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Abstract

We study routing and searching decisions of a search-and-detection (SDT) team on

a road network under online uncertainty setting. Given an undirected edge-weighted

bounded graph, a static target is positioned at an unknown vertex among potential

target vertices in the graph. A non-negative search cost is given on each of the poten-

tial target vertices. The target is detected once the SDT searches its corresponding

vertex. There may be some non-recoverable online blockages in the graph, but the

existence of blockages is unknown to the SDT initially. If a blockage exists in the

graph, it is disclosed online once the SDT visits one of its end-vertices. The graph

stays connected when the blockages are omitted from it. The SDT begins from a cer-

tain vertex and aims to identify a route without any blocked edges which detects the

target with minimum total traveling and search cost. We analyze this problem from a

competitive analysis perspective under two scenarios with and without blockages. For

the scenario with blockages, we provide a tight lower bound on the competitive ratio

of deterministic solutions, an optimal deterministic solution, a randomized solution

with a bounded expected competitive ratio, together with lower and upper bounds on

the expected competitive ratio of the optimal randomized solutions. For the scenario

without blockages, we provide tight lower bounds as well as optimal deterministic

and randomized solutions.
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1 Introduction

Routing problems under online uncertainty have been extensively investigated in recent

years. In these problems, locations to be visited (Jaillet and Wagner 2008b, 2006) or

the conditions of the roads (Akbari et al. 2021; Liu et al. 2021; Shiri et al. 2020) are

unknown initially and are revealed incrementally over time. In fact, the assumption

that the complete input information is available a priori is unrealistic in many real-

world applications of routing problems (Jaillet and Wagner 2008a). For example, taxi

and courier services necessitate an online model where locations to be visited are

disclosed over time (Jaillet and Wagner 2006). As another example, in a post-disaster

situation, the information about the damaged road segments is not available to the

search-and-rescue team in the immediate emergency response phase and is disclosed

in an online manner (Shiri and Salman 2020).

In this paper, with the aim of modeling routing problems to address real-world

applications, we investigate an online optimization problem involving search defined

on partially unknown road networks. In this problem, we study how to route a search-

and-detection team (SDT) on a road network under edge uncertainty to search potential

target locations in order to detect a static target, e.g., to detect and interdict a hostile

object in a military operation. We model this problem on an undirected connected

bounded graph G = (V , E) which is given to the SDT as input. We note that modeling

online routing problems on undirected graphs is a standard assumption in the literature,

e.g., (Akbari and Shiri 2022; Liu et al. 2021; Zhang et al. 2019).

The graph G is partially unknown in the way that there exists a set of k (k ≥ 0 is

a bounded integer) non-recoverable online blocked edges B ⊂ E which is unknown

to the SDT initially. A blocked edge in B is disclosed online whenever one of its

end-vertices is visited by the SDT. The graph G stays connected when all the potential

blockages are omitted from it. Each edge e ∈ E represents a transportation link and

has a non-negative traveling cost de which is also certain to the SDT. Vertices in V are

the collection of a source vertex vs ∈ V in which the SDT is initially positioned, set

of potential target locations V t = {v1, v2, . . . , vλ} ⊂ V which is certain to the SDT,

and the set of intersection points I = V \ {V t ∪{vs}} which is also certain to the SDT.

The set of intersection vertices represents the junction points in the road network,

for example, an intersection vertex can be an end-vertex of a blockage. As another

unknown factor in problem inputs, a static target is positioned at a vertex v∗ ∈ V t

which is unknown to the SDT initially. Each vertex v ∈ V t has a non-negative search

cost sv which is certain to the SDT and the target vertex v∗ is disclosed online once

the SDT visits v∗ and incurs its search cost. The mission of the SDT is to identify

a route without any blocked edges from vs to v∗ with minimum total traveling and

search cost, i.e., the route ends as soon as the target is detected.

From this point onward, we refer to this problem as the Online Routing and Search-

ing Problem with k blocked edges (k-ORSP). We present the list of used notation in

the problem definition of the k-ORSP in Table 1. We do not assume that the number of

blockages is certain to the SDT a priori. That is, we consider the number of blockages

k ≥ 0 as incomplete information in problem inputs. If a blockage exists in the graph,

it is disclosed online once the SDT visits one of its end-vertices. Since the existence of

the blockages is unknown to the SDT, we also investigate a special case of the problem

123



Journal of Combinatorial Optimization (2022) 44:1039–1059 1041

Table 1 Table of notation for the problem definition of the k-ORSP

Notation Description

G = (V , E) undirected graph, vertex set V , edge set E

vs ∈ V source vertex vs

V t ⊂ V such that vs /∈ V t , |V t | = λ and λ ≥ 1 potential target vertices

v∗ ∈ V t target vertex (online uncertainty)

I = V \ {V t ∪ {vs }} set of intermediate vertices

sv for v ∈ V t search cost of vertex v

B ⊂ E set of non-recoverable blockages (online uncertainty)

k = |B| such that (k ≥ 0) number of blockages in the graph (online uncertainty)

de for e ∈ E traveling cost of edge e

where there is no blockage in the graph, i.e., k = 0. We denote this special case of the

k-ORSP by the ORSP henceforth.

We point out that in the k-ORSP, we consider two different types of online uncer-

tainty, i.e., the non-recoverable blockages as well as the unknown target vertex. The

k-ORSP has various real-world applications such as search-and-rescue as well as mil-

itary operations. In the context of military operations, an online optimization model

can be applied since the information about the blockages caused by an adversary (or

enemy) and the target vertex (e.g., location of a hostile object or lost weapons) are not

available to the security team in advance. In emergency search-and-rescue operations,

the blocked links in the road network caused by a disaster as well as the location

of the victims have an online nature and are unknown to the search-and-rescue team

beforehand.

We survey the k-ORSP from a competitive analysis viewpoint applying the com-

petitive ratio measure (Sleator and Tarjan 1985). That is, we compare the performance

of online solutions which operate under incomplete information with the performance

of the optimal solution provided in presence of complete input information from

a worst-case perspective. We analyze both deterministic and randomized solutions

using the competitive ratio criteria. For an online problem with a minimization objec-

tive function, the competitive ratio of a deterministic online solution is the maximum

ratio of the cost of that online solution to the cost of the offline optimal solution

over all problem instances. Similarly, the expected competitive ratio of a randomized

online solution for an online minimization problem equals the maximum ratio of the

expected cost of the online solution to the cost of the offline optimal solution over

all problem instances. In the offline version of the k-ORSP, complete input informa-

tion is available. Therefore, solving the offline version of this problem corresponds

to finding the shortest path between vs and v∗ and hence the cost of the offline k-

ORSP equals the cost of the cheapest path between vs and v∗ plus the search cost of

v∗.

