
This is a repository copy of Living HTA : automating health technology assessment with R
[version 1; peer review: 1 approved with reservations].

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190071/

Version: Published Version

Article:

Smith, R.A. orcid.org/0000-0003-0245-3217, Schneider, P.P. orcid.org/0000-0003-3552-
1087 and Mohammed, W. orcid.org/0000-0003-0370-4903 (2022) Living HTA : automating
health technology assessment with R [version 1; peer review: 1 approved with
reservations]. Wellcome Open Research, 7. 194.

https://doi.org/10.12688/wellcomeopenres.17933.1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

METHOD ARTICLE

Living HTA: Automating Health Technology Assessment with

R [version 1; peer review: 1 approved with reservations]
Robert A. Smith 1-3, Paul P. Schneider 1,3, Wael Mohammed 1,3

1School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
2Lumanity, Sheffield, S1 2GQ, UK
3Dark Peak Analytics, Sheffield, S11 7BA, UK

First published: 21 Jul 2022, 7:194
https://doi.org/10.12688/wellcomeopenres.17933.1
Latest published: 21 Jul 2022, 7:194
https://doi.org/10.12688/wellcomeopenres.17933.1

v1

Abstract
Background: Requiring access to sensitive data can be a significant
obstacle for the development of health models in the Health
Economics & Outcomes Research (HEOR) setting. We demonstrate
how health economic evaluation can be conducted with minimal
transfer of data between parties, while automating reporting as new
information becomes available.
Methods: We developed an automated analysis and reporting
pipeline for health economic modelling and made the source code
openly available on a GitHub repository. The pipeline consists of three
parts: An economic model is constructed by the consultant using
pseudo data. On the data-owner side, an application programming
interface (API) is hosted on a server. This API hosts all sensitive data,
so that data does not have to be provided to the consultant. An
automated workflow is created, which calls the API, retrieves results,
and generates a report.
Results: The application of modern data science tools and practices
allows analyses of data without the need for direct access – negating
the need to send sensitive data. In addition, the entire workflow can
be largely automated: the analysis can be scheduled to run at defined
time points (e.g. monthly), or when triggered by an event (e.g. an
update to the underlying data or model code); results can be
generated automatically and then be exported into a report.
Documents no longer need to be revised manually.
Conclusions: This example demonstrates that it is possible, within a
HEOR setting, to separate the health economic model from the data,
and automate the main steps of the analysis pipeline.

Keywords
HEOR, HTA, APIs, R, plumber

Open Peer Review

Approval Status

1

version 1
21 Jul 2022 view

Mohsen Sadatsafavi , University of British

Columbia, Vancouver, Canada

1.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

https://wellcomeopenresearch.org/articles/7-194/v1
https://wellcomeopenresearch.org/articles/7-194/v1
https://orcid.org/0000-0003-0245-3217
https://orcid.org/0000-0003-3552-1087
https://orcid.org/0000-0003-0370-4903
https://doi.org/10.12688/wellcomeopenres.17933.1
https://doi.org/10.12688/wellcomeopenres.17933.1
https://wellcomeopenresearch.org/articles/7-194/v1
https://wellcomeopenresearch.org/articles/7-194/v1#referee-response-51661
https://orcid.org/0000-0002-0419-7862

Corresponding author: Robert A. Smith (rasmith3@sheffield.ac.uk)
Author roles: Smith RA: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration,
Resources, Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Schneider PP: Conceptualization,
Methodology, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Mohammed W: Methodology, Writing –
Original Draft Preparation, Writing – Review & Editing
Competing interests: R.A.S. Is part of the Scientific Committee for R for HTA, an academic consortium whose main objective is to
explore the use of R for cost-effectiveness analysis. P.P.S. and W.M have no competing interests to declare.
Grant information: This work was jointly supported by the Wellcome Trust Doctoral Training Centre in Public Health Economics and
Decision Science (PHEDS) [108903, https://doi.org/10.35802/108903; 224853] and the University of Sheffield.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2022 Smith RA et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Smith RA, Schneider PP and Mohammed W. Living HTA: Automating Health Technology Assessment with R
[version 1; peer review: 1 approved with reservations] Wellcome Open Research 2022, 7:194
https://doi.org/10.12688/wellcomeopenres.17933.1
First published: 21 Jul 2022, 7:194 https://doi.org/10.12688/wellcomeopenres.17933.1

Page 2 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

mailto:rasmith3@sheffield.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.17933.1
https://doi.org/10.12688/wellcomeopenres.17933.1

Introduction
The development of economic models generally involves the transfer of sensitive data (e.g. individual patient

or price data) between parties. This paper demonstrates how the use of application programming interfaces

(API) allows data-owners in the Health Economics & Outcomes Research (HEOR) industry to collaborate

with multiple partners on health economic decision models, while, retaining full control of their data. The use

of an API furthermore makes it possible to streamline and automate reporting as new information becomes

available, significantly reducing the financial and administrative burden of economic model updates.

