describe the OpenSafely interface, which was developed to analyse electronic health  

records data without the need to share confidential patient information:

฀฀฀฀“secure software interface that allows detailed pseudonymized primary care patient records to be analysed 

in near-real time where they already reside - hosted within the highly secure data centre of the electronic  

health records vendor — to minimize the reidentification risks when data are transported off-site”.

The method described in this paper has a similar objective, but aims to protect sensitive information in the HEOR  

sector. 

The second work, a publication by Adibi et al.2, describes a cloud-based model accessibility platform for 

models developed in R. The authors make the case for cloud based platforms to improve the accessibility,  

transparency and standardization of health economic models, particularly highlighting the benefits of hosting  

computationally burdensome models on remote servers. The authors outline a framework for hosting models, 

contained within R packages, which are run using calls to an API. A set of standardized model call functions pro-

vide the user of the API with enough information to pass the necessary parameters to the model, run the model, 

and retrieve the necessary results directly into an R session. The publication is the first, to our knowledge, to  

discuss the enormous implications that remote model hosting could have in the HEOR industry.

We combine elements from both Adibi et al.2 and the OpenSafely initiative, and provide an open-source code base 

which demonstrates the ease with which APIs can be deployed on remote servers to avoid the need to share sensitive  

data, and enabling automation of model updates. In short, we propose that data owners (e.g. pharmaceutical  

companies or governments), with support from health economists, host their own model accessibility platforms.

Our hope is that providing these materials will encourage others to use these methods to improve the  

transparency, accessibility and efficiency of health economic models.

Methods
We developed an automated analysis and reporting pipeline for health economic modeling. It consists of three  

parts:

•฀฀฀฀An economic model. The model can initially be developed using pseudo data – that is, randomly generated  

data, which has the same format as the actual data, but does not contain any sensitive information.

•฀฀฀฀An API, hosted on the company or data provider side. It can be generated using the R package plumber. 

An automated workflow is created. This workflow sends the economic model to the company API. The 

model is then run within the company server. The results are sent back to the consultant, and a (PDF) report 

is automatically generated using RMarkdown3. This API server hosts all sensitive data, so that data does  

not have to be sent between parties.

•฀฀฀฀All of these processes can be controlled with a web-based user-interface. We provide an example user-

interface built in the R shiny package4, based on the tutorial application in our previous paper5. This appli-

cation allows users to select input parameters with which to query the API, and view the results. This 

allows non-technical stakeholders to interact with the model in real time, while allowing the company 

to retain control of the data. The application will always reflect the data on the company server, and the  

model hosted by the consultant at the time of use.

Figure 1 shows a schematic of the interaction between the company API and the consultant automated workflow.  

All of the methods discussed in this paper, as well as the code for the demonstration app can be found contained  

within an open access GitHub repository (see Software availability6).
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The economic model
This model code has been adapted from the Decision Analysis in R for Technologies in Health (DARTH) group’s 

open source Cohort state-transition model (the Sick-Sicker Model) which is discussed in Alarid-Escudero  

et al.7 with open source code available online8. The code includes several functions, but for the purpose of this 

example we can treat the model as a black box, as a single function called run_model which runs the DARTH 

Sick Sicker model. The run_model function takes a single argument, psa_inputs, which is a data-frame containing  

Probabilistic Sensitivity Analysis parameter inputs for the model variables that are allowed to vary.

The data-frame has four columns:

•฀฀฀฀parameter - the name of the parameter (e.g. p_HS1)

•฀฀฀฀distribution - the distribution of that parameter (e.g. “beta”)

•฀฀฀฀V1 - the first parameter for the distribution in R (for beta this would be shape1, for normal this would  

be mean)

•฀฀฀฀V2 - the second parameter for the distribution in R (for beta this would be shape2, for normal this would  

be sd)

The run_model function returns a data-frame with six columns. The first three columns are costs for each treat-

ment option, and the second three columns are Quality Adjusted Life Years (QALYs) for each treatment  

option. Each row represents the result of the model run for a set of inputs.

The API
An application programming interface is a set of rules, in the form of code, that allow different computers to 

interact with one another in real time. Whereas user-interfaces such as those generated by the R package shiny  

allow humans to interact with data, APIs are designed to enable computers to interact with data4.

