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The use of induced pluripotent stem cells (iPSCs) is a promising approach

when used as models to study neurodegenerative disorders (NDDs) in vitro.

iPSCs have been used in in vitro two-dimensional cultures; however, these

two-dimensional cultures do not mimic the physiological three-dimensional

cellular environment. The use of iPSCs-derived three-dimensional organoids

has risen as a powerful alternative to using animal models to study NDDs.

These iPSCs-derived three-dimensional organoids can resemble the complex-

ity of the tissue of interest, making it an approachable, cost-effective technique,

to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived

organoids will be an important tool to develop new therapeutics and pharma-

ceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-

dimensional cultures and three-dimensional organoids have been used to

study NDDs, as well as the advantages and disadvantages of both techniques.

1. Introduction
Neurodegenerative disorders (NDDs) are chronic and progressive diseases,

characterized by the loss of function in sensory, motor or cognitive systems,

impairing the central nervous system (CNS) and the peripheral nervous system

(PNS), via the loss of neurons and neuronal subtypes [1–3]. Amyotrophic lateral

sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), spinal mus-

cular atrophy (SMA), multiple sclerosis (MS) and Huntington’s disease (HD) are

some of the NDDs that affect the global population [2]. The mechanisms behind

NDDs are not clearly understood, even though it is known that ageing, protein

misfolding, genetics and apoptosis are involved in the process behind NDDs

[1,2]. A significant and growing portion of the global health burden is caused

by neurological illnesses. In 2017, there were 1.1 million fatalities overall in the

EU and 1.97 million overall in the WHO European area, with 21 million disabil-

ity-adjusted life-years related to neurological illnesses in the EU and 41 million in

the WHO European region. In the EU, neurological illnesses are the third most

frequent cause of disability and early mortality, and as the population of

Europe ages, it is probable that both their frequency and burden will rise [4].

Therefore, health officials need to focus more on treating and preventing neuro-

logical illnesses, and the majority of economic and scientific resources are set

on tackling such conditions. The foremost challenge in understanding themolecu-

lar mechanisms of NDDs is presented within the inability of in vitro models to

successfully mimic the phenotypic physiology of NDDs. Therefore, it is difficult

to develop appropriate drugs to alleviate patient symptoms, and maybe, slow

the progression of the NDDs [2,5].

Animal models have been used to study NDDs, as they provide an under-

standing of the pathogenesis and pathobiology of NDDs. Nevertheless, these

models are limited because these models usually overexpress mutant proteins,
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which affect the pathology of the animal and hence obscure

the understanding of the onset and progression of NDDs

[2,6,7]. Furthermore, the use of animal models raises ethical

considerations regarding their use in research. Russel &

Burch established, in 1959, the principle of the 3Rs, which

focuses on solving these ethical considerations by Reducing

the number of animals used per experiment, Refining

methods to increase the welfare of animals and Replacement

methods that aim to avoid and replace the use of animal in

experiments [8,9]. Therefore, to follow the 3Rs principle,

novel models need to be developed and used to further

characterize the pathophysiology of NDDs, leading to a

path were these models could also be used for the develop-

ment of therapeutics. In addition, the limitations of animal

models are due to the differences and variabilities between

different species [10–14]. Besides, the use of human tissue

to study NDDs is restricted by the inability to obtain either

brain or spinal cord tissue from NDD patients throughout

the disease [2,15,16]. Therefore, it is of high importance to

develop models that mimic the progression of NDDs to

obtain a better understanding of the onset and development

of NDDs. The use of induced pluripotent stem cells (iPSCs) is

a promising alternative to model and study NDDs in vitro

[17,18]. iPSCs can be obtained from the reprogramming of

somatic cells, such as fibroblasts and peripheral blood, from

healthy and patient donors [15,19]. Furthermore, as iPSCs

have self-renewal properties and can differentiate into any

cell type, iPSCs can differentiate into motor neurons, oligo-

dendrocytes, astrocytes and microglia. Therefore, iPSCs can

be differentiated to neuronal cells and can be used to study

and understand the onset and progression of various NDDs

[15,18–20].

iPSCs have been used in in vitro two-dimensional cul-

tures; however, these two-dimensional cultures do not

mimic the physiological three-dimensional cell environment,

as two-dimensional cultures lack nutritional, waste and

oxygen gradients, and interactions among cells or cells

between the extracellular matrix (ECM) [10,13]. Hence,

three-dimensional organoids (a three-dimensional multicellu-

lar construct that resembles a tissue or an organ), using iPSCs

have been developed to mimic the in vivo environment [2,13],

mimicking cell-to-cell and cell-to-ECM interactions, showing

cellular growth, proliferation, differentiation, migration,

protein production and gene expression [2,18,21–23]. These

three-dimensional organoids developed to study NDDs

are composed of a heterogeneous population of neural

cells, obtained from differentiating iPSCs into motor

neurons, astrocytes, and oligodendrocytes [17,18,24]. These

three-dimensional organoids are a promising alternative to

understanding the onset and progress of NDDs. Furthermore,

these models can be used to develop novel therapeutics

for NDDs [2]. In this review, we discuss how iPSCs-derived

two-dimensional cultures and three-dimensional organoids

models have been used to study NDDs and the advantages

and challenges of both models.