To our knowledge this is the first publication to outline a process for automated reporting in HEOR, which we

term Living HTA, and the first to demonstrate the process of sending health economic model algorithms to

sensitive data using APIs.

Two other bodies of work are particularly relevant. The first is the OpenSafely initiative, which inspired this

work. Williamson et al.1 describe the OpenSafely interface, which was developed to analyse electronic health

records data without the need to share confidential patient information:

฀฀฀฀“secure software interface that allows detailed pseudonymized primary care patient records to be analysed

in near-real time where they already reside - hosted within the highly secure data centre of the electronic

health records vendor — to minimize the reidentification risks when data are transported off-site”.

The method described in this paper has a similar objective, but aims to protect sensitive information in the HEOR

sector.

The second work, a publication by Adibi et al.2, describes a cloud-based model accessibility platform for

models developed in R. The authors make the case for cloud based platforms to improve the accessibility,

transparency and standardization of health economic models, particularly highlighting the benefits of hosting

computationally burdensome models on remote servers. The authors outline a framework for hosting models,

contained within R packages, which are run using calls to an API. A set of standardized model call functions pro-

vide the user of the API with enough information to pass the necessary parameters to the model, run the model,

and retrieve the necessary results directly into an R session. The publication is the first, to our knowledge, to

discuss the enormous implications that remote model hosting could have in the HEOR industry.

We combine elements from both Adibi et al.2 and the OpenSafely initiative, and provide an open-source code base

which demonstrates the ease with which APIs can be deployed on remote servers to avoid the need to share sensitive

data, and enabling automation of model updates. In short, we propose that data owners (e.g. pharmaceutical

companies or governments), with support from health economists, host their own model accessibility platforms.

Our hope is that providing these materials will encourage others to use these methods to improve the

transparency, accessibility and efficiency of health economic models.

Methods
We developed an automated analysis and reporting pipeline for health economic modeling. It consists of three

parts:

•฀฀฀฀An economic model. The model can initially be developed using pseudo data – that is, randomly generated

data, which has the same format as the actual data, but does not contain any sensitive information.

•฀฀฀฀An API, hosted on the company or data provider side. It can be generated using the R package plumber.

An automated workflow is created. This workflow sends the economic model to the company API. The

model is then run within the company server. The results are sent back to the consultant, and a (PDF) report

is automatically generated using RMarkdown3. This API server hosts all sensitive data, so that data does

not have to be sent between parties.

•฀฀฀฀All of these processes can be controlled with a web-based user-interface. We provide an example user-

interface built in the R shiny package4, based on the tutorial application in our previous paper5. This appli-

cation allows users to select input parameters with which to query the API, and view the results. This

allows non-technical stakeholders to interact with the model in real time, while allowing the company

to retain control of the data. The application will always reflect the data on the company server, and the

model hosted by the consultant at the time of use.

Figure 1 shows a schematic of the interaction between the company API and the consultant automated workflow.

All of the methods discussed in this paper, as well as the code for the demonstration app can be found contained

within an open access GitHub repository (see Software availability6).

Page 3 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

The economic model
This model code has been adapted from the Decision Analysis in R for Technologies in Health (DARTH) group’s

open source Cohort state-transition model (the Sick-Sicker Model) which is discussed in Alarid-Escudero

et al.7 with open source code available online8. The code includes several functions, but for the purpose of this

example we can treat the model as a black box, as a single function called run_model which runs the DARTH

Sick Sicker model. The run_model function takes a single argument, psa_inputs, which is a data-frame containing

Probabilistic Sensitivity Analysis parameter inputs for the model variables that are allowed to vary.

The data-frame has four columns:

•฀฀฀฀parameter - the name of the parameter (e.g. p_HS1)

•฀฀฀฀distribution - the distribution of that parameter (e.g. “beta”)

•฀฀฀฀V1 - the first parameter for the distribution in R (for beta this would be shape1, for normal this would

be mean)

•฀฀฀฀V2 - the second parameter for the distribution in R (for beta this would be shape2, for normal this would

be sd)

The run_model function returns a data-frame with six columns. The first three columns are costs for each treat-

ment option, and the second three columns are Quality Adjusted Life Years (QALYs) for each treatment

option. Each row represents the result of the model run for a set of inputs.

The API
An application programming interface is a set of rules, in the form of code, that allow different computers to

interact with one another in real time. Whereas user-interfaces such as those generated by the R package shiny

allow humans to interact with data, APIs are designed to enable computers to interact with data4.

Figure 1. Schematic showing the interaction between the company API (application programming interface)
and the consultant automated workflow. HTA, Health Technology Assessment; JSON, Javascript Object Notation.