Figure 1. Schematic showing the interaction between the company API (application programming interface) 
and the consultant automated workflow. HTA, Health Technology Assessment; JSON, Javascript Object Notation.
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When a ‘client’ application wants to access data, it initiates an API call (request) via a web-server, to retrieve 

the data. If this request is deemed valid, the API makes a call to an external program/server, the server sends 

a response to the API with the data, and the API transfers the data to the ‘client’ application. In a sense, the  

API is the broker (or middle-man) between two systems.

There are numerous benefits to APIs:

•฀฀฀฀in supporting programmatic access. In contrast to what web applications offer (for example shiny apps), 

APIs allow users to access data, or other utilities (for example, proprietary applications) programmatically.  

Programmatic access enables users to invoke actions through an application or third-party tool. 

For example, R users can write a function that fetches or analyses data via an API and use it  

in their workflow as any other user-defined function.

•฀฀฀฀in allowing cross-platform communications. Statisticians and decision-model developers can use different  

programming languages or packages. For example, APIs can allow a decision analytic model, devel-

oped in C++ to programmatically utilise data from a bayesian meta-analysis performed using the Python  

programming language.

•฀฀฀฀in aiding speed of collaboration between institutions, ensuring inputs and outputs are standardised so 

that applications can ‘talk’ to one another. Users from one institution need not to take into account the  

software or package used by their partners, but focus on how they would interact with the expected data.

•฀฀฀฀in security, eliminating the necessity to share data manually (e.g. via email). All interaction with data 

can be logged and access can be restricted by passwords and by limiting IP address access. For example, 

APIs can safely allow statisticians to programmatically accumulate sub-group summary-statistics from  

securely stored trial-data to inform a network meta-analysis.

•฀฀฀฀in expanding sharing avenues. For example, APIs can allow institutions to give limited access to their  

proprietary tools such as in-house decision-analytic models. Users of such tools can pass their data to the  

model and receive the respective outputs via the API.

•฀฀฀฀eliminating computational burden on the client side (since all computation is done on the API owner side).

There are lots of different implementations of APIs, but the main focus of this paper is on Partner APIs, which 

are created to allow data transfer between two different institutions. This requires a medium level of security,  

usually through the creation of access keys that are shared with partners.

In the examples below we use Javascript Object Notation (JSON), a data interchange format that is commonly used 

to transfer information between computers, to pass information to and from our API. Since the model is written  

in R, we convert back and forth between JSON and R data formats using the jsonlite R package9.

Creating the API using plumber
The R package plumber allows programmers to create web APIs by decorating R source code with roxygen-like  

comments10,11. These functions are then made available as API endpoints by plumber.

The API can be called using a number of HTTP request methods (also known as HTTP verbs). The  

most-commonly used methods POST, GET, PUT, PATCH, and DELETE correspond to create (POST and  

PUT), read (GET), update (PATCH), and delete (DELETE) operations. These annotations generate the API’s 

endpoint(s) and specify the operation(s) or response(s) the respective R function is responsible for generating. The  

below example shows the ‘GET’ request (the default for web-browsers).

The code below gives an example function which echos a message. The function takes one input, a string with the 

message, and outputs the message contained within a list. If this function was created in R it would return a list  

containing some text, like this: The message is: ‘example_msg’.

1   #* Echo back the input

2   #* @param msg The message to echo

3   #* @get /echo 

4   function(msg="") {

5     list(msg = paste0("The message is: '", msg, "'"))

6   }
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The code for the model function uses the same principles, but is much more developed. There are three  

arguments to the model API; path_to_psa_inputs, model_functions and param_updates.

The core API function created by plumber sources the model functions from software development website 

GitHub, obtains the model parameter data from within the API, and then overwrites the rows of the parameter 

updates that exist in param_updates. It then runs the model functions using the updated parameters, post-processes  

the results, checks that no sensitive data is included in the results, and then returns a data-frame of results. This 

entire process occurs in the server on which the API is hosted, with inputs and outputs passed to the API over the  

web in JSON format.