2. Modelling NDDs in iPSCs-derived two-
dimensional cultures

The complexity of cellularmodels of NDDs ranges from simple

monolayers (two dimensional) derived from immortalized

cell lines to intricate multicellular organoids (three

dimensional) which mimic tissue. These are able to replicate

many disease hallmarks and in vivo physiological conditions.

In this section, NDDs like AD, PD, ALS and HD are briefly

defined and discussed to highlight the use of iPSCs-derived

two-dimensional cultures to model these diseases.

2.1. Alzheimer’s disease
AD is the most prevalent NDD, characterized by the dense

accumulation of beta-amyloid (Aβ) plaques and neurofibril-

lary tangles, which are defined by the intraneuronal

presence of microtubule tau [25]. AD patients suffer from

cognitive deficits and memory loss as a result of neuron

damage, prominently occurring within the medial temporal

lobe and the regions of the neocortex [26]. Environmental fac-

tors and inheriting the E4 allele of the apolipoprotein E

(APOE ε4) present an increased risk of developing sporadic

AD. Unlike the APOE ε2 and APOE ε3 alleles, APOE ε4 pro-

teins are far less effective in the breakdown of Aβ plaques

[27]. Familial AD occurs with early onset (less than 60

years of age) and is caused by mutations occurring within

the amyloid precursor protein (APP), presenilin 1 (PSEN 1),

and presenilin 2 (PSEN 2) genes. Both forms of AD present

clinical symptoms including gradual memory loss, agnosia

and apraxia [25,26].

The mechanisms that cause AD are poorly understood.

However, ground-breaking research models have provided

insight into AD pathology, over the years. For example, inhi-

biting acetylcholinesterase (AChE) to increase acetylcholine

production has induced the regeneration of neuronal and

cognitive activity in AD patients [28]. Additionally, over-

expression of N-methyl-D-aspartate (NMDA) is known to

stimulate an excessive influx of Ca2+, leading to excessive

production of glutamate. This overexpression of glutamate

causes excitotoxicity, neuronal death and deficits in cognitive

function [29].

The Food and Drug Administration (FDA) has approved

drug-based therapies to treat acetylcholine production and

NMDA overexpression [30]. For example, donepezil, rivastig-

mine, galantamine (AChEIs) and memantine, an NMDA

antagonist [26,31]. Tacrine, the first FDA-approved AChEI

for AD, was removed from the market as it caused

hepatotoxicity in patients [32]. According to Alzheimer’s Dis-

ease International, the current annual cost of $1 trillion to

treat dementia, is estimated to double by the year 2030 [33].

Therefore, it is essential to implement effective use of

resources and facilities to tackle the condition.

The two-dimensional tissue culture model is a well-

known technique, consisting of a cell monolayer, that has

been used since 1907. The iPSCs-derived two-dimensional

model involves seeding directly on a glass or polystyrene

surface that is coated with agents that support cell

adhesion, proliferation, and differentiation. iPSCs-derived

two-dimensional models are widely used to study and

decipher various neurological conditions including AD [34].

Wang et al. [35] reported increased production of Aβ and

p-tau levels within hiPSC-originated APOE ε4 neurons. The

two-dimensional-based study also reported GABAergic

neuron degeneration from the APOE ε4 variant. However,

post-conversion of APOE ε4 to isogenic apolipoprotein ε3

(APOE ε3) using ApoE structural corrector PH002, elimi-

nated the pathogenic behaviour. This not only confirmed

the pathogenic activity of APOE ε4 linked to AD but also
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highlighted a new approach to targeting APOE ε4-related AD

[35]. This study is a prime example of how combining two-

dimensional modelling directly with iPSCs can eliminate

obstacles such as species variance as these cells are directly

obtained from humans in an ethical manner. The technique

also minimizes the use of animals, for example, mice

models do not exhibit APOE ε4 due to species differences

and are also far more cost-effective [35].

Table 1 shows other examples of in vitro studies to model

AD, where disease-related mechanism and phenotypes were

analysed.

2.2. Parkinson’s disease
PD is another lethal NDD in which motor function is

impeded. It is the second most prevalent neurological dis-

order after AD and affects over 7 million people worldwide

[42]. Dopaminergic neurons present within the substantia

nigra pars compacta are targeted and damaged by multifac-

torial mechanisms including α-synuclein aggregation and

misfolding, mitochondrial apoptosis and excitotoxicity [43].