Page 4 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

When a ‘client’ application wants to access data, it initiates an API call (request) via a web-server, to retrieve

the data. If this request is deemed valid, the API makes a call to an external program/server, the server sends

a response to the API with the data, and the API transfers the data to the ‘client’ application. In a sense, the

API is the broker (or middle-man) between two systems.

There are numerous benefits to APIs:

•฀฀฀฀in supporting programmatic access. In contrast to what web applications offer (for example shiny apps),

APIs allow users to access data, or other utilities (for example, proprietary applications) programmatically.

Programmatic access enables users to invoke actions through an application or third-party tool.

For example, R users can write a function that fetches or analyses data via an API and use it

in their workflow as any other user-defined function.

•฀฀฀฀in allowing cross-platform communications. Statisticians and decision-model developers can use different

programming languages or packages. For example, APIs can allow a decision analytic model, devel-

oped in C++ to programmatically utilise data from a bayesian meta-analysis performed using the Python

programming language.

•฀฀฀฀in aiding speed of collaboration between institutions, ensuring inputs and outputs are standardised so

that applications can ‘talk’ to one another. Users from one institution need not to take into account the

software or package used by their partners, but focus on how they would interact with the expected data.

•฀฀฀฀in security, eliminating the necessity to share data manually (e.g. via email). All interaction with data

can be logged and access can be restricted by passwords and by limiting IP address access. For example,

APIs can safely allow statisticians to programmatically accumulate sub-group summary-statistics from

securely stored trial-data to inform a network meta-analysis.

•฀฀฀฀in expanding sharing avenues. For example, APIs can allow institutions to give limited access to their

proprietary tools such as in-house decision-analytic models. Users of such tools can pass their data to the

model and receive the respective outputs via the API.

•฀฀฀฀eliminating computational burden on the client side (since all computation is done on the API owner side).

There are lots of different implementations of APIs, but the main focus of this paper is on Partner APIs, which

are created to allow data transfer between two different institutions. This requires a medium level of security,

usually through the creation of access keys that are shared with partners.

In the examples below we use Javascript Object Notation (JSON), a data interchange format that is commonly used

to transfer information between computers, to pass information to and from our API. Since the model is written

in R, we convert back and forth between JSON and R data formats using the jsonlite R package9.

Creating the API using plumber
The R package plumber allows programmers to create web APIs by decorating R source code with roxygen-like

comments10,11. These functions are then made available as API endpoints by plumber.

The API can be called using a number of HTTP request methods (also known as HTTP verbs). The

most-commonly used methods POST, GET, PUT, PATCH, and DELETE correspond to create (POST and

PUT), read (GET), update (PATCH), and delete (DELETE) operations. These annotations generate the API’s

endpoint(s) and specify the operation(s) or response(s) the respective R function is responsible for generating. The

below example shows the ‘GET’ request (the default for web-browsers).

The code below gives an example function which echos a message. The function takes one input, a string with the

message, and outputs the message contained within a list. If this function was created in R it would return a list

containing some text, like this: The message is: ‘example_msg’.

1 #* Echo back the input

2 #* @param msg The message to echo

3 #* @get /echo

4 function(msg="") {

5 list(msg = paste0("The message is: '", msg, "'"))

6 }

Page 5 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

The code for the model function uses the same principles, but is much more developed. There are three

arguments to the model API; path_to_psa_inputs, model_functions and param_updates.

The core API function created by plumber sources the model functions from software development website

GitHub, obtains the model parameter data from within the API, and then overwrites the rows of the parameter

updates that exist in param_updates. It then runs the model functions using the updated parameters, post-processes

the results, checks that no sensitive data is included in the results, and then returns a data-frame of results. This

entire process occurs in the server on which the API is hosted, with inputs and outputs passed to the API over the

web in JSON format.

Code chunk 1 - Generating the API

 1 library(dampack)

 2 library(readr)

 3 library(assertthat)

 4

 5 #* @apiTitle Client API hosting sensitive data

 6 #*

 7 #* @apiDescription This API contains sensitive data, the client does not

 8 #* want to share this data but does want a consultant to build a health

 9 #* economic model using it, and wants that consultant to be able to run

10 #* the model for various inputs

11 #* (while holding certain inputs fixed and leaving them unknown).

12

13 #* Run the DARTH model

14 #* @serializer csv

15 #* @param path_to_psa_inputs is the path of the csv file containing the PSA parameters

16 #* @param model_functions gives the GitHub repository to source the model code

17 #* @param param_updates gives the replacement values of the editable parameters

18 #* @post /runDARTHmodel

19 function(path_to_psa_inputs = "parameter_distributions.csv",

20 model_functions = paste0("https://raw.githubusercontent.com/",

21 "BresMed/plumberHE/main/R/darth_funcs.R"),

22 param_updates = data.frame(

23 parameter = c("p_HS1", "p_S1H"),

24 distribution = c("beta", "beta"),

25 v1 = c(25, 50),

26 v2 = c(150, 70)

27)) {

28

29

30 # source the model functions from the shared GitHub repo...