Code chunk 1 - Generating the API

 1   library(dampack)

 2   library(readr)

 3   library(assertthat)

 4   

 5   #* @apiTitle Client API hosting sensitive data

 6   #*

 7   #* @apiDescription This API contains sensitive data, the client does not

 8   #* want to share this data but does want a consultant to build a health

 9   #* economic model using it, and wants that consultant to be able to run

10   #* the model for various inputs

11   #* (while holding certain inputs fixed and leaving them unknown).

12    

13   #* Run the DARTH model

14   #* @serializer csv

15   #* @param path_to_psa_inputs is the path of the csv file containing the PSA parameters

16   #* @param model_functions gives the GitHub repository to source the model code

17   #* @param param_updates gives the replacement values of the editable parameters

18   #* @post /runDARTHmodel

19   function(path_to_psa_inputs = "parameter_distributions.csv",

20            model_functions = paste0("https://raw.githubusercontent.com/",

21                                     "BresMed/plumberHE/main/R/darth_funcs.R"), 

22            param_updates = data.frame(

23              parameter = c("p_HS1", "p_S1H"),

24              distribution = c("beta", "beta"),

25              v1 = c(25, 50),

26              v2 = c(150, 70)

27            )) {

28 

29 

30     # source the model functions from the shared GitHub repo... 

31     source(model_functions)

32    

33     # read in the csv containing parameter inputs

34     psa_inputs <- as.data.frame(readr::read_csv(path_to_psa_inputs))

35    

36     # for each row of the data-frame containing the variables to be changed... 

37     for(n in 1:nrow(param_updates)){

38    

39     # update parameters from API input

40     psa_inputs <- overwrite_parameter_value(

41                               existing_df = psa_inputs,

42                               parameter = param_updates[n,"parameter"], 

43                               distribution = param_updates[n,"distribution"], 

44                               v1 = param_updates[n,"v1"],

45                               v2 = param_updates[n,"v2"])

46     }

47    
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48     # run the model using the single run-model function.

49     results <- run_model(psa_inputs)

50    

51     # check that the model results being returned are the correct dimensions

52     # here we expect a single dataframe with 6 columns and 1000 rows

53     assertthat::assert_that(

54       all(dim(x = results) == c(1000, 6)), 

55       class(results) == "data.frame",

56       msg = "Dimensions or type of data are incorrect,

57     please check the model code is correct or contact an administrator.

58     This has been logged"

59     )

60    

61     # check that no data matching the sensitive csv data is included in the output

62     # searches through the results data-frame for any of the parameter names,

63     # if any exist they will flag a TRUE, therefore we assert that all = F

64     assertthat::assert_that(all(psa_inputs[, 1] %in%

65           as.character(unlist(x = results,

66                               recursive = T)) == F))

67    

68     return(results)

69    

70   }

Deploying an API
There are numerous providers of cloud computing services. The most convenient, yet not the cheapest, service  

is offered by RStudio Connect. An account is required for this, but once you have one it is possible to deploy 

the API directly from the Rstudio IDE. RStudio have a blog on how to publish an API created using plumber  

to RStudio connect here.

Interacting with the API
We first show how to run the model from an R script, calling the API and retrieving the results of the model run. 

We then show how to use GitHub actions to automate the process, running the R script when triggered by an  

event (e.g. a data-update) or a scheduled time (e.g. the 1st of each month).

Interacting with the API from an RScript. We use the POST function from the httr package to query the  

API12 - as shown in the code chunk below. This function requires an internet connection. We provide values for  

several arguments:

•฀฀฀฀url - the URL of the RStudio Connect server hosting the API we have created using plumber.

•฀฀฀฀path - the path to the API within the server URL.

•฀฀฀฀query & body - objects passed to the API in list format, with names matching the plumber function  

arguments.

•฀฀฀฀config - allows the user to specify the KEY needed to access the API.

The content function attempts to determine the correct format for the output from the API based upon the  

content type. This function ensures that the result object is a dataframe.

The script then then goes on to save the data and generate a PDF report from the outputs using the RMarkdown  

package3, the code for which can be found here. The R-Markdown report uses functions adapted from  

the darkpeak R package.
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Code chunk 2 - Query the API, retrieve model results and generate report

 1   # remove all existing data from the environment.