The disorder is late-onset and exists in two forms, the idio-

pathic form, and the rare familial version. Both forms

convey the symptomatic features of bradykinesia, tremor

and muscular rigidity [44]. Although the familial form only

accounts for 10% of all PD cases, gene-linked PD harbours

multiple causative mutations in the α-synuclein gene, Leu-

cine-rich repeat kinase 2 (LRRK2) and PTEN-induced

kinase 1 (PINK1) genes [44]. The LRRK2 is a vital protein

involved in autophagy and maintaining cellular functional-

ity. Mutant LRRK2 is known to alter the autophagy process

and has been linked to increased α-synuclein aggregation

[45]. Therefore, analysing the molecular pathways encoded

by these mutations using the two-dimensional model can

provide insight for novel treatment. Currently, treatments

and therapy options are available that aid in treating PD

[46,47].

Despite the plethora of challenges, iPSCs appear to be a

promising platform due to their ability to differentiate into

midbrain dopaminergic (DA) neurons. Furthermore, using

iPSC-related co-cultures, to examine and expand our

knowledge relating to PD-associated cell–cell interaction

within the brain, appears to be a promising platform. The

Kikuchi et al. [48] study reported improved motor function

in primates, who had undergone surgery to graft DA neurons

derived from hiPSCs. Using the dual SMAD inhibition tech-

nique, dopaminergic neurons were generated from eight

iPSCs cell lines including four healthy individuals and

three PD patients, and a single HD patient. Day 28 cultured

DA neurons were then grafted into the putamen of cynomol-

gus monkeys. The study confirmed good recovery rates

among both PD and healthy derived cell lines. PD symptoms

including dyskinesias were absent from monkeys trans-

planted with PD-derived neurons. Furthermore, the efficacy

of L-DOPA was also tested. Upon administration of

L-DOPA, the MPTP-treated monkeys exhibited 15–33%

improvement in their PD scores [48]. Although this is a fasci-

nating concept, further research is required as it is in the early

stages of development. However, it opens a gateway to using

iPSCs-based tissue grafts, to replace the valuable cellular

functionality of damaged DA neurons that have previously

undergone neurodegeneration. The prospect also provides

an accurate insight into targeted drug efficacy and testing

as the host is a multicellular living organism [48].

Furthermore, di Domenico et al. [42] designed a

neuron–astrocyte co-culture to analyse the signal between

the midbrain dopaminergic (mDA) neurons and astrocytes

derived from mutant LRRK2-iPSCs. By contrast to their

healthy controls, the mutant G2019SLRRK2 mDA-astrocyte

model recapitulated the typical PD phenotype [42]. This

includes the accumulation of α-synuclein, premature cell

death, and morphological alterations including loss of mem-

brane within the mDA neurons. Astrocytes possess a

neuroprotective role in cells including debris clearance,

inflammation stimulation and alleviation of glutamate-related

excitotoxicity [49]. However, di Domenico’s study showed that

upon co-culturing PD-derived astrocytes with healthy control

neurons, the astrocytes contributed toward the neurodegen-

eration of the healthy dopaminergic neurons. α-Synuclein

formation was witnessed within the healthy control neurons

[42]. The study is a prime example of how two-dimensional

culture has aided in discovering crucial information. It has

Table 1. iPSC-derived in vitro studies to model AD and analyse disease-related mechanisms and phenotypes.

AD patient-derived

iPSCs: genetic mutation differentiation into cell type

differentiation

marker result references

PSEN1 mutation A246E basal forebrain cholinergic neurons Tuj-1, amyloid-beta an increased amyloid-beta 42 : 40 ratio [36]

(APP)-E693D mutation neurons and astrocytes with an

accumulation of amyloid-beta

oligomers

Tuj-1, GFAP,

amyloid-beta

the accumulation of amyloid-beta

oligomers in neurons and astrocytes

[37]

V717I mutation neurons with reduction of total tau Tuj-1, amyloid beta,

tau

increases in APP expression and

reduction of total tau

[38]

APP variant (A673T) neurons with reduction of amyloid-beta Tuj-1, amyloid beta, neurons reduced levels of amyloid-

beta

[39]

PS1 (A246E) and PS2

(N141I) mutations

neuron with elevated amyloid-beta

42 : 40

Tuj-1, amyloid beta significant increase in expression of

amyloid beta

[40]

PSEN1 mutation neuron with increased amyloid-beta

42/40

Tuj-1, amyloid beta significant increase in expression of

amyloid beta

[41]
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enabled the research community to better understand the

aetiology of PD, to treat it accordingly. Table 2 highlights

iPSC-derived in vitro studies that have modelled and analysed

disease-related mechanism and phenotypes of PD.