31 source(model_functions)

32

33 # read in the csv containing parameter inputs

34 psa_inputs <- as.data.frame(readr::read_csv(path_to_psa_inputs))

35

36 # for each row of the data-frame containing the variables to be changed...

37 for(n in 1:nrow(param_updates)){

38

39 # update parameters from API input

40 psa_inputs <- overwrite_parameter_value(

41 existing_df = psa_inputs,

42 parameter = param_updates[n,"parameter"],

43 distribution = param_updates[n,"distribution"],

44 v1 = param_updates[n,"v1"],

45 v2 = param_updates[n,"v2"])

46 }

47

Page 6 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

48 # run the model using the single run-model function.

49 results <- run_model(psa_inputs)

50

51 # check that the model results being returned are the correct dimensions

52 # here we expect a single dataframe with 6 columns and 1000 rows

53 assertthat::assert_that(

54 all(dim(x = results) == c(1000, 6)),

55 class(results) == "data.frame",

56 msg = "Dimensions or type of data are incorrect,

57 please check the model code is correct or contact an administrator.

58 This has been logged"

59)

60

61 # check that no data matching the sensitive csv data is included in the output

62 # searches through the results data-frame for any of the parameter names,

63 # if any exist they will flag a TRUE, therefore we assert that all = F

64 assertthat::assert_that(all(psa_inputs[, 1] %in%

65 as.character(unlist(x = results,

66 recursive = T)) == F))

67

68 return(results)

69

70 }

Deploying an API
There are numerous providers of cloud computing services. The most convenient, yet not the cheapest, service

is offered by RStudio Connect. An account is required for this, but once you have one it is possible to deploy

the API directly from the Rstudio IDE. RStudio have a blog on how to publish an API created using plumber

to RStudio connect here.

Interacting with the API
We first show how to run the model from an R script, calling the API and retrieving the results of the model run.

We then show how to use GitHub actions to automate the process, running the R script when triggered by an

event (e.g. a data-update) or a scheduled time (e.g. the 1st of each month).

Interacting with the API from an RScript. We use the POST function from the httr package to query the

API12 - as shown in the code chunk below. This function requires an internet connection. We provide values for

several arguments:

•฀฀฀฀url - the URL of the RStudio Connect server hosting the API we have created using plumber.

•฀฀฀฀path - the path to the API within the server URL.

•฀฀฀฀query & body - objects passed to the API in list format, with names matching the plumber function

arguments.

•฀฀฀฀config - allows the user to specify the KEY needed to access the API.

The content function attempts to determine the correct format for the output from the API based upon the

content type. This function ensures that the result object is a dataframe.

The script then then goes on to save the data and generate a PDF report from the outputs using the RMarkdown

package3, the code for which can be found here. The R-Markdown report uses functions adapted from

the darkpeak R package.

Page 7 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

Code chunk 2 - Query the API, retrieve model results and generate report

 1 # remove all existing data from the environment.

 2 rm(list = ls())

 3

 4 library(ggplot2)

 5 library(jsonlite)

 6 library(httr)

 7

 8 # run the model using the connect server API

 9 results <- httr::content(

10 httr::POST(

11 # the Server URL can also be kept confidential, but will leave here for now

12 url = "https://connect.bresmed.com",

13 # path for the API within the server URL

14 path = "rhta2022/runDARTHmodel",

15 # code is passed to the client API from GitHub.

16 query = list(model_functions =

17 paste0("https://raw.githubusercontent.com/",

18 "BresMed/plumberHE/main/R/darth_funcs.R")),

19 # set of parameters to be changed ...

20 # we are allowed to change these but not some others

21 body = list(

22 param_updates = jsonlite::toJSON(

23 data.frame(parameter = c("p_HS1","p_S1H"),

24 distribution = c("beta","beta"),

25 v1 = c(25, 50),

26 v2 = c(150, 100))

27)

28),

29 # we include a key here to access the API here the key is a env variable

30 config = httr::add_headers(Authorization = paste0("Key ",

31 Sys.getenv("CONNECT_KEY")))

32)

33)

34

35 # write the results as a csv to the outputs folder...

36 write.csv(x = results,

37 file = "outputs/darth_model_results.csv")

38

39 source("report/makeCEAC.R")

40 source("report/makeCEPlane.R")

41

42 # render the markdown document from the report folder,

43 # passing the results dataframe to the report.