 2   rm(list = ls())

 3   

 4   library(ggplot2)

 5   library(jsonlite)

 6   library(httr)

 7   

 8   # run the model using the connect server API

 9   results <- httr::content( 

10     httr::POST(

11       # the Server URL can also be kept confidential, but will leave here for now

12       url = "https://connect.bresmed.com",

13       # path for the API within the server URL

14       path = "rhta2022/runDARTHmodel",

15       # code is passed to the client API from GitHub.

16       query = list(model_functions =

17                      paste0("https://raw.githubusercontent.com/",

18                             "BresMed/plumberHE/main/R/darth_funcs.R")),

19       # set of parameters to be changed ...

20       # we are allowed to change these but not some others

21       body = list(

22         param_updates = jsonlite::toJSON( 

23           data.frame(parameter = c("p_HS1","p_S1H"),

24                      distribution = c("beta","beta"), 

25                      v1 = c(25, 50),

26                      v2 = c(150, 100))

27         )

28       ),

29       # we include a key here to access the API here the key is a env variable

30       config = httr::add_headers(Authorization = paste0("Key ",

31                                                        Sys.getenv("CONNECT_KEY")))

32     )

33   )

34

35   # write the results as a csv to the outputs folder...

36   write.csv(x = results,

37             file = "outputs/darth_model_results.csv")

38    

39   source("report/makeCEAC.R")

40   source("report/makeCEPlane.R")

41    

42   # render the markdown document from the report folder,

43   # passing the results dataframe to the report.

44   rmarkdown::render(input = "report/darthreport.Rmd",

45                     params = list("df_results" = results),

46                     output_dir = "outputs")

Living HTA - scheduling model report updates. Once the API is created and hosted online, it can be called 

any time. The advantage of this is that any updates to either the model code, or the data used by the model, 

can be undertaken separately and the model re-run by either party. Calls to the API can also be sched-

uled at routine intervals. This would enable the health economic evaluation model report to be updated,  

without human interaction, at regular intervals to reflect the most up-to-date data.

In the example below we show how a GitHub Actions (other providers available) workflow can be used to auto-

mate an update to a health economic evaluation13. The workflow runs at 0:01 on the first day of every month or 

any time there are changes made to the source code. It first clones the GitHub repository on a GitHub actions  

Windows 2019 server, then install the necessary dependencies, before running the script described 

above to generate the model report. It creates a pull request to the repo with this new updated report. If 

GitHub is not the preferred location of report storage, it is possible to send the report via email or save  

to cloud storage solutions such as Google Drive or Dropbox.
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Code chunk 3 - Automated report updates

 1   on:

 2     push:

 3       branches:

 4       - main

 5     schedule:

 6       - cron: '1 1 1 * *'

 7   

 8   name: Run DARTH model on client API 

 9   jobs: 

10     createPullRequest: 

11       runs-on: windows-2019 

12       env: 

13         GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}

14     # Load repo and install R 

15       steps: 

16       - uses: actions/checkout@master

17       - uses: r-lib/actions/setup-r@master

18    

19       - name: Setup pandoc

20         uses: r-lib/actions/setup-pandoc@v2

21         with:

22           pandoc-version: '2.17.1.1'

23    

24       - name: Install TinyTeX

25         uses: r-lib/actions/setup-tinytex@v2 

26         env:

27             # install full prebuilt version 

28             TINYTEX_INSTALLER: TinyTeX

29    

30       - name: Install dependencies 

31         run: |

32             install.packages(

33             c("reshape2", "jsonlite", "httr", "readr", "rmarkdown", "markdown")

34             )

35             install.packages(

36             "scales", dependencies = TRUE, repos = 'http://cran.rstudio.com/'

37             )

38             install.packages(

39             "ggplot2", dependencies = TRUE, repos = 'http://cran.rstudio.com/'

40             )

41         shell: Rscript {0}

42    

43       - name: Run the model from API and create report 

44         env:

45            CONNECT_KEY: ${{secrets.PLUMBER_SECRET}}

46         run: |

47             source("scripts/run_darthAPI.R")

48         shell: Rscript {0}

49    

50       - name: Create Pull Request

51         uses: peter-evans/create-pull-request@v3

52         with:

53           token: ${{ secrets.GITHUB_TOKEN }}

54           commit-message: Automated Model Run from API

55           title: 'Living HTA Automated Model Run' 

56           body: >

57             Automated model run

58           labels: report, automated pr

Results
All source code for the API, the economic model, the automated model update framework, and the example  

dataset are available online (see Software availability6 and Underlying data14).
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The most up to date automated report, based on the data held on the exemplar API (hosted on RStudio Connect),  

can always be found here.