2.3. Amyotrophic lateral sclerosis
ALS is a progressive NDD through which motor function is

impeded via deterioration of the upper and lower motor

neurons located in the brainstem and spinal cord, respect-

ively [58]. The adult-onset NDD usually targets those aged

over the age of 55. However, the younger population can

also be affected [59]. ALS is characterized in two forms,

sporadic ALS (SALS) and familial ALS (FALS). The sporadic

version accounts for 90–95% of all ALS cases. By contrast,

FALS accounts for 5–10% of all ALS cases [60]. Both FALS

and SALS victims tend to suffer from a multitude of clinical

symptoms including focal limb weakness, deterioration and

fatigue. Muscular weakness tends to start with the distal

limb muscles rather than the proximal regions [58]. However,

throughout degeneration, muscular atrophy remains promi-

nent. Twenty-five to 30% of ALS cases experience bulbar-

onset symptoms including dysphasia dysarthria, and some

patients experience masseter weakness [58]. Nevertheless, in

later stages of ALS, victims experience paralysis and tend

to die, with respiratory failure being the ultimate cause of

mortality [61]. Consequently, life expectancy for ALS patients

is 3–5 years [62]. The common mutant genes associated with

FALS include TAR DNA-binding protein 43 (TDP-43), super-

oxide dismutase 1 (SOD 1), and chromosome 9 open reading

frame 72 (C9orf72) [63].

Four per cent of all FALS cases are linked to TDP-43

mutations [64]. TDP-43 is a ubiquitous protein that is

encoded by the TARDBP gene. Normal functioning TDP-43

proteins are responsible for a variety of RNA regulatory

mechanisms including splicing and transcriptional mainten-

ance and maintaining mRNA stability [65]. Similar to

amyloid-β and α-synuclein (pathological hallmarks of AD

and PD), TDP-43 also contains prion-like domains, respon-

sible for protein folding and solubility [64]. However, post-

translational alterations and mutations in TDP-43 cause

these regions to produce TDP-43 proteinopathies [66].

Although the mechanism of TDP-43 pathogenesis is yet to

be deciphered, studies have reported that TDP-43 oligomers

can successfully promote endogenous TDP-43 aggregations

in neighbouring cells via the protein seeding mechanism

[64]. Although TDP-43 propagation from cell to cell remains

unclear, spread through exomes and tunnelling nanotubes

(TNT) appear to be promising concepts of TDP-43 propa-

gation [67]. The Ding et al. [67] study combined U251 cells

with media containing 30% CFS (extracted from ALS

victims). On day 21, immunofluorescence confirmed co-

localized TDP-43 seeding, and aggregations were observed

in the cells and within TNT-like structures [68].

Of all three mutant genes, through the identification of the

repeat expansionGGGGCCC in intron 1, the C9orf72 genewas

identified as the most common causative gene of ALS in 2011.

The C9orf72 mutation is known to affect 40% of all FALS

patients [69]. The GGGGCCC expansion usually ranges from

30 or fewer repeats in healthy individuals. However, in patho-

logical ALS and frontal dementia patients, the repeats range

from 100–1000 [68]. Bidirectional transcribing of the repeat

GGGGCCC expansion generates RNA repeats, in turn leading

to the production of RNA foci [70]. Additionally, non-ATG

translations of the repeat RNA enable the successful gener-

ation of dipeptide repeat proteins (DPRs) [71]. The three

main pathogenic mechanisms associated with C9orf72-

induced ALS include DPR production, haploinsufficiency,

and C9orf72 protein function loss and gain of toxic function

due to C9orf72 RNA repeats. Additionally, RNA binding pro-

teins (RBPs) play a vital role in RNA splicing, translation,

processing, and maintenance. Generation of neurotoxic RNA

foci has been known to sequester RBPS. Therefore, the down-

stream signalling pathways of functional RNA processes are

affected and contribute toward motor neuron degeneration

[72]. As several ALS-related mutations exist, there may be a

Table 2. iPSC-derived in vitro studies to model PD and analyse disease-related mechanisms and phenotypes.

PD patient-derived

iPSCs: genetic

mutation

differentiation into cell

type

differentiation

marker result references

Parkin midbrain dopaminergic

neurons

Parkin elevated transcription of monoamine

oxidases, inducing oxidative stress

[50]

LRRK2 dopaminergic neurons dopamine LRRK2 the increased generation of alpha-

synuclein protein and increased

expression of oxidative stress-

response genes

[51–54]

SNCA triplication

mutation

midbrain dopaminergic

neurons

alpha-synuclein aggressive form of PD with dementia [55–57]

glucocerebrosidase and

SNCA mutation

functional loss of

glucocerebrosidase in

iPSC-derived neurons

glucocerebrosidase the pathogenesis of sporadic

synucleinopathies including

idiopathic PD

[50]

SNCA triplication accumulation of alpha-

synuclein in iPSC-derived

neurons

peroxide a major phenotype of PD including

oxidative stress

[55–57]
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multitude of pathogenic drivers that impact various cellular

pathways, rather than a sole singular causal entity [73].

Accordingly, further research is required to understand ALS

pathogenesis and tackle the condition.