We conduct a competitive analysis on the k-ORSP according to the following two

motivations. First, in many real-world applications of this problem such as military

search-and-interdiction or emergency post-disaster search-and-rescue operations, it is

difficult to capture probabilistic knowledge about the incomplete information. Second,
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in such applications having a solution with a good worst-case performance is vital

to tackle the malicious uncertainty. The organization of the rest of the article is as

follows. In Sec. 1.1, we review the related articles to our study. In Sec. 1.2, we discuss

the contributions of our paper. In Sec. 2, we give our results for deterministic solutions.

In Sec. 3, we present our results for randomized solutions. We summarize our results

in Sec. 4. We conclude our study and specify future research directions in Sec. 5.

1.1 Previous Studies

In this paper, we analyze the k-ORSP which comprises both edge and vertex uncer-

tainties (i.e., the online blockages and the unknown target vertex) in the framework

of the competitive analysis. Accordingly, the main focus of the literature review is on

related works that apply competitive analysis methodology. We partition the literature

review section into two parts. First, we review the relevant routing problems that com-

prise online blocked edges which are studied from a competitive analysis viewpoint.

Next, we briefly present the related works which consider online searching problems

on graphs based on the competitive ratio measure.

We note that there is a stream of online routing problems where requests for visits to

vertices are revealed online to the traveler, e.g., (Jaillet and Wagner 2008a, b, 2006). In

this stream of studies, the traveler should choose which requests to accept and provide

an online solution to satisfy the admitted requests. These problems do not comprise

online blockages in the graph or searching for an unknown target. Therefore, they are

not directly related to the k-ORSP and we did not include them in our literature review.

1.1.1 Online routing problems with non-recoverable blockages

Routing problems comprising non-recoverable online blockages have a rich back-

ground in the literature. A closely related problem to the k-ORSP is the k-Canadian

Traveler Problem (CTP). In fact, when the target vertex is known and its search cost

is ignored in the k-ORSP, the problem reduces to the k-CTP. Papadimitriou and Yan-

nakakis (1991) introduced the CTP which is a variant of the shortest path problem

on graphs that contain online blockages and showed that providing an online solution

that achieves a bounded competitive ratio is PSPACE-complete for the CTP. Westphal

(2008) investigated the online k-CTP, a variant of the CTP with a fixed number of k

online blocked edges. Westphal (2008) presented an optimal deterministic online solu-

tion, a tight lower bound of 2k+1 on the competitive ratio of deterministic online solu-

tions, and a lower bound of k+1 on the expected competitive ratio of randomized online

solutions for the k-CTP. Xu et al. (2009) provided two deterministic online solutions

for the k-CTP and compared them from competitive ratio viewpoint. Bender and West-

phal (2015) introduced an optimal randomized solution for the online k-CTP for graphs

having at most two online blockages and edge-disjoint paths. Shiri and Salman (2019b)

presented an optimal randomized solution for the online k-CTP on graphs involving

arbitrary number of online blockages and edge-disjoint paths. Recently, Demaine et al.

(2021) proposed a randomized solution for the k-CTP which obtains an expected com-

petitive ratio of (1 +
√

2
2

)k +
√

2 in pseudo-polynomial time for arbitrary graphs.
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Single-traveler routing problems with k non-recoverable online blocked edges have

been studied with various objective functions from the competitive analysis perspec-

tive in the literature. If all or a subset of vertices must be visited in minimum total time,

the k-ORSP resembles to variations of the Traveling Salemsman Problem (TSP) with

k online blockages. Liao and Huang (2014) studied the Covering Canadian Traveler

Problem (CCTP) which is a variant of the TSP on a complete edge-weighted graph

and presented a deterministic touring solution within an o(
√

k)−competitive ratio.

Deterministic online solutions have been also analyzed from theoretical and compu-

tational competitive analysis perspectives for the Steiner TSP with k online blockages

in which a subset of vertices must be visited (Zhang et al. 2016, 2015). Zhang and

Xu (2018) studied deterministic solutions for the online covering salesman problem

where the objective is to identify a tour such that each vertex in the graph is either on

the tour or within a predetermined distance from a vertex on the tour.

If all or a subset of vertices must be visited such that the summation of the times of

the visits are minimized, then the k-ORSP resembles to the variations of the Minimum

Latency Problem (MLP) with k online blockages. Zhang et al. (2019) analyzed the

online MLP (OMLP) with k online blocked edges where the objective is to minimize

the summation of the times of the visits of the vertices. They investigated determin-

istic online solutions for this problem from theoretical and computational worst-case

competitive ratio viewpoints. Akbari and Shiri (2021) studied a variant of the OMLP

where priority weights are assigned to the vertices and the objective is to minimize the

total weighted latency of vertices by investigating deterministic online solutions from

worst-case competitive ratio point of view and proposing two efficient deterministic

heuristic solutions tested on real city instances.

Here, we point out that our study differs from all the articles discussed above since

we consider vertex uncertainty (i.e., unknown location of the target) in addition to

online blocked edges in our problem inputs. Unlike the online versions of the TSP and

the MLP with k online blockages where all or a subset of vertices should be visited,

a solution of the k-ORSP terminates as soon as the target is detected at one of the

potential target vertices.

In another related problem, Shiri et al. (2020) studied a search-and-rescue problem

with multiple teams and non-recoverable online blockages in which a subset of vertices

(called the critical vertices) must be serviced. They, considered online search-and-

rescue times on the critical vertices in the sense that the required search-and-rescue

time at a critical vertex is disclosed once it is visited by a search-and-rescue team. They

offered two lower bounds on the competitive ratio of deterministic solutions and two

heuristics that are computationally tested on random instances. Among the articles

which are mentioned in this section, the work of Shiri et al. (2020) is the most related

problem to our study since it considers both online blockages as well as uncertainty

at the vertices. However, contrary to our study where a solution terminates once the

target is detected, all the critical vertices must be visited and serviced in Shiri et al.