The method has been validated by two co-authors using Windows and MAC with example data (see Underlying  

data14). Those validating the method were able to run the model with updated parameter values without 

access to sensitive data, were able to trigger the automated report generation based on existing sensitive data, 

and were able to query the model through an example R-Shiny application, hosted on GitHub (see Software  

availability6). However we are keen to validate the method further, and invite collaboration. A live exemplar API 

is currently hosted by Lumanity (using the exact source code provided open access). If the reader is interested  

to test the functionality of the API please contact the corresponding author, who can provide the key.

Discussion
As the collection and storage of large data sets has become more commonplace in health & health care settings, 

this data is increasingly being used to inform decision making. However, concerns about the security of this data, 

and the ethical implications about linked data sets, make the owners of this valuable resource particularly reluc-

tant to share data with health economic modelling teams. The ability to host APIs on data-owners’ servers, and 

send the model to the data rather than the data to the model, is one potential solution to this problem. The example  

described in this paper may be relatively simple, but gives a tech savvy health economist everything they need  

to set up a modelling framework which does not rely on the sharing of data by a company (or other data-owner).

The framework described has a number of benefits.

•฀฀฀฀Firstly, no data needs to leave the data-owner’s server. This is likely to significantly reduce administrative  

burden for both the company and the consultant, and reduce the number of data-leaks.

•฀฀฀฀Separating the data from the model has significantly improved the transparency of the health economic 

model. Allowing others to critique methods & hidden structural assumptions, test the code and identify 

bugs should improve the quality of models in the long run. It also enables the pool of people working on 

developing the health economic model and accompanying user-interface to be widened, without con-

cern for confidentiality & data security. For example a shiny application could be developed for a model  

built under this framework without the programmer needing access to any sensitive data or information.

•฀฀฀฀The computational burden of the model is handled on a remote server. The power of these servers is  

typically considerably greater than that of a typical personal computer, speeding up model run time con-

siderably. This is likely to be especially important for models that incorporate uncertainty through 

monte-carlo sampling algorithms which can be parallelized on machines with multiple cores15, for  

example probabilistic one way sensitivity analysis16 or partial expected value of perfect information17.

•฀฀฀฀The use of APIs to perform distinct tasks can improve interoperability within the field of health econom-

ics. Different modules, or tasks within a modelling framework can be written in different languages (e.g. 

R, Python, Julia & C++) and linked using APIs. This is likely to improve collaboration between different  

sub-disciplines, which often use different languages (e.g. health economists in R and data-scientists in  

Python).

•฀฀฀฀API calls can be made at any time, and will always reflect the data held by the data owner. In many cases 

these datasets are updated regularly, allowing companies, and other stakeholders, to see the results of 

the decision model based on the most up to date data, without needing human intervention to: send new  

datasets, re-run analysis, write a report, and provide that report in a suitable format for the company.  

Automating model updates at set schedules, or when data is updated, may be invaluable where data is updated 

regularly, as has been the case throughout the COVID-19 pandemic.

•฀฀฀฀Any model can be passed to the API, as long as the inputs and outputs to the model meet the require-

ments of the API. This means that multiple health economic models could be passed to the API, to be run  

using the data on the company server, and compared to account for structural uncertainty.

However, the framework has a number of limitations:

•฀฀฀฀Firstly, the method is relatively complex, and requires a strong understanding of health economic model-

ling in R, API creation and hosting, RMarkdown or other automated reporting packages, and GitHub  

Actions. While we hope that this paper provides a useful resource to health economists seeking to utilise  
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these methods, the bulk of the industry still operates in MS Excel18. Providing tuition to upskill health 

economists, or creating teams consisting of both health economists and data-scientists and software engi-

neers may mediate this limitation somewhat. Groups like the R for HTA consortium has the potential  

to play a crucial role in upskilling the industry.