Due to species variances, in vivo animal models have

failed in capturing ALS-related phenotypic recapitulation

and drug efficacy has failed during the clinical trial stages

[74]. Conversely, iPSCs have thrived in this sector as they

are directly derived from the human lineage. Multiple iPSC

in vitro models have conveyed ALS-associated pathways

and phenotypes including TDP-43 pathology, C9orf72 tox-

icity in neurofilaments. In vitro iPSC-generated models in

which gene-specific phenotypes linked to FALS have been

generated, are shown in table 3.

Furthermore, the Kim et al. [78] study used the CRISPR/

Cas9 genome editing system to introduce SOD1-G93A mis-

sense mutation within iPSCs. They successfully reported

ALS phenotypes within motor neurons derived from the

edited iPSCs. The phenotypes included SOD1 protein

accumulation within cells, axonal swelling, and shortened

axonal bodies with abnormal structural morphology [79].

2.4. Huntington’s disease
HD is a hereditary neurodegenerative disorder with expan-

sion of CAG repeats in huntingtin (Htt) [80,81]. CAG

causes the degeneration of the GABAergic projection neurons

in the striatum regions and the development of involuntary

movement and psychiatric disturbance [80–83]. There is no

effective of treatment for HD. Though the disease mutant,

mtHtt, was discovered two decades ago, the mechanism of

HD neurodegeneration remains unclear. Due to the strong

correlation between the CAG length and HD, establishing

a disease model using iPSCs would be ideal. Zhang et al.

[79] were among the early authors to generate an iPSC-

derived HD model. They developed iPSCs from HD patients

displaying CAG repeats and then generated striatal neurons

susceptible to cellular damage with typical characteristics of

HD, such as mHTT aggregation and decreased concen-

trations of glutamate transporters and BDNF [80–84]. Their

results showed an increased caspase activity upon growth

factor deprivation, demonstrating the suitability of the

HD iPSC-derived neurons for drug screening. After that,

more and more two-dimensional and three-dimensional cell

models have been generated in the past two decades (table 4).

2.5. Challenges of using two-dimensional models
Two-dimensional models are useful tools in NDDs evalu-

ation as they are easy to manage, highly cost-effective,

require fewer ethical considerations, and do not require the

subject to be compromised, unlike in vivo animal models [89].

Two-dimensional models are unable to mimic the in vivo

microenvironment of the human brain as in two-dimensional

models, cellular processes occur on a flat monolayer surface,

as opposed to the three-dimensional direction of the brain

[90,91]. In vitro models lack the organization and complexity

and architecture of the brain. The brain consists of various

cell subtypes and multiple molecular mechanisms occur

instantaneously. Although two-dimensional co-cultures are

available, establishing this level of complexity remains a

great challenge [91].

Additionally, cell–cell interactions are limited within the

monolayer culture as they only occur on a side-side basis

[92]. Cell–matrix interactions are also absent within the in

vitro two-dimensional culture model. The interactions are

essential for processes including cellular proliferation, protein

and gene expression, cellular differentiation, drug metab-

olism and other cellular functions [34]. These processes are

directly affected and therefore the in vitro two-dimensional

culture model does not accurately represent the in vivo cellu-

lar physiology, characteristics, and molecular mechanisms of

the brain and central nervous system [91].

Furthermore, the flattened cell morphology and artifi-

cially induced polarity have been reported to alter normal

cellular functions including apoptosis and other biochemical

pathways [93]. Therefore, analysing the true nature of NDDs

is restricted within these models. Due to differences in mor-

phology and organization, two-dimensional cells possess

elevated sensitivity when targeted with drug therapies [94].

Even though many two-dimensional models reach the pre-

clinical trial stages, translation and applicability to the in

Table 3. iPSC-derived in vitro studies to model ALS and analyse disease-related mechanisms and phenotypes.

ALS patient-derived iPSCs:

genetic mutation differentiation into cell type differentiation marker result references

C9orf72 motor neurons Tuj-I C9orf72 DPR aggregation [75]

C9orf72 RNA Foci

glutamate excitotoxicity

hyperexcitability

TDP-43 motor neurons Isl- I TDP-43 aggregation [76]

Tuj-I cytoplasmic granules

short neurites

TDP-43 motor neurons HB9 immature neurite growth [77]

SOD-1 ChAT action potential

irregularities

C9ORF72 SMI-32 SOD1 aggregation

autophagy dysfunction
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vivo setting often fail. Despite the plethora of benefits, two-

dimensional culture models have exhibited difficulty in

unveiling the pathology and pathogenesis of NDDs.