(2020). Moreover, Shiri et al. (2020) focused on computational aspects of their studied

problem and did not prove the competitive ratio of their suggested heuristics, whereas

in here we provide a comprehensive competitive analysis for the k-ORSP by proposing

tight lower bounds, an optimal deterministic solution with a proven competitive ratio,

and a randomized solution with a bounded expected competitive ratio.
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1.1.2 Online searching problems

Online searching problems in which a static target is positioned at a point of a graph

are studied with respect to two different search paradigms in the literature. (1) Path-

wise search where the searcher must identify a continuous walk to detect the target

(Fleischer et al. 2009; Jaillet and Stafford 2001; Koutsoupias et al. 1996), and (2)

expanding search where the searcher may restart from any previously searched point

at any time (Angelopoulos and Lidbetter 2020; Angelopoulos et al. 2019). The k-ORSP

corresponds to the pathwise search paradigm since it involves traveling costs on road

networks. Hence, we confine our literature review on pathwise search problems that

are investigated based on the competitive ratio measure.

The competitive ratio of online solutions in the pathwise search paradigm was

first considered by Beck and Newman (1970) where the input graph is a real line. This

problem was later studied on graphs having a star topology by Gal (1972, 1974). There

are also several other works which consider deterministic and randomized solutions

in the pathwise search context on a real line or on a star graph, e.g., (Demaine et al.

2006; Jaillet and Stafford 2001). In our study, we consider the k-ORSP on undirected

graphs with an arbitrary topology where the input graph is not completely known in

the sense that it may contain some non-recoverable blockages.

Koutsoupias et al. (1996) proved that it is NP-hard to approximate competitive ratio

of deterministic solutions on fixed undirected graphs with unit length edges where the

target is positioned at one of the vertices. In addition, they proposed constant-factor

approximation deterministic and randomized solutions. Ausiello et al. (2000) extended

the problem in (Koutsoupias et al. 1996) to edge-weighted graphs and demonstrated

connections between graph searching and routing problems such as the TSP and the

MLP. Fleischer et al. (2009) was the first study that considered an online searching

problem on an unknown graph in which information about adjacent edges and vertices

is disclosed once the searcher visits a new vertex. They proposed constant-factor

approximation online solutions on undirected graphs where the target is permitted

to position at any point along the edges of the graph. However, they discussed that

no constant-factor approximation online solution exists for the problem where the

potential target locations are restricted to the vertices. Angelopoulos and Lidbetter

(2020) provided a constant-factor approximation randomized solution for pathwise

search on a known graph. In their study, search costs are not incorporated with the

potential target locations and the target is detected once the searcher arrives at its

location.

Our study differs from all the aforementioned articles since we consider online

blockages in the input graph. Among these articles, the work of Fleischer et al. (2009)

is the most related work to the k-ORSP. Yet their study is significantly different from

our work in terms of problem setting and results. Fleischer et al. (2009) considered

a general problem setting in which the input graph is completely unknown, but we

consider a partially unknown road network that contains online blockages. Moreover,

we consider both edge traveling costs as well as search costs at potential target locations

while Fleischer et al. (2009) only considered traveling costs in their study. Furthermore,

we provide optimal online solutions for the k-ORSP in which the target location is

restricted to vertices of the input graph, whereas Fleischer et al. (2009) showed that no
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constant-factor approximation online solution exists when the potential target locations

are restricted to the vertices in their problem setting.

1.2 Our Contributions

In order to complement the prior works discussed in the literature review section,

we introduce the k-ORSP which comprises both vertex (unknown target vertex) and

edge (online blockages) uncertainties to address real-world applications of routing and

searching problems such as military interdiction as well as post-disaster search-and-

rescue operations. Moreover, we provide a comprehensive competitive analysis for

the k-ORSP and a reduced version of this problem in which there exists no blockage

in the graph (i.e., the ORSP). For both of these problems, we specify tight lower

bounds on the competitive ratio of deterministic online solutions (Lemma 2.1 and

Corollary 2.1) with an optimal deterministic solution (Algorithm 1 and Theorem 2.1).

For the k-ORSP, we derive lower and upper bounds on the expected competitive ratio

of the optimal randomized solutions (Corollary 3.1 and Lemma 3.5) and introduce a

randomized solution (Algorithm 2) with a bounded competitive ratio (Theorem 3.1).

Using these results, we specify an interval for the competitive ratio of the optimal

randomized solutions for the k-ORSP (Corollary 3.2). Furthermore, we introduce a

tight lower bound on the expected competitive ratio of randomized online solutions

(Lemma 3.1) with an optimal matching randomized solution for the ORSP (Algorithm

2) whose expected competitive ratio meets the given lower bound (Theorem 3.2). A

summary of our results is presented in Table 2 which is described in detail in Sec. 4.

2 Deterministic online solutions

We first derive lower bounds on the competitive ratio of deterministic online solutions

for the k-ORSP and the ORSP. Next, we present a deterministic online solution which

meets our provided lower bounds for both the k-ORSP and the ORSP. In this way,

we prove the tightness of the lower bounds as well as optimality of our deterministic

online solution for both problems.

2.1 Lower bounds

We begin with proving the lower bound for the k-ORSP. We then conclude the lower

bound for the ORSP from our proposed lower bound for the k-ORSP.

Table 2 Summary of results

Solution type ORSP k-ORSP

LB UB BS CR LB UB BS CR

Deterministic 2λ − 1 2λ − 1 LCS 2λ − 1 2(k + λ) − 1 2(k + λ) − 1 LCS 2(k + λ) − 1

Randomized λ λ SCS λ max{λ, k + 1} 2(k + λ) − 1 LCS 2(k + λ) − 1
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Fig. 1 The analyzed instance for the proof of the lower bound of 2(k + λ)-1

Lemma 2.1 There is no deterministic online solution whose competitive ratio is less

than 2(k + λ) − 1 for the k-ORSP, where k and λ are the numbers of blocked edges

and potential target vertices, respectively.