44 rmarkdown::render(input = "report/darthreport.Rmd",

45 params = list("df_results" = results),

46 output_dir = "outputs")

Living HTA - scheduling model report updates. Once the API is created and hosted online, it can be called

any time. The advantage of this is that any updates to either the model code, or the data used by the model,

can be undertaken separately and the model re-run by either party. Calls to the API can also be sched-

uled at routine intervals. This would enable the health economic evaluation model report to be updated,

without human interaction, at regular intervals to reflect the most up-to-date data.

In the example below we show how a GitHub Actions (other providers available) workflow can be used to auto-

mate an update to a health economic evaluation13. The workflow runs at 0:01 on the first day of every month or

any time there are changes made to the source code. It first clones the GitHub repository on a GitHub actions

Windows 2019 server, then install the necessary dependencies, before running the script described

above to generate the model report. It creates a pull request to the repo with this new updated report. If

GitHub is not the preferred location of report storage, it is possible to send the report via email or save

to cloud storage solutions such as Google Drive or Dropbox.

Page 8 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

Code chunk 3 - Automated report updates

 1 on:

 2 push:

 3 branches:

 4 - main

 5 schedule:

 6 - cron: '1 1 1 * *'

 7

 8 name: Run DARTH model on client API

 9 jobs:

10 createPullRequest:

11 runs-on: windows-2019

12 env:

13 GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}

14 # Load repo and install R

15 steps:

16 - uses: actions/checkout@master

17 - uses: r-lib/actions/setup-r@master

18

19 - name: Setup pandoc

20 uses: r-lib/actions/setup-pandoc@v2

21 with:

22 pandoc-version: '2.17.1.1'

23

24 - name: Install TinyTeX

25 uses: r-lib/actions/setup-tinytex@v2

26 env:

27 # install full prebuilt version

28 TINYTEX_INSTALLER: TinyTeX

29

30 - name: Install dependencies

31 run: |

32 install.packages(

33 c("reshape2", "jsonlite", "httr", "readr", "rmarkdown", "markdown")

34)

35 install.packages(

36 "scales", dependencies = TRUE, repos = 'http://cran.rstudio.com/'

37)

38 install.packages(

39 "ggplot2", dependencies = TRUE, repos = 'http://cran.rstudio.com/'

40)

41 shell: Rscript {0}

42

43 - name: Run the model from API and create report

44 env:

45 CONNECT_KEY: ${{secrets.PLUMBER_SECRET}}

46 run: |

47 source("scripts/run_darthAPI.R")

48 shell: Rscript {0}

49

50 - name: Create Pull Request

51 uses: peter-evans/create-pull-request@v3

52 with:

53 token: ${{ secrets.GITHUB_TOKEN }}

54 commit-message: Automated Model Run from API

55 title: 'Living HTA Automated Model Run'

56 body: >

57 Automated model run

58 labels: report, automated pr

Results
All source code for the API, the economic model, the automated model update framework, and the example

dataset are available online (see Software availability6 and Underlying data14).

Page 9 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

The most up to date automated report, based on the data held on the exemplar API (hosted on RStudio Connect),

can always be found here.

The method has been validated by two co-authors using Windows and MAC with example data (see Underlying

data14). Those validating the method were able to run the model with updated parameter values without

access to sensitive data, were able to trigger the automated report generation based on existing sensitive data,

and were able to query the model through an example R-Shiny application, hosted on GitHub (see Software

availability6). However we are keen to validate the method further, and invite collaboration. A live exemplar API

is currently hosted by Lumanity (using the exact source code provided open access). If the reader is interested

to test the functionality of the API please contact the corresponding author, who can provide the key.

Discussion
As the collection and storage of large data sets has become more commonplace in health & health care settings,

this data is increasingly being used to inform decision making. However, concerns about the security of this data,

and the ethical implications about linked data sets, make the owners of this valuable resource particularly reluc-

tant to share data with health economic modelling teams. The ability to host APIs on data-owners’ servers, and

send the model to the data rather than the data to the model, is one potential solution to this problem. The example

described in this paper may be relatively simple, but gives a tech savvy health economist everything they need

to set up a modelling framework which does not rely on the sharing of data by a company (or other data-owner).

The framework described has a number of benefits.

•฀฀฀฀Firstly, no data needs to leave the data-owner’s server. This is likely to significantly reduce administrative

burden for both the company and the consultant, and reduce the number of data-leaks.

•฀฀฀฀Separating the data from the model has significantly improved the transparency of the health economic

model. Allowing others to critique methods & hidden structural assumptions, test the code and identify

bugs should improve the quality of models in the long run. It also enables the pool of people working on

developing the health economic model and accompanying user-interface to be widened, without con-

cern for confidentiality & data security. For example a shiny application could be developed for a model

built under this framework without the programmer needing access to any sensitive data or information.