3. Modelling NDDs using iPSCs-derived three-
dimensional organoids

To overcome these obstacles, using iPSCs-derived three-

dimensional organoids may be the frontier technique to

recapitulate complex multicellular physiology. Three-dimen-

sional organoids are small, self-organized three-dimensional

multicellular tissue cultures that are grown in vitro. Each

specific organoid can mimic its corresponding organ, such

that the cultures can replicate the complexity of an organ

in vivo and can be used to study selected characteristics of

that organ in an in vitro culture. Three-dimensional organoids

are commonly derived from stem cells and the process

that forms organoids in vitro can be similar to natural

development [95]. Starting from stem cell-derived complexes

in vivo-like structures, researchers have now grown organoids

that model several organs, including the brain, kidney, liver

and retina [24,96–99].

The human brain is a complex organ, and its complexity

has made it challenging to study various brain disorders in

animal models. This highlights the need to develop an

in vitro model of the human brain. In 2013, the first ever

three-dimensional organoid of the brain was successfully gen-

erated which possessed cortical-like self-organizing regions

(resembling the structure present in the early neuronal devel-

opment stage), contained functional neurons, and possessed

an unformed choroid plexus and retina [24]. They also

generated dorsalized neuroepithelium. The three-dimensional

organoid closely mimicked both the functionality and struc-

ture of a real brain. Furthermore, the three-dimensional

organoids also exhibited basal radial glial cells which are

lacking in mice models. In addition to the cerebral three-

dimensional organoids recapitulating features of human

cortical development, here they also modelled microcephaly,

a disorder that has been challenging to recapitulate in mice.

The optimized methodology presented within the study

opened a research gateway that has led to the development

of the hippocampus, astrocytes and introduces gyri-like fold-

ing. This study reiterated the importance of organoids

as they can show development and disease in a complex

microenvironment, even in the most complex human organ.

The emerging three-dimensional organoid technology,

which produces a model system that better reflects the

human brain microenvironment, has been widely used to

investigate the development and disorders of the human

brain. The development of brain three-dimensional organoids

is similar to that of a human fetal brain. This enables the

three-dimensional organoids to be used to model neuro-

development disorders. As an example to emphasize the

importance of developing brain three-dimensional organoids

to study diseases, human iPSCs-derived three-dimensional

organoids have been used to demonstrate the cellular

tropism and pathogenesis of the Zika virus [100,101].

Another example is that the occurrence of changes in the

fetal brain, when exposed to severe environments, can be

mimicked in brain three-dimensional organoids. Addition-

ally, a study highlighted the use of brain three-dimensional

organoids to better understand hypoxic encephalopathy of

prematurity that results from a severe hypoxic–ischaemic epi-

sode [102]. Thus, these three-dimensional organoids models

highlights the importance of continuing to use this three-

dimensional organoid technology to understand different

disorders, such as NDDs.

With NDDs proving challenging to recapitulate in animal

models and in traditional two-dimensional cell cultures,

iPSCs-derived three-dimensional organoids can be a better

alternative to bridge the gaps between our understanding

of NDDs in animal models and human patients. iPSC-

derived three-dimensional organoids are being developed

to study neurodegenerative disorders. Pamies et al. devel-

oped an in vitro iPSC-derived three-dimensional organoid,

Table 4. iPSC-derived in vitro studies to model HD and analyse disease-related mechanisms and phenotypes.

HD patient-derived

iPSCs: genetic mutation

differentiation into cell

type

differentiation

marker result references

180 HTT CAG repeats cortical neurons Tuj-I reduction in pS202 levels in

differentiated cortical neurons

[80]

Q47 Q47 striatal neurons Tuj-I reduction of the formation of VCP-

LC3-mHTT ternary complex

[81]

MSNs striatal medium spiny neurons

(MSNs), microglia

Map2, TREM2 and

IBA1

striatal neurons with DARPP32+

neurons

[82,83]

GABA+ MSNs Map2, GABA DARPP32 positivity; increased

caspase activity

[84,85]

TUJ1+, MAP2+ and Olig2+

neurons

TUJ1, MAP2, ARPP-32 positivity; higher rate of

DNA damage

[86]

TUJ1+, MAP2+, neurons TUJ1, MAP2, elevated levels of caspase activity

upon growth factor withdrawal

[87]

GABAergic neurons GABA hiPSCs generated mostly GABAergic

neurons

[88]
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composed of mature dopaminergic, glutamatergic and

GABAergic neurons, oligodendrocytes and astrocytes. They

were able to detect axon myelination and electrical activity

[13]. A few examples of iPS-derived three-dimensional

organoids in each of the common NDDs have been listed

in table 5.

3.1. Benefits and limitations of iPSC-derived

three-dimensional organoids
Named ‘Method of the year 2017’ by Nature Methods, three-

dimensional organoid models present a powerful tool to

study organ development, pathologies and facilitate thera-

peutic applications [116]. Three-dimensional organoids are

able to more closely mimic in vivo tissues than the existing

two-dimensional models for research [10,13]. In vivo, the

cells are part of a microenvironment where they are exposed

to various signalling interactions, which are important for

regulating the effective function of the tissue as well as main-

taining phenotypes. Two-dimensional organoids successfully

allow for cell–cell and/or cell–ECM interactions, while the

interactions of cells in a two-dimensional model are limited.