Proof For any deterministic online solution (ALG), we show that there is an instance

of inputs of the k-ORSP, such that the competitive ratio of ALG is not less than

2(k + λ) − 1 on the considered instance. To prove the lower bound, we consider the

input graph shown in Fig. 1. In this graph vs is the source vertex where the SDT is

initially positioned, V t = {v1, v2, . . . , vλ} is the set of potential target vertices where

v∗ ∈ {v1, v2, . . . , vλ}, and I = {I
j

i | i = 1, 2, . . . , k + 1 and j = 1, 2, . . . , λ} is the

set of intersection vertices. The traveling cost of edges (vs, I
j

i ) for I
j

i ∈ I is assumed

to be 1 and the traveling cost of edges (I
j

i , v j ) for I
j

i ∈ I and v j ∈ {v1, v2, . . . , vλ} is

set to ǫ. In addition, the search cost of all the vertices in {v1, v2, . . . , vλ} is fixed to ǫ.

Any deterministic online solution executed on the instance shown in Fig. 1 can

be considered as an iterative procedure such that at each iteration the SDT tries one

of the paths vs − I
j

i − vq (i ∈ {1, 2, . . . , k + 1} and j ∈ {1, 2, . . . , λ}) to arrive

at vq and search it. For an arbitrary deterministic solution, we consider the instance

where the SDT finds the edge (I
j

i , v j ) blocked at the first k iterations, i.e., the SDT

does not search any of the potential target vertices in V t and has to go back to vs by

incurring a traveling cost of 2∗1 = 2 at the first k iterations. Moreover, for an arbitrary

deterministic solution, we consider the instance in which the target vertex v∗ is not

one of the vertices which are searched at iterations k +1 to k +λ−1, i.e., the SDT has

to go back to vs by incurring a total traveling and search cost of 2(1+ ǫ)+ ǫ = 2+3ǫ

in these λ − 1 iterations.

Thus, in any deterministic online solution executed on the instance described above,

the SDT detects the target vertex v∗ at the (k + λ)th iteration where the total traveling
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and search cost of the (k+λ)th iteration is 1+ǫ+ǫ = 1+2ǫ. Hence, the total traveling

and search cost of an arbitrary deterministic solution on the described instance is at

least 2(k) + (λ − 1)(2 + 3ǫ) + 1 + 2ǫ = 2(k + λ) + (3λ − 1)ǫ − 1. We point out in

the offline optimal solution the target vertex v∗ is certain to the SDT initially. Thus,

the SDT takes the path with cost 1 + ǫ from vs to v∗ and incurs a search cost of ǫ at

v∗, i.e., the total cost of the offline optimal solution is 1 + 2ǫ. The proof is complete

when ǫ approaches 0. ⊓⊔

Next, we apply the lower bound which we presented in Lemma 2.1 for the k-ORSP

to derive the lower bound for the ORSP. We note that the ORSP is a reduced version

of the k-ORSP when there is no blockage in the graph (i.e., k = 0).

Corollary 2.1 There is no deterministic online solution whose competitive ratio is less

than 2λ − 1 for the ORSP.

Proof The lower bound follows if we replace k with 0 in the proof of Lemma 2.1.

2.2 Optimal deterministic solution for the k-ORSP and the ORSP

We present a deterministic online solution which is optimal for both the k-ORSP and

the ORSP. To introduce this solution, we need to provide the following definition.

Definition 2.1 We define the operational cost of v j (v j ∈ V t ) as the summation of the

cost of the cheapest path between vs and v j plus the search cost of v j . We represent

the value of the operational cost of v j by o j for v j ∈ V t = {v1, v2, . . . , vλ}.

We refer to our deterministic solution as the Lowest-Cost-Search (LCS) algorithm.

We note that the LCS is applicable to both the k-ORSP and the ORSP. The LCS is an

iterative procedure in which the graph is updated at the end of each iteration. At the

beginning of each iteration, the SDT computes the operational costs of the unsought

potential target vertices in V t on the updated graph and sorts them in non-decreasing

order of their operational costs (Definition 2.1) in a list. Then, the SDT takes the

cheapest path between vs and the vertex with the least operational cost (i.e., the first

element in the sorted list) in order to visit and search that vertex. If a blockage is found

on the path, the SDT discards the found blockage from the graph, returns to vs , and

a new iteration begins. Otherwise, the SDT arrives at the potential unsought target

vertex with the least operational cost and searches it. Then, if the target vertex v∗ is

detected, the LCS ends. Otherwise (if the target vertex v∗ is not detected), the SDT

removes the searched vertex from V t , returns to vs , and a new iteration begins. This

procedure is repeated until the target vertex (v∗) is detected. The pseudocode of the

LCS is provided in Algorithm 1.

The LCS terminates in at most k + λ ≤ |E | + |V | iterations. All pairs cheapest

paths can be computed in O(|V |3) at each iteration (Chan 2010). Thus, the worst-case

time-complexity of the LCS is at most O(|E ||V |3 + |V |4). We point out that the LCS

can be used to solve both the k-ORSP and the ORSP, i.e., when the LCS is applied for

the ORSP steps 8 to 13 are not implemented. Next, we show that the LCS is optimal

for these problems.
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Algorithm 1 : LCS Algorithm

Input:

a: G = (V , E) ⊲ initial input graph

b: vs ∈ V ⊲ source vertex of the SDT

c: V t = {v1, v2, . . . , vλ} ⊲ set of potential target vertices

d: sv ⊲ search cost of vertex v ∈ V t

e: de ⊲ traveling cost of edge e ∈ E

1: Initiation:

a: F = ∅ ⊲ F : set of found blocked edges.

b: q = 1 ⊲ q : iteration counter variable

c: G1 = G = (V , E) ⊲ Gq : updated graph with revealed information at iteration q

d: V
′ = V t ⊲ list of unsought potential target vertices

e: flag = 1 ⊲ flag: variable to terminate loops.

2: While flag do:

3: Calculate o
q
i

for vi ∈ V
′

⊲ calculate the operational costs (Definition 2.1) of vertices in V
′

on the updated graph Gq

4: Lq ← Gq ⊲ compute sorted list of vertices in V
′

in non-decreasing order of operational costs on

Gq

5: v = L
q
1 ⊲ first element in Lq with the least operational cost

6: S Pq (vs , v) ⊲ cheapest path from vs to v on Gq

7: Take S Pq (vs , v) ⊲ the SDT takes S Pq (vs , v)

8: if ∃ eq which is blocked on S Pq (vs , v) then: ⊲ there is a blockage on S Pq (vs , v)

9: F = F ∪ eq

10: q = q + 1

11: Gq = (V , E \ F)

12: return to source vertex vs .