•฀฀฀฀There are still likely to be concerns about data security, even with the authentication procedures built in 

to the API functionality. Collaboration with experts in this field may mediate this significantly, since there 

is no fundamental reason why health data is any more sensitive, or vulnerable, than the plethora of other 

data (including banking data) that relies on APIs every day. It will be important to reassure companies 

that the use of APIs is likely to reduce, not increase the risk of data breaches, and that every interaction  

with the data can be logged.

•฀฀฀฀There is a risk that running the model remotely will result in the perception that the model is a ‘black box’. 

The use of user-interfaces (such as those increasingly being created in shiny) to interrogate the model, as 

well as the increased transparency associated with being able to share code on sites such as GitHub, 

should reassure stakeholders that this framework is more transparent than the existing spreadsheet based  

solutions19.

•฀฀฀฀Often, when building a model, it is helpful to have the underlying data to be able to investigate the data,  

often through the generation of descriptive statistics. The process of sharing pseudo-data enables  

modellers to ensure that the models they create conform to the structure of the data input. However, the  

modeller still needs to be able to write code that is versatile enough to cope with data with unknown  

distributions ranges and number of observations. This is easily solved, again by improved training and  

the use of standard packages such as hesim and heemod20,21.

The recent working paper by Adibi et al.2 has provided a similar call to action, extolling the virtues of the 

API for decision modelling, and showing how APIs can be used to shift much of the computational burden 

away from those querying models, making models more accessible. However, there are several limitations to 

this brilliant paper. Firstly, while the authors outline a framework for making models more transparent and  

accessible, and describe how they have done this for a number of models using the PRISM server, they do not  

provide instruction on how to replicate this process. Additionally, while the authors state that “A practical model 

accessibility platform should be able to protect confidential information such as patient data and confidential  

pricing” (p6), the framework as described would require companies to give the owners of the model accessibility  

platform access to their confidential data, or else host the model accessibility platform themselves.

This paper has attempted to address some of these limitations, providing open source code for the crea-

tion and deployment of an API with an accompanying automated health economic evaluation update frame-

work. It also provides open source code on two new pieces of additional functionality not previously described 

elsewhere; firstly it demonstrates how companies can host APIs themselves to negate the need to share data 

with subject experts, and secondly it demonstrates how model updates can be automated with scheduled  

workflows run on remote servers.

Conclusions
This example framework, with accompanying open source code base, demonstrates that it is possible, within 

a HEOR setting, to separate a health economic model from the data, and automate the main steps of the analysis 

pipeline. We believe this is the first application of this procedure in the HEOR context, and is certainly the 

first example to be made open source for the benefit of the wider community. We hope that this framework will 

improve the transparency of health economic models, reduce the cost and administrative burden of updating  

models, and increase the speed at which updates can occur.

Data availability
Underlying data
Zenodo: Parameter distributions. https://doi.org/10.5281/zenodo.672762914.

This project contains the following underlying data:

•฀฀฀฀parameter_distributions.csv (example dataset for modification. This dataset also sits within the server, with 

some of the rows marked as non-editable; these are characterised as ’sensitive’ throughout the manuscript.  

This dataset is edited in ’Code Chunk 2’ to test the API).
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Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/RobertASmithBresMed/plumberHE.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.65568886

License: MIT

Acknowledgements
We would like to thank the participants at R-HTA Oxford, Richard Birnie (Lumanity) and Dawn Lee (Lumanity)  

for feedback on the original concept and manuscript. All errors are the fault of the authors.

References

1. Williamson EJ, Walker AJ, Bhaskaran K, et al.: Factors associated 
with covid-19-related death using opensafely. Nature. 2020; 
584(7821): 430–436.  
PubMed Abstract | Publisher Full Text | Free Full Text 

2. Adibi A, Harvard S, Sadatsafavi M: Programmable interface 
for statistical & simulation models (prism): Towards greater 
accessibility of clinical and healthcare decision models. arXiv 
preprint arXiv:2202.08358. 2022.  
Reference Source 

3. Xie Y, Dervieux C, Riederer E: R Markdown Cookbook. Chapman 
and Hall/CRC, Boca Raton, Florida, 2020.  
Reference Source