Cells in the two-dimensional model are fairly uniform and

can represent just one cell type due to exposure to a consist-

ent concentration of factors in media. While this allows

for studying cellular processes and disease mechanisms in a

specific affected cell type, it does not correctly represent

cells in human tissue, which are exposed to a concentration

gradient of signalling factors, nutrients and crosstalk

with other cell types. This is achieved to an extent by three-

dimensional organoids, where the outer layer of cells is

exposed to a higher concentration of factors compared to

the cells at the centre of the sphere-like three-dimensional

organoid. This allows for different populations of cell types

to proliferate and differentiate in a single three-dimensional

organoid model, which closely resembles conditions in vivo.

Furthermore, not only different cell types could be achieved,

but structures. For example, gyrification, known as surface

folding, of the human cerebrum is the foundation for the

advanced cognitive abilities of humans. It enables a substan-

tial sum of neurons in a small volume. Recently, a study in

2017 modelled the growth and structural formation of the

human cortex in vitro using cerebral three-dimensional orga-

noids [117]. Gyrification and expansion were achieved

Table 5. iPSC-derived three-dimensional organoids to model NDDs, which display disease-related phenotypes and mechanisms.

neurodegenerative

disorders model and mutation structures replicated differentiation marker references

ALS motor neuron organoid an organoid from iPSC-

derived neurons

motor neuron: ChAT, HB9, SMI-32 [103]

ALS and sensorimotor

organoid

sensorimotor organoids

containing functional

human NMJs

nerve: neurofilament or SV2/Thy1

muscle: AChRs (α-bungarotoxin)

[104]

AD neurons and astrocyte with

pathological accumulation

of amyloid-beta

Tuj-I, amyloid-beta, GFAP showing pathological accumulation

of amyloid-beta peptides

[25,105–107]

cortical organoids APP duplication; PSEN1

M146I; PSEN1 A264E

amyloid aggregation;

hyperphosphorylated tau protein;

endosome abnormalities

[108]

PD LRRK2-G2019S neuron

organoid

LRRK2 dopaminergic

neurons

three-dimensional midbrain PD

organoids to mimic the age-

induced modelling of PD

[78,109]

midbrain organoids dopaminergic neurons,

oligodendrocytes and

astrocytes

midbrain organoids replicate

neurotoxin-based PD multiple

brain regions

[110]

Parkinson’s disease

multisystem organoid

dopaminergic neurons organoids with distinct expression

profiles of genes associated with

synaptic transmission

[111]

neuroectodermal spheres LRRK2 (G2019S) neurons organoids with DARPP32+ neuros [112]

HD striatal organoids Map2, ARPP32 organoids with neurons with CAG

repeats over 100

[82,113]

neurons with CAG repeats

(Q109 and Q180)

Map2, GABA Tui1 organoids with neurons with

CAG repeats

[114]

neurons with CAG repeats Map2, Tui1 organoids with neurons with

CAG repeats

[115]
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through enhancing the PTEN-AKT pathway. With further

advancements to this technique, larger brain three-

dimensional organoids could be achieved with a gyrification

pattern similar to human brains. As mouse models used to

study various brain disorders and development do not

have a gyrification process, the use of brain three-

dimensional organoids could enhance our understanding

and bridge this gap in our knowledge. For these reasons,

three-dimensional organoids may be a physiologically rel-

evant reductionist model of in vivo biology to recapitulate

therapeutic applications that have been optimized and

show effective outcomes in two-dimensional cultures but

have been challenging to replicate in in vivo models and

human clinical trials. Nevertheless, apart from this study,

three-dimensional organoids are currently unable to comple-

tely recapitulate the higher complexity of the human brain

and the reliability of these models should be considered

when identifying developmental processes and cell-specific

human brain disorders.

Three-dimensional organoid technology has led to

advances in the research of brain development, modelling

NDDs and provides a promising medium for testing and

developing therapeutic strategies; however, this technology

is still in its infancy. An extended period of growth of brain

three-dimensional organoids can generate a broad diversity

of cells [118]. As mentioned before, iPSCs from brain three-

dimensional organoids can be differentiated into diverse

neuronal cell types, for example, motor neurons and astro-

cytes. Nevertheless, cellular diversity recapitulated in brain

three-dimensional organoids remains limited. Brain three-

dimensional organoids from human iPSCs lack brain-resident

macrophages, called microglia, which act as the active

immune barrier in the brain, as well as vascular cells and

therefore the blood–brain barrier [119]. iPSC-derived orga-

noids can form many neuronal subtypes; however, as the

neuroprogenitor ancestor of iPSCs is different from that of

microglia (derived from a mesodermal lineage), iPSCs

cannot differentiate into microglia [120]. As non-neuronal fea-

tures of the human brain are largely missing from the three-

dimensional organoid culture, they are unable to correctly

model brain functions and disorders that involve the inter-

actions between non-neuronal cells or between neuronal

and non-neuronal cells. While this is a current limitation, a

study has reported cerebral organoids that can innately

develop microglia and display their morphology when

there is an absence of dual-SMAD inhibition [120]. Another

study reported a co-culture system of two-dimensional micro-

glia-like cells with cerebral organoids that could assist to

investigate interactions between microglia and neurons [121].