•฀฀฀฀The computational burden of the model is handled on a remote server. The power of these servers is

typically considerably greater than that of a typical personal computer, speeding up model run time con-

siderably. This is likely to be especially important for models that incorporate uncertainty through

monte-carlo sampling algorithms which can be parallelized on machines with multiple cores15, for

example probabilistic one way sensitivity analysis16 or partial expected value of perfect information17.

•฀฀฀฀The use of APIs to perform distinct tasks can improve interoperability within the field of health econom-

ics. Different modules, or tasks within a modelling framework can be written in different languages (e.g.

R, Python, Julia & C++) and linked using APIs. This is likely to improve collaboration between different

sub-disciplines, which often use different languages (e.g. health economists in R and data-scientists in

Python).

•฀฀฀฀API calls can be made at any time, and will always reflect the data held by the data owner. In many cases

these datasets are updated regularly, allowing companies, and other stakeholders, to see the results of

the decision model based on the most up to date data, without needing human intervention to: send new

datasets, re-run analysis, write a report, and provide that report in a suitable format for the company.

Automating model updates at set schedules, or when data is updated, may be invaluable where data is updated

regularly, as has been the case throughout the COVID-19 pandemic.

•฀฀฀฀Any model can be passed to the API, as long as the inputs and outputs to the model meet the require-

ments of the API. This means that multiple health economic models could be passed to the API, to be run

using the data on the company server, and compared to account for structural uncertainty.

However, the framework has a number of limitations:

•฀฀฀฀Firstly, the method is relatively complex, and requires a strong understanding of health economic model-

ling in R, API creation and hosting, RMarkdown or other automated reporting packages, and GitHub

Actions. While we hope that this paper provides a useful resource to health economists seeking to utilise

Page 10 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

these methods, the bulk of the industry still operates in MS Excel18. Providing tuition to upskill health

economists, or creating teams consisting of both health economists and data-scientists and software engi-

neers may mediate this limitation somewhat. Groups like the R for HTA consortium has the potential

to play a crucial role in upskilling the industry.

•฀฀฀฀There are still likely to be concerns about data security, even with the authentication procedures built in

to the API functionality. Collaboration with experts in this field may mediate this significantly, since there

is no fundamental reason why health data is any more sensitive, or vulnerable, than the plethora of other

data (including banking data) that relies on APIs every day. It will be important to reassure companies

that the use of APIs is likely to reduce, not increase the risk of data breaches, and that every interaction

with the data can be logged.

•฀฀฀฀There is a risk that running the model remotely will result in the perception that the model is a ‘black box’.

The use of user-interfaces (such as those increasingly being created in shiny) to interrogate the model, as

well as the increased transparency associated with being able to share code on sites such as GitHub,

should reassure stakeholders that this framework is more transparent than the existing spreadsheet based

solutions19.

•฀฀฀฀Often, when building a model, it is helpful to have the underlying data to be able to investigate the data,

often through the generation of descriptive statistics. The process of sharing pseudo-data enables

modellers to ensure that the models they create conform to the structure of the data input. However, the

modeller still needs to be able to write code that is versatile enough to cope with data with unknown

distributions ranges and number of observations. This is easily solved, again by improved training and

the use of standard packages such as hesim and heemod20,21.

The recent working paper by Adibi et al.2 has provided a similar call to action, extolling the virtues of the

API for decision modelling, and showing how APIs can be used to shift much of the computational burden

away from those querying models, making models more accessible. However, there are several limitations to

this brilliant paper. Firstly, while the authors outline a framework for making models more transparent and

accessible, and describe how they have done this for a number of models using the PRISM server, they do not

provide instruction on how to replicate this process. Additionally, while the authors state that “A practical model

accessibility platform should be able to protect confidential information such as patient data and confidential

pricing” (p6), the framework as described would require companies to give the owners of the model accessibility

platform access to their confidential data, or else host the model accessibility platform themselves.

This paper has attempted to address some of these limitations, providing open source code for the crea-

tion and deployment of an API with an accompanying automated health economic evaluation update frame-

work. It also provides open source code on two new pieces of additional functionality not previously described

elsewhere; firstly it demonstrates how companies can host APIs themselves to negate the need to share data

with subject experts, and secondly it demonstrates how model updates can be automated with scheduled

workflows run on remote servers.

Conclusions
This example framework, with accompanying open source code base, demonstrates that it is possible, within

a HEOR setting, to separate a health economic model from the data, and automate the main steps of the analysis

pipeline. We believe this is the first application of this procedure in the HEOR context, and is certainly the

first example to be made open source for the benefit of the wider community. We hope that this framework will

improve the transparency of health economic models, reduce the cost and administrative burden of updating

models, and increase the speed at which updates can occur.