13: Go to step 3.

14: Else:

15: take S Pq (vs , v) to reach v and search v.

16: if v = v∗ then: ⊲ the target vertex v∗ is detected by the SDT

17: flag = 0 ⊲ Termination Point.

18: Else:

19: V
′ = V

′ \ {v}
20: q = q + 1

21: Gq = Gq−1

22: return to source vertex vs .

23: Go to step 3.

24: end if

25: end if

26: end while

Theorem 2.1 The competitive ratio of the LCS is 2(k + λ) − 1 and 2λ − 1 for the

k-ORSP and the ORSP, respectively.

Proof We refer to the steps of Algorithm 1 in our proof. At iteration q (q ≥ 1) of the

LCS, the SDT sorts the unsought potential target vertices in non-decreasing order of

their operational costs and chooses a vertex v = L
q
1 with the least operational cost

(step 5). We denote the operational cost of vertex v which is chosen at iteration q by

oq in our proof. Next, the SDT takes the cheapest path between vs and v (steps 3 to

7). Then, three scenarios may occur.
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• Scenario 1. The SDT finds a blockage on the graph before arriving at v and returns

to vs without searching v (steps 8 to 12). In this case, the iteration cost is at most

2oq .

• Scenario 2. The SDT arrives at v and searches the vertex. In this case, the target is

not detected and the SDT returns to vs (steps 18 to 22). Thus, the iteration cost is

at most 2oq .

• Scenario 3. The SDT arrives at v and detects the target after searching v (steps 15

to 17). In this case, the LCS terminates and the iteration cost is oq .

Suppose that the target is detected at iteration q∗. The cost of the offline optimal

solution equals oq∗ since the LCS searches the vertices in non-decreasing order of their

operational costs at each iteration. It holds that oq is non-decreasing in q (q ≤ q∗)

because at each iteration one blockage is eliminated from the graph or one vertex is

removed from the set of potential target vertices, i.e.,

o1 ≤ o2 ≤ . . . ≤ oq∗ .

Hence, the total cost of the LCS is at most

q∗−1
∑

q=1

2oq∗ + oq∗ .

We note that the LCS ends in at most k + λ iterations applied to an instance of the

k-ORSP, i.e., q∗ ≤ k + λ for the k-ORSP. Thus, the total cost of the LCS is at most

2((k + λ) − 1)oq∗ . The theorem follows for the k-ORSP, since the cost of the offline

optimal solution is oq∗ . Also, the theorem follows for the ORSP when the value of k

is set to 0 in the proof.

3 Randomized online solutions

We first prove lower bounds on the expected competitive ratio of randomized online

solutions for the k-ORSP and the ORSP. Then, we introduce a randomized solution

which is applicable for both problems. We show that our randomized solution achieves

a bounded expected competitive ratio for the k-ORSP while it is optimal for the ORSP.

Finally, we propose upper bounds on the expected competitive ratio of the optimal

randomized solutions for the k-ORSP.

3.1 Lower bounds

Here, we first derive two different lower bounds for the expected competitive ratio

of randomized solutions for the k-ORSP by considering different instances of this

problem. By combining these two lower bounds, we prove a tighter lower bound for

the expected competitive ratio of randomized solutions for the k-ORSP. We note that,

since the ORSP is a reduced version of the k-ORSP, our lower bounds also hold for

the ORSP when we set k = 0 in our proofs.
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Fig. 2 The analyzed instance for

the proof of Lemma 3.1

We begin with analyzing an instance of the k-ORSP in the absence of blockages,

i.e., an ORSP instance. Therefore, the lower bound holds for both the k-ORSP and the

ORSP.

Lemma 3.1 There is no randomized online solution whose expected competitive ratio

is less than λ for the k-ORSP and the ORSP.

Proof We utilize Yao’s principle (Yao et al. 1977) to derive the lower bound. For that,

we consider the instance shown in Fig. 2. In this graph, vs is the source vertex of the

SDT, V t = {v1, v2, . . . , vλ} are the potential target vertices, and the set of intersection

vertices I is empty. The traveling costs of the edges (vs, v j ) is 1 for j = 1, 2, . . . , λ.

Also, the search costs of the vertices v1, v2, . . . , vλ is set to ǫ. We assume that there

is no blockage in the graph, i.e., k = 0. We enforce the target vertex v∗ be one of the

vertices in {v1, v2, . . . , vλ} according to uniform probability distribution.

We note that any deterministic solution executed on the instance described above

can be considered as an iterative procedure such that at each iteration the SDT tries

one of the edges (vs, v j ) ( j ∈ {1, 2, . . . , λ}) to search one of the unsought vertices

in {v1, v2, . . . , vλ}. If the target vertex is detected, the solution terminates and the

iteration cost would be 1 + ǫ. Otherwise, the SDT returns to vs and the iteration cost

would be 2 + ǫ.

We note that in any deterministic solution, the SDT detects the target at iteration j ∈
{1, 2, . . . , λ} with probability 1

λ
because we enforced uniform probability distribution

on the location of the target. If the procedure terminates at iteration j ∈ {1, 2, . . . , λ},
the SDT incurs a total cost of 2 j + jǫ − 1. Thus, the expected cost would be

1

λ

λ
∑

j=1

(2 j + jǫ − 1) =
1

λ

λ
∑

j=1

(2 j − 1) +
1

λ

λ
∑

j=1

jǫ = λ +
λ + 1

2
ǫ.
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We proved that the expected cost of any deterministic solution against the uniform

probability distribution enforced on the location of the target is λ + λ+1
2

ǫ. We point

out that the cost of the offline optimal solution is 1 + ǫ. The instance shown in Fig. 2

represents an instance of both the k-ORSP and the ORSP. The lemma follows for both

problems by Yao’s principle (Yao et al. 1977) when ǫ approaches 0.

Next, we consider an instance of the k-ORSP with only one potential target vertex

(i.e., |V t | = 1) whose search cost is a sufficiently small positive value. As discussed

in the literature review section, when the target vertex is known (|V t | = 1) and its

search cost is ignored, the k-ORSP reduces to the k-CTP.

Lemma 3.2 There is no randomized online solution whose expected competitive ratio

is less than k + 1 for the k-ORSP.