4. Chang W, Cheng J, Allaire JJ, et al.: shiny: Web Application 
Framework for R. 2021.  
Reference Source

5. Smith R, Schneider P: Making health economic models Shiny: 
A tutorial [version 2; peer review: 2 approved]. Wellcome Open 
Research. 2020; 5: 69.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Smith R, Schneider P, Mohammed W: Robertasmithbresmed/
plumberhe: R-hta june 2022. software, May 2022.  
http://www.doi.org/10.5281/zenodo.6556888

7. Alarid-Escudero F, Krijkamp EM, Enns EA, et al.: A tutorial 
on time-dependent cohort state-transition models in r 
using a cost-effectiveness analysis example. arXiv preprint 
arXiv:2108.13552. 2021.  
Publisher Full Text 

8. Alarid-Escudero F, Krijkamp E: DARTHgit/cohort-modeling-
tutorial-intro: Second Zenodo release. March 2022.  
Publisher Full Text 

9. Ooms J: The jsonlite package: A practical and consistent mapping 
between json data and r objects.arXiv:1403.2805 [stat.CO]. 2014.  
Reference Source

10. Schloerke B, Allen J: plumber: An API Generator for R package 
version 1.1.0, 2021.  
Reference Source

11. Wickham H, Danenberg P, Csárdi G, et al.: roxygen2: In-line 
documentation for r. R package version. 2020; 7(1). 

12. Wickham H: httr: Tools for Working with URLs and HTTP.  
R package version 1.4.2. 2020.  
Reference Source

13. Chandrasekara C, Herath P: Introduction to github actions. In: 
Hands-on GitHub Actions. Springer, 2021; 1–8.  
Publisher Full Text 

14. Smith R: Parameter distributions. dataset., June 2022.  
http://www.doi.org/10.5281/zenodo.6727629

15. R Core Team: R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna, 
Austria, 2020.  
Reference Source

16. McCabe C, Paulden M, Awotwe I, et al.: One-Way Sensitivity 
Analysis for Probabilistic Cost-Effectiveness Analysis: 
Conditional Expected Incremental Net Benefit. 
Pharmacoeconomics. 2020; 38(2): 135–141.  
PubMed Abstract | Publisher Full Text | Free Full Text 

17. Brennan A, Kharroubi S, O’hagan A, et al.: Calculating partial 
expected value of perfect information via monte carlo 
sampling algorithms. Med Decis Making. 2007; 27(4): 448–470. 
PubMed Abstract | Publisher Full Text 

18. Incerti D, Thom H, Baio G, et al.: R you still using excel? the 
advantages of modern software tools for health technology 
assessment. Value Health. 2019; 22(5): 575–579.  
PubMed Abstract | Publisher Full Text 

19. Pouwels XGLV, Sampson CJ, Arnold RJG, et al.: Opportunities and 
Barriers to the Development and Use of Open Source Health 
Economic Models: A Survey. Value Health. 2022; 25(4): 473–479. 
PubMed Abstract | Publisher Full Text 

20. Incerti D, Jansen JP: hesim: Health economic simulation 
modeling and decision analysis. arXiv preprint arXiv:2102.09437, 
2021.  
Publisher Full Text 

21. Filipovic-Pierucci A, Zarca K, Durand-Zaleski I: Markov models for 
health economic evaluation modelling in r with the heemod 
package. Value Health. 2016; 19(7): A369.  
Publisher Full Text 

Page 12 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022



Open Peer Review
Current Peer Review Status:  

Version 1

Reviewer Report 08 August 2022

https://doi.org/10.21956/wellcomeopenres.19871.r51661

© 2022 Sadatsafavi M. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Mohsen Sadatsafavi   
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada 

Smith and colleagues introduce an API framework for developing and implementing health 
economics models without necessarily sharing the underlying data with model developers. This is 
facilitated via an Application Programming Interface. The main utility of this framework is 
separating data from the model. The setup of the platform is that the client (say a pharma 
company) is commissioning the creation of a health economics model via a consultancy firm. The 
company is in possession of sensitive and not-sharable data that are used to develop the model. 
To make things work, the company creates a Web server that securely hosts the data. It optionally 
provides synthetic data to the consultant to help build the model. Once the model is built, it is sent 
to the Web server where it sits next to the sensitive data to complete what is needed to run the 
economic evaluation. It then sends the output back to the consultant and a report is generated. 
This process is further automated such that the entire process is activated at set intervals or after 
a change in the model or the underlying data. This pipeline uses several widely adopted standards 
or services such as JSON for data transfer, Github for haring the model code and automation, 
RMarkdown, and so on. I really enjoyed reading this paper and found it an important step in the 
right direction. 
 