Data availability
Underlying data
Zenodo: Parameter distributions. https://doi.org/10.5281/zenodo.672762914.

This project contains the following underlying data:

•฀฀฀฀parameter_distributions.csv (example dataset for modification. This dataset also sits within the server, with

some of the rows marked as non-editable; these are characterised as ’sensitive’ throughout the manuscript.

This dataset is edited in ’Code Chunk 2’ to test the API).

Page 11 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/RobertASmithBresMed/plumberHE.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.65568886

License: MIT

Acknowledgements
We would like to thank the participants at R-HTA Oxford, Richard Birnie (Lumanity) and Dawn Lee (Lumanity)

for feedback on the original concept and manuscript. All errors are the fault of the authors.

References

1. Williamson EJ, Walker AJ, Bhaskaran K, et al.: Factors associated
with covid-19-related death using opensafely. Nature. 2020;
584(7821): 430–436.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Adibi A, Harvard S, Sadatsafavi M: Programmable interface
for statistical & simulation models (prism): Towards greater
accessibility of clinical and healthcare decision models. arXiv
preprint arXiv:2202.08358. 2022.
Reference Source

3. Xie Y, Dervieux C, Riederer E: R Markdown Cookbook. Chapman
and Hall/CRC, Boca Raton, Florida, 2020.
Reference Source

4. Chang W, Cheng J, Allaire JJ, et al.: shiny: Web Application
Framework for R. 2021.
Reference Source

5. Smith R, Schneider P: Making health economic models Shiny:
A tutorial [version 2; peer review: 2 approved]. Wellcome Open
Research. 2020; 5: 69.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Smith R, Schneider P, Mohammed W: Robertasmithbresmed/
plumberhe: R-hta june 2022. software, May 2022.
http://www.doi.org/10.5281/zenodo.6556888

7. Alarid-Escudero F, Krijkamp EM, Enns EA, et al.: A tutorial
on time-dependent cohort state-transition models in r
using a cost-effectiveness analysis example. arXiv preprint
arXiv:2108.13552. 2021.
Publisher Full Text

8. Alarid-Escudero F, Krijkamp E: DARTHgit/cohort-modeling-
tutorial-intro: Second Zenodo release. March 2022.
Publisher Full Text

9. Ooms J: The jsonlite package: A practical and consistent mapping
between json data and r objects.arXiv:1403.2805 [stat.CO]. 2014.
Reference Source

10. Schloerke B, Allen J: plumber: An API Generator for R package
version 1.1.0, 2021.
Reference Source

11. Wickham H, Danenberg P, Csárdi G, et al.: roxygen2: In-line
documentation for r. R package version. 2020; 7(1).

12. Wickham H: httr: Tools for Working with URLs and HTTP.
R package version 1.4.2. 2020.
Reference Source

13. Chandrasekara C, Herath P: Introduction to github actions. In:
Hands-on GitHub Actions. Springer, 2021; 1–8.
Publisher Full Text

14. Smith R: Parameter distributions. dataset., June 2022.
http://www.doi.org/10.5281/zenodo.6727629

15. R Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2020.
Reference Source

16. McCabe C, Paulden M, Awotwe I, et al.: One-Way Sensitivity
Analysis for Probabilistic Cost-Effectiveness Analysis:
Conditional Expected Incremental Net Benefit.
Pharmacoeconomics. 2020; 38(2): 135–141.
PubMed Abstract | Publisher Full Text | Free Full Text

17. Brennan A, Kharroubi S, O’hagan A, et al.: Calculating partial
expected value of perfect information via monte carlo
sampling algorithms. Med Decis Making. 2007; 27(4): 448–470.
PubMed Abstract | Publisher Full Text

18. Incerti D, Thom H, Baio G, et al.: R you still using excel? the
advantages of modern software tools for health technology
assessment. Value Health. 2019; 22(5): 575–579.
PubMed Abstract | Publisher Full Text

19. Pouwels XGLV, Sampson CJ, Arnold RJG, et al.: Opportunities and
Barriers to the Development and Use of Open Source Health
Economic Models: A Survey. Value Health. 2022; 25(4): 473–479.
PubMed Abstract | Publisher Full Text

20. Incerti D, Jansen JP: hesim: Health economic simulation
modeling and decision analysis. arXiv preprint arXiv:2102.09437,
2021.
Publisher Full Text

21. Filipovic-Pierucci A, Zarca K, Durand-Zaleski I: Markov models for
health economic evaluation modelling in r with the heemod
package. Value Health. 2016; 19(7): A369.
Publisher Full Text

Page 12 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 08 August 2022

https://doi.org/10.21956/wellcomeopenres.19871.r51661

© 2022 Sadatsafavi M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Mohsen Sadatsafavi
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada

Smith and colleagues introduce an API framework for developing and implementing health
economics models without necessarily sharing the underlying data with model developers. This is
facilitated via an Application Programming Interface. The main utility of this framework is
separating data from the model. The setup of the platform is that the client (say a pharma
company) is commissioning the creation of a health economics model via a consultancy firm. The
company is in possession of sensitive and not-sharable data that are used to develop the model.
To make things work, the company creates a Web server that securely hosts the data. It optionally
provides synthetic data to the consultant to help build the model. Once the model is built, it is sent
to the Web server where it sits next to the sensitive data to complete what is needed to run the
economic evaluation. It then sends the output back to the consultant and a report is generated.
This process is further automated such that the entire process is activated at set intervals or after
a change in the model or the underlying data. This pipeline uses several widely adopted standards
or services such as JSON for data transfer, Github for haring the model code and automation,
RMarkdown, and so on. I really enjoyed reading this paper and found it an important step in the
right direction.

I have several suggestions for improving the exposition.

Major comments:

The authors should be clearer with their terminology throughout as well as which code is
running where. It took this reader several reads to finally (apparently) understand. Suggest
making it clear that a client has sensitive data and tasks a consultant for creating a model.
Make it clear that the first code chunk runs on the client’s server (next to data) while the
second is run on the consultant’s side (if I understood things correctly).

1.

“When a ‘client’ application wants to access data, it initiates an API call (request) via a web-server,
to retrieve the data. If this request is deemed valid, the API makes a call to an external
program/server, the server sends a response to the API with the data, and the API transfers the
data to the ‘client’ application.” I found these sentences on top of Page 5 quite confusing. Is

2.

Page 13 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

https://doi.org/10.21956/wellcomeopenres.19871.r51661
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0419-7862

not sharing sensitive data whilst being able to run the model not the main point of this
platform?

The only input that the run_model accepts seems to be the PA dataset. Are there flexibilities
around other sets of parameters? What if someone wants to change the time horizon of the
model? Similarly, what the investigators consider as the output of the model is restrictive
(only costs and QALYs). A health economic model can have other payoffs (mortality, disease
incidence) and to this reviewer, the presence of clinical or other payoffs is more norm than
an exception. Can they make comments on to what extent these parts can be made more
flexible?

3.

Suggest making it clear that by sharing the model and keeping the data private, the
requirement now is for the model to be open-source. This in itself is sharing IP, and the
authors can make it clear that their innovation is that the model is shared not the data, and
perhaps claim that oftentimes sharing data is more restrictive.

4.

Please make it clear that plumber is a state-based environment and as such, it connects all
the consultants to the same R session. The advantage of this approach is that it is ‘live’ such
that subsequent function calls can be made to interact with the model. The drawback is that
multiple consultants might overwrite each other’s sessions and also keeping R alive,
especially with complex models can be problematic for the server. The authors can make a
distinction with Adibi et al.’s PRISM which uses OpenCPU.

5.

Minor comments:

Is adhering to the DARTH naming convention absolutely necessary? While using such
standards is generally good, is this platform not more generic in nature (e.g., the company
and the consultant agreeing on a function call)?

1.

In the case study for which code chunks are provided, what data are considered sensitive
for illustrative purposes?

2.

Why the dataframe representing the probabilistic input should have distributions with two
parameters? This will preclude the use of some distributions like generalized gamma that
have three or more parameters.

3.

One advantage of this platform can be that by making the modeler team use synthetic data,
the potential for stakeholder bias is also minimized.

4.

Introduction: “The development of economic models generally involves the transfer of sensitive
data (e.g. individual patient or price data) between parties”. I think ‘generally’ is too strong here.
Perhaps use ‘at times’? Many health economics modeling efforts are based on the literature
or publicly available data. Perhaps the authors can restrict this statement to models
developed by the industry for their new health technologies for which there are often
sensitive data.

5.

I could not understand the point of overwrite_parameter_value() function. Can the authors
clarify? Similarly, in the code chunk #2, line 52: “here we expect a single dataframe with 6
columns and 1000 rows”. It is not obvious to me how we expect this to be 1000 exactly.

6.

Page 14 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

Should this not be decided by the dimension of the input data frame?

Page 7: “for this, but once you have one it is possible”; ‘you’ is a bit colloquial for a science
paper. Similarly, referring to Adibi’s framework as ‘brilliant’ is a bit colloquial.

7.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
No

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: I am the lead of the PRISM project and the senior author of its paper
(https://arxiv.org/abs/2202.08358) which is somewhat related to this technology. The authors
appropriately cite this paper and make it clear that their proposed platform is significantly
different in major ways.

Reviewer Expertise: Economic Evaluation; Epidemiology; Medical Decision Making

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Page 15 of 15

Wellcome Open Research 2022, 7:194 Last updated: 08 AUG 2022