Proof The k-CTP is a reduced version of the k-ORSP in which the target vertex is

certain a priori and the search cost of the target vertex is 0. The lemma holds, because

no randomized online solution obtains an expected competitive ratio better than k + 1

for the k-CTP according to Westphal (2008).

Intuitively, the lower bound of k + 1 = 0 + 1 = 1 also holds for the ORSP since

k = 0 in this problem. By combining the results in Lemmas 3.1 and 3.2, we prove a

tighter lower bound for the k-ORSP.

Corollary 3.1 There is no randomized online solution whose expected competitive ratio

is less than

max{λ, k + 1}

for the k-ORSP.

3.2 Randomized solution for the k-ORSP and the ORSP

We first introduce a randomized solution that can be used for both the k-ORSP and

the ORSP which is based on a specific probability distribution (Lemma 3.3). Next,

we prove a bounded expected competitive ratio for our randomized solution for the

k-ORSP. Furthermore, we show that our randomized solution is optimal for the ORSP.

For presenting our results, we define the similar costs feature for the vertices in the

set of potential target vertices V t = {v1, v2, . . . , vλ} as follows.

Definition 3.1 Vertices v1, v2, . . . , vλ with operational costs o1 ≤ o2 ≤ . . . ≤ oλ

(Definition 2.1), have the similar costs feature if

oi ≤
2

λ

λ
∑

j=1

o j ,

for i = 1, 2, . . . , λ.
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For a set of numbers that have the similar costs feature, Bender and Westphal (2015)

proved that the probability distribution presented in the following lemma exists.

Lemma 3.3 For numbers o1 ≤ o2 ≤ . . . ≤ oλ with similar costs feature, the probabil-

ity distribution �λ = �∗ p
′
in which �λ and p

′
are λ-vectors, �∗ =

∑λ
i=1

1

p
′
i

∈ [0, 1],

p
′
i =

(2 − λ)oi +
∑n

j=1 j �=i 2o j

λ2oi

∀i = 1, 2, . . . , λ

exists and belongs to the polyhedron

Qλ = {p ∈ R
n
+ : (2 − λ)pi +

λ
∑

j=1 j �=i

2
o j

oi

p j ≤ 1 ∀i = 1, 2, . . . , λ,

λ
∑

i=1

pi = 1}.

We introduce a randomized solution which is applicable for both the k-ORSP and the

ORSP that utilizes the probability distribution in Lemma 3.3 to assign probabilities

to vertices that have the similar costs feature. We refer to our randomized solution

as the Similar-Costs-Search (SCS) algorithm. The SCS terminates in at most k + λ

iterations. At each iteration, the SDT makes a list of unsought vertices that have the

similar costs feature. Then, picks out of one of the vertices in the list with respect to

the probability distribution given in Lemma 3.3, and takes the cheapest path between

vs and the chosen vertex. If a blockage is found, the SDT discards the found blockage

from the graph, returns to vs , and a new iteration begins. Otherwise, the SDT arrives

at the chosen potential unsought target vertex and searches it. Then, if the target

vertex v∗ is detected, the SCS ends. Otherwise, the SDT returns to vs , updates the

list of unsought vertices, and a new iteration begins. This randomized process is

repeated until the target vertex (v∗) is detected. The pseudocode of the SCS is given in

Algorithm 2. The SCS terminates in at most k +λ ≤ |E |+ |V | iterations. To compute

the list of unsought vertices with similar costs feature with respect to their operational

costs, all pairs cheapest paths can be computed in O(|V |3) at each iteration (Chan

2010), and sorting can be performed in O(|V |log|V |), i.e., the list can be computed

in O(|V |log|V | + |V |3) ≃ O(|V |3) at each iteration. Thus, the worst-case time-

complexity of the SCS is at most O(|E ||V |3 + |V |4).
To derive the competitive ratio of the SCS for the k-ORSP and the ORSP, we apply

the following law which is proven in Shiri and Salman (2019a) about the numbers

with similar costs feature.

Lemma 3.4 If a number oλ+1 has not the similar costs feature with numbers

o1, o2, . . . , oλ which have the similar costs feature, then 2
∑λ

i=1 pi oi < oλ+1.

In the next theorem, we show that the SCS obtains a bounded expected competitive

ratio for the k-ORSP.

Theorem 3.1 The SCS has an expected competitive ratio of at most (k+λ−1)(1+λ)+1

for the k-ORSP.
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Algorithm 2 : SCS Algorithm

Input:

a: G = (V , E) ⊲ initial input graph

b: vs ∈ V ⊲ source vertex of the SDT

c: V t = {v1, v2, . . . , vλ} ⊲ set of potential target vertices

d: sv ⊲ search cost of vertex v ∈ V t

e: de ⊲ traveling cost of edge e ∈ E

1: Initiation:

a: F = ∅ ⊲ F : set of found blocked edges.

b: q = 1 ⊲ q : iteration counter variable

c: G1 = G = (V , E) ⊲ Gq : updated graph with revealed information at iteration q

d: V
′ = V t ⊲ list of unsought potential target vertices

e: flag = 1 ⊲ flag: variable to terminate loops.

2: While flag do:

3: Calculate o
q
i

for vi ∈ V
′

⊲ calculate the operational costs (Definition 2.1) of vertices in V
′

on Gq

4: L
q
SC F

← V
′ ⊲ compute the list of vertices in V

′
that have the similar costs feature

5: η = |Lq
SC F

| ⊲ denote the number of added vertices to L
q
SC F

by η

6: v ← �η ← L
q
SC F

⊲ pick out a vertex from L
q
SC F

with respect to �η (probability distribution in Lemma 3.3)

7: S Pq (vs , v) ⊲ cheapest path from vs to v on Gq

8: Take S Pq (vs , v) ⊲ the SDT takes S Pq (vs , v)

9: if ∃ eq which is blocked on S Pq (vs , v) then: ⊲ there is a blockage on S Pq (vs , v)

10: F = F ∪ eq

11: q = q + 1

12: Gq = (V , E \ F)

13: return to source vertex vs .

14: Go to step 3.

15: Else:

16: take S Pq (vs , v) to reach v and search v.

17: if v = v∗ then: ⊲ the target vertex v∗ is detected by the SDT

18: flag = 0 ⊲ Termination Point.

19: Else:

20: V
′ = V

′ \ {v}
21: q = q + 1

22: Gq = Gq−1

23: return to source vertex vs .