Another limitation of brain iPSCs-derived and all of

the other three-dimensional organoids, is that they rely on

simple diffusion from the culture for the supply of nutrients

and oxygen due to a lack of vascular system with blood

vessels. When culturing three-dimensional organoids over a

long period of time, a significant number of cells in the

centre of the organoids may undergo apoptosis due to a

lack of access to oxygen and nutrients. To successfully recapi-

tulate a human brain, an improved circulation system needs

to be established for prolonged in vitro three-dimensional

organoid cultures. Although vascularisation has been

achieved using xenotransplantation in mice, the three-dimen-

sional organoid as a single entity is devoid of vasculature and

cannot exist without the use of symbiosis with the host [122].

Recently, human blood vessel three-dimensional organoids

have been developed from iPSCs that contained endothelial

cells and pericytes that are capable of self-assembling into

capillary networks. When transplanted into mice, these orga-

noids formed a stable, perfused vascular tree, faithfully

resembling the structure and function of human blood vessels

[123]. These organoids could be coupled with brain three-

dimensional organoids to develop a closed vascular system

that can support long-term culture as well as aid in studying

neurovascular interactions.

In addition, in comparison to two-dimensional models,

three-dimensional NDDs models present higher variability

and therefore reproducibility is of concern, which should

be carefully considered. Batch variations between each

brain organoid such as differences in the composition of

cell types can cause variations with experimental results

and therefore their interpretation. Despite using the same

source of cells, iPSCs most likely, and the same protocols to

form three-dimensional organoids in a single batch, due to

unpredictable differences in structural compositions and

integrity of each of those three-dimensional organoids, they

have been known to produce variable and inconsistent

results [124].

Though current methods for three-dimensional organoid

generation are prone to variable results, a recent study

showed the generation of highly reliable and consistent corti-

cal three-dimensional organoids [125]. Additionally, another

study showed that 95% of individual dorsal forebrain three-

dimensional organoids had an indistinguishable collection

of cell types that showed consistent developmental trajec-

tories. The variability among three-dimensional organoids

was comparable to the variability of individual endogenous

human brains. Furthermore, three-dimensional organoids

from different stem cell lines showed consistency in the com-

position of different cell types produced [126]. This successful

three-dimensional organoid-to-organoid reproducibility

suggested that brain three-dimensional organoids can be a

tractable model. Along with advances in the recapitulation

of brain development and disease modelling, significant

ethical issues of possible consciousness in cerebral three-

dimensional organoids have risen. With the constantly

developing research in three-dimensional organoid tech-

nology, refined and advanced brain three-dimensional

organoids may become conscious such as developing mem-

ories, the ability to feel pain, or self-awareness. Therefore,

specific relevant research policies and overseeing bodies

need to be established for this emerging field [127,128].

4. Conclusion
The establishment of patient-derived models faithfully repro-

ducing normal physiology and disease pathogenesis are

essential for investigating molecular mechanisms, identifying

new diagnostic and prognostic biomarkers, and personali-

zed patient treatments. Because brain three-dimensional

organoids derived from individuals’ iPSCs maintain the

major characteristics of the developing brain with identical

genetic information, the brain three-dimensional organoid

system has enormous potential to pave the way for personal-

ized medicine for NDDs.

Two-dimensional models are useful tools to evaluate

NDDs, as they are easy to manage, cost-effective, and have
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fewer ethical considerations. Nevertheless, because of their

limitations to mimic the in vivo environment, such as cell-

to-cell and cell-to-extracellular matrix interactions, of the

human brain, it has been challenging to unveil the pathology

and pathogenesis of NDDs.

Brain three-dimensional organoids are self-organized

three-dimensional multicellular cultures grown in vitro.

These three-dimensional organoids can mimic the human

brain to an extent, resembling the complexity of this organ

in vivo, and can be used to study NDDs through gene and

protein expression, signalling pathways. Furthermore,

iPSCs-derived organoids have the potential to differentiate

into diverse neuronal cell subtypes, such as motor neurons,

oligodendrocytes and astroglia. Nevertheless, the lack of

vasculature and microglia are now the challenge to overcome.

For this, a combination of approaches might be useful

to continue adding other characteristics to the brain three-

dimensional organoid, in order to fully resemble the

complexity of the organ. With further advances on iPSC-

derived three-dimensional organoids, larger and mature

brain organoids could be achieved to continue studying the

pathophysiology of NDDs.
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