I have several suggestions for improving the exposition. 
 
Major comments:

The authors should be clearer with their terminology throughout as well as which code is 
running where. It took this reader several reads to finally (apparently) understand. Suggest 
making it clear that a client has sensitive data and tasks a consultant for creating a model. 
Make it clear that the first code chunk runs on the client’s server (next to data) while the 
second is run on the consultant’s side (if I understood things correctly). 
 

1. 

“When a ‘client’ application wants to access data, it initiates an API call (request) via a web-server, 
to retrieve the data. If this request is deemed valid, the API makes a call to an external 
program/server, the server sends a response to the API with the data, and the API transfers the 
data to the ‘client’ application.” I found these sentences on top of Page 5 quite confusing. Is 

2. 
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not sharing sensitive data whilst being able to run the model not the main point of this 
platform? 
 
The only input that the run_model accepts seems to be the PA dataset. Are there flexibilities 
around other sets of parameters? What if someone wants to change the time horizon of the 
model? Similarly, what the investigators consider as the output of the model is restrictive 
(only costs and QALYs). A health economic model can have other payoffs (mortality, disease 
incidence) and to this reviewer, the presence of clinical or other payoffs is more norm than 
an exception. Can they make comments on to what extent these parts can be made more 
flexible? 
 

3. 

Suggest making it clear that by sharing the model and keeping the data private, the 
requirement now is for the model to be open-source. This in itself is sharing IP, and the 
authors can make it clear that their innovation is that the model is shared not the data, and 
perhaps claim that oftentimes sharing data is more restrictive. 
 

4. 

Please make it clear that plumber is a state-based environment and as such, it connects all 
the consultants to the same R session. The advantage of this approach is that it is ‘live’ such 
that subsequent function calls can be made to interact with the model. The drawback is that 
multiple consultants might overwrite each other’s sessions and also keeping R alive, 
especially with complex models can be problematic for the server. The authors can make a 
distinction with Adibi et al.’s PRISM which uses OpenCPU.

5. 

 
Minor comments:

Is adhering to the DARTH naming convention absolutely necessary? While using such 
standards is generally good, is this platform not more generic in nature (e.g., the company 
and the consultant agreeing on a function call)? 
 

1. 

In the case study for which code chunks are provided, what data are considered sensitive 
for illustrative purposes? 
 

2. 

Why the dataframe representing the probabilistic input should have distributions with two 
parameters? This will preclude the use of some distributions like generalized gamma that 
have three or more parameters. 
 

3. 

One advantage of this platform can be that by making the modeler team use synthetic data, 
the potential for stakeholder bias is also minimized. 
 

4. 

Introduction: “The development of economic models generally involves the transfer of sensitive 
data (e.g. individual patient or price data) between parties”. I think ‘generally’ is too strong here. 
Perhaps use ‘at times’? Many health economics modeling efforts are based on the literature 
or publicly available data. Perhaps the authors can restrict this statement to models 
developed by the industry for their new health technologies for which there are often 
sensitive data. 
 

5. 

I could not understand the point of overwrite_parameter_value() function. Can the authors 
clarify? Similarly, in the code chunk #2, line 52: “here we expect a single dataframe with 6 
columns and 1000 rows”. It is not obvious to me how we expect this to be 1000 exactly. 

6. 
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Should this not be decided by the dimension of the input data frame? 
 
Page 7: “for this, but once you have one it is possible”; ‘you’ is a bit colloquial for a science 
paper. Similarly, referring to Adibi’s framework as ‘brilliant’ is a bit colloquial.

7. 

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
No

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: I am the lead of the PRISM project and the senior author of its paper 
(https://arxiv.org/abs/2202.08358) which is somewhat related to this technology. The authors 
appropriately cite this paper and make it clear that their proposed platform is significantly 
different in major ways.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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