24: Go to step 3.

25: end if

26: end if

27: end while

Proof We refer to the steps of Algorithm 2 in our proof. We note that the SCS terminates

in at most k + λ iterations. Suppose that v∗ ∈ {v1, v2, . . . , vλ} is the target vertex. We

represent the cost of the offline optimal solution by o∗. At the beginning of iteration

q ∈ {1, 2, . . . , k+λ}, the SDT makes a list L
q
SC F which contains the unsought vertices

in V t with similar costs feature (step 4). We denote the size of L
q

SC F = {v1, v2, . . . , vη}
by η ≤ λ (step 5). Then, the SDT picks out a vertex v from L

q
SC F with respect to the

probability distribution �η = (p1, p2, . . . , pη) (Lemma 3.3 and step 6), and takes the

cheapest path from vs to v ∈ L
q
SC F (step 8). If a blockage is found on the path, the

SDT updates the graph and returns to vs (steps 9 to 14). Otherwise, the SDT arrives
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at v and searches the vertex (step 16). If the target is detected, the SCS terminates

(steps 17-18). Otherwise, the SDT updates the list of unsought vertices and returns to

vs (steps 20-23). If the target is not detected at iteration q, an expected competitive

ratio of at most

2

η
∑

i=1

pi

o
q

i

o∗

is incurred, i.e., o
q
i is the operational cost of vertex vi ∈ L

q
SC F . We propose the proof

by upper bounding the incurred expected competitive ratio at each iteration of the SCS

procedure. We consider two scenarios.

• Scenario 1. v∗ has the similar costs feature with the vertices in L
q

SC F . Because of the

existence of the blockages in Gq , there exists some vi∗ ∈ L
q
SC F = {v1, v2, . . . , vη}

such that o
q
i∗ ≤ o∗ (o

q
i∗ ∈ {oq

1 , o
q
2 , . . . , o

q
η}), i.e., if no blockage exists in Gq , then

there exists vi∗ ∈ L
q

SC F = {v1, v2, . . . , vη} such that o
q

i∗ = o∗. To upper bound the

expected competitive ratio at iteration q, we replace o∗ by o
q
i∗ in the denominator

to obtain

2

η
∑

i=1

pi

o
q
i

o
q
i∗

= 2pi∗ + 2

η
∑

i=1,i �=i∗
pi

o
q
i

o
q
i∗

.

Since v1, v2, . . . , vη have the similar costs feature, it holds that

2pi∗ + 2

η
∑

i=1,i �=i∗
pi

o
q
i

o
q
i∗

≤ 1 + η(pi∗) ≤ 1 + η,

for all i∗ ∈ {1, 2, . . . , η} according to Lemma 3.3. Also, we note that η ≤ λ, hence

the expected competitive ratio of iteration q would be at most 1 + λ.

• Scenario 2. v∗ does not have the similar costs feature with the vertices in L
q
SC F .

Since v∗ does not have the similar costs feature with the vertices in L
q

SC F ,

2
∑η

i=1 pi oi < o∗ according to Lemma 3.4. Thus, the incurred expected com-

petitive ratio at iteration q would be at most 1 in this scenario.

To enforce a higher upper bound on the expected competitive ratio of the SCS, we

assume that Scenario 1 occurs at the first k + λ − 1 iterations. Accordingly, the total

expected competitive ratio of the SCS can be upper bounded by (k + λ − 1)(1 + λ) in

these k +λ−1 iterations. Also, the incurred expected competitive ratio at the (k +λ)th

iteration is o∗
o∗

= 1 since the target is detected at this iteration. The theorem follows. ⊓⊔

Although the SCS obtains a bounded expected competitive ratio for the k-ORSP,

its performance decreases when k increases. However, the SCS performs optimally in

a reduced version of the k-ORSP in which there is no blockage in the graph. In the

next theorem, we prove the optimality of the SCS for the ORSP.

Theorem 3.2 The expected competitive ratio of the SCS is λ for the ORSP.
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Proof We refer to the steps of Algorithm 2 in our proof. Suppose that V t =
{v1, v2, . . . , vλ} is the set of potential target vertices. We note that in the ORSP, there

is no blockage in the graph, i.e., k = 0. Hence, steps 9 to 14 are not implemented when

the SCS is executed on an instance of the ORSP. We apply induction on the number

of potential target vertices λ.

• Base case. If λ = 1, the SDT picks out the only potential target vertex v1 with

probability p1 = 1. Then, takes the cheapest path between vs and v1, searches

the vertex, and detects the target. Thus, the expected cost of the SCS equals the

operational cost of v1, i.e., o1 (Definition 2.1). Hence, the cost of the offline optimal

solution is also o1. Thus the expected competitive ratio would be 1.

• Induction. For λ ≥ 2, suppose that o1 ≤ o2 ≤ . . . ≤ oλ represent the oper-

ational costs of the vertices in V t = {v1, v2, . . . , vλ}. Also, suppose that vi∗

(i∗ ∈ {1, 2, . . . , λ}) is the target vertex. Therefore, the cost of the offline optimal

solution is oi∗ . At iteration 1 of the SCS, the SDT makes a list L1
SC F which con-

tains the vertices in V t with similar costs feature (step 4). We denote the size of

L1
SC F by η (step 5). We consider two scenarios.

– Scenario 1. vi∗ ∈ L1
SC F . The SDT picks out a vertex v from L1

SC F based on the

probability distribution �η = (p1, p2, . . . , pη) (Lemma 3.3 and step 6), takes

the cheapest path from vs to v ∈ L1
SC F (step 8), and searches the vertex (step

16). If the target is detected, the SCS terminates and the expected competitive

ratio would be 1 (steps 17-18). Otherwise, the SDT updates the list of unsought

vertices and returns to vs (steps 20-23). In this case, we represent the cost of

the SCS from the time that the SDT arrives at vs until the termination time of

the SCS by Cλ−1. Because η ≤ λ, the expected competitive ratio of the SDT

is at most

pi∗ +
η

∑

j=1 j �=i∗
p j

2o j + Cλ−1

oi∗
≤ pi∗ +

λ
∑

j=1 j �=i∗
p j

2o j + Cλ−1

oi∗
,

where Cλ−1 ≤ (λ − 1)ci∗ by the induction assumption. Accordingly, the

expected competitive ratio is not greater than

pi∗ +
λ

∑

j=1 j �=i∗
p j

(

2o j

oi∗
+λ − 1

)

= pi∗ +
λ

∑

j=1 j �=i∗

(

p j

2o j

oi∗

)

+

⎛

⎝(λ−1)

λ
∑

j=1 j �=i∗
p j

⎞

⎠ .

We must show that the expected competitive ratio is not greater than λ, i.e.,

pi∗ +
λ

∑

j=1 j �=i∗

(

p j

2o j

oi∗

)

+

⎛

⎝(λ − 1)

λ
∑

j=1 j �=i∗
p j

⎞

⎠ ≤ λ,
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or,

pi∗ +
λ

∑

j=1 j �=i∗

(

p j

2o j

oi∗

)

≤ λ −

⎛

⎝(λ − 1)

λ
∑

j=1 j �=i∗
p j

⎞

⎠ .

We deduct (λ − 1)pi∗ from both sides to obtain

(2 − λ)pi∗ +
λ

∑

j=1 j �=i

p j

2o j

oi∗
≤ 1,

which holds for all i∗ ∈ {1, 2, . . . , λ} according to Lemma 3.3 because �λ =
(p1, p2, . . . , pλ) ∈ Qλ.

– Scenario 2. vi∗ /∈ L1
SC F . The SDT picks out a vertex v from L1

SC F based on

the probability distribution �η = (p1, p2, . . . , pη) (Lemma 3.3 and step 6),

takes the cheapest path from vs to v ∈ L1
SC F (step 8), and searches the vertex

(step 16). Since vi∗ /∈ L1
SC F , the target is not detected and the SDT returns

to vs by incurring a total cost of at most 2ov (steps 20-23). Thus, an expected

cost of less than or equal to 2
∑η

i=1 pi oi is incurred, i.e., oi is the operational

cost of vertex vi ∈ L1
SC F . We point out that 2

∑η

i=1 pi oi < oi∗ according to

Lemma 3.4 because vi∗ /∈ L1
SC F , i.e., vi∗ has not similar costs feature with

the vertices in L1
SC F . Similar to Scenario 1, we represent the cost of the SCS

from the time that the SDT arrives at vs until the termination time of the SCS

by Cλ−1 which is less than (λ − 1)oi∗ by the induction assumption. It follows

that the expected cost of the SCS is at most oi∗ + (λ − 1)oi∗ = (λ)oi∗ .

The theorem follows. ⊓⊔

3.3 Upper bound on the expected competitive ratio of optimal randomized

solutions for the k-ORSP

Utilizing our results in previous sections, we present an upper bound on the expected

competitive ratio of the optimal randomized solutions for the k-ORSP.

Lemma 3.5 The expected competitive ratio of an optimal randomized solution for the

k-ORSP is not greater than min{2(k +λ)−1, (k +λ−1)(1+λ)+1} = 2(k +λ)−1.

Proof The SCS has an expected competitive ratio of at most (k+λ−1)(1+λ)+1 which

suggests an upper bound on the expected competitive ratio of randomized solutions

for the k-ORSP. We point out that any deterministic solution can be regarded as a

randomized solution, designed only with probabilities 1 or 0. Thus, the competitive

ratio of 2(k + λ) − 1 for the LCS also suggests an upper bound on the expected

competitive ratio of randomized solutions for the k-ORSP. We can conclude an upper

bound of min{2(k + λ) − 1, (k + λ − 1)(1 + λ) + 1} = 2(k + λ) − 1 on the expected

competitive ratio of the optimal randomized online solutions for the k-ORSP since

k ≥ 0 and λ ≥ 1. ⊓⊔
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Corollary 3.2 An optimal randomized solution for the k-ORSP has an expected com-

petitive ratio between λ and 2(k + λ) − 1.

4 Summary of competitive analysis results

A summary of competitive analysis results for the k-ORSP and the ORSP is given

in Table 2. The results for the k-ORSP and the ORSP are differentiated in this table.

Also, the results for deterministic and randomized solutions are categorized in different

rows. In Table 2, columns “LB" and “UB” represent lower bound and upper bound on

the competitive ratio of online solutions, respectively. The “BS" and “CR" columns

denote the best found solution in our paper and its corresponding competitive ratio,

respectively. As it can be observed, for the ORSP and deterministic solutions, the lower

bound of 2λ−1 is tight and the LCS is a matching optimal solution. Similarly, for the k-

ORSP and deterministic solutions, the lower bound of 2(k+λ)−1 is tight and the LCS is

a matching optimal solution. For the ORSP and randomized solutions, the lower bound

of λ is tight and the SCS is the optimal randomized solution that meets the lower bound

of λ. For the k-ORSP and randomized solutions, max{λ, k+1} and 2(k+λ)−1 are the

lower and upper bounds on the expected competitive ratio of the optimal randomized

solutions, respectively, where the LCS is the solution whose competitive ratio matches

the upper bound. An open research problem is to propose a randomized solution for

the k-ORSP with an expected competitive ratio less that 2(k + λ) − 1.

5 Conclusions and future research

We investigated two versions of an online routing and searching problem modelled

on undirected graphs by considering two different types of online uncertainty defined

on the vertices and the edges. In the first version (i.e., the k-ORSP), the target vertex

is unknown and potential target vertices are associated with a search cost where there

are some non-recoverable blockages in the graph which are unknown a priori such

that each of them is disclosed once one of its end-vertices is visited. The objective

in the k-ORSP is to identify a routing and searching policy which detects the tar-

get with minimum total traveling and search cost. For deterministic solutions for the

k-ORSP, we proposed a tight lower bound and an optimal online solution. For random-

ized solutions for the k-ORSP, we specified lower and upper bounds on the expected

competitive ratio of the optimal online solutions together with a randomized solution

with a bounded expected competitive ratio. The second version (i.e., the ORSP) is

a reduced variant of the k-ORSP where there is no blockage in the graph. For this

problem, we proposed tight lower bounds and optimal solutions for both deterministic

and randomized cases. These results are summarized in Table 2.

A future research direction is to analyze variations of the k-ORSP involving multiple

teams and different levels of communication between the teams from competitive

analysis viewpoint. An open research question is to specify a tight lower bound on the
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expected competitive ratio of randomized solutions as well as an optimal randomized

solution for the k-ORSP.
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