
This is a repository copy of The effect of boundary conditions on the stability of two-
dimensional flows in an annulus with permeable boundary.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190006/

Version: Published Version

Article:

Ilin, Konstantin orcid.org/0000-0003-2770-3489 and Morgulis, Andrey (2022) The effect of 
boundary conditions on the stability of two-dimensional flows in an annulus with permeable
boundary. Physics of fluids. 074117. ISSN 1070-6631 

https://doi.org/10.1063/5.0100090

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Phys. Fluids 34, 074117 (2022); https://doi.org/10.1063/5.0100090 34, 074117

© 2022 Author(s).

The effect of boundary conditions on the
stability of two-dimensional flows in an
annulus with permeable boundary
Cite as: Phys. Fluids 34, 074117 (2022); https://doi.org/10.1063/5.0100090
Submitted: 20 May 2022 • Accepted: 02 July 2022 • Accepted Manuscript Online: 05 July 2022 •
Published Online: 22 July 2022

Published open access through an agreement with JISC Collections

 K. Ilin and  A. Morgulis

ARTICLES YOU MAY BE INTERESTED IN

Effects of wear and shaft-shape error defects on the tribo-dynamic response of water-
lubricated bearings under propeller disturbance
Physics of Fluids 34, 077118 (2022); https://doi.org/10.1063/5.0097524

A new boundary layer integral method based on the universal velocity profile
Physics of Fluids 34, 075130 (2022); https://doi.org/10.1063/5.0100367

Large-eddy simulation of Rayleigh–Bénard convection at extreme Rayleigh numbers
Physics of Fluids 34, 075133 (2022); https://doi.org/10.1063/5.0099979



The effect of boundary conditions on the stability
of two-dimensional flows in an annulus
with permeable boundary

Cite as: Phys. Fluids 34, 074117 (2022); doi: 10.1063/5.0100090

Submitted: 20 May 2022 . Accepted: 2 July 2022 .

Published Online: 22 July 2022

K. Ilin1,a) and A. Morgulis2

AFFILIATIONS

1Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom
2Vorovich Institute of Mathematics, Mechanics and Computer Science, The Southern Federal University, Rostov-on-Don, and The

Southern Mathematical Insitutute, VSC Scientific Center RAS, Vladikavkaz, Russian Federation

a)Author to whom correspondence should be addressed: konstantin.ilin@york.ac.uk

ABSTRACT

Our aim is to study the effect of the outflow boundary conditions on the stability of incompressible flows in a domain with a permeable
boundary. For this purpose, we examine the stability of the Couette flow with the radial throughflow between permeable cylinders. Most
earlier studies of this flow employed the boundary conditions that prescribe all components of the flow velocity on both cylinders. Taking
these boundary conditions as a reference point, we investigate the effect of imposing different outflow boundary conditions. These
conditions prescribe the normal stress and either the tangential velocity or the tangential stress. It turns out that both sets of boundary
conditions make the corresponding steady flows more unstable. In particular, it is shown that even the classical (purely azimuthal) Couette
flow becomes unstable to two-dimensional perturbations if one of the cylinders is permeable and the normal stress (rather than normal
velocity) is prescribed on that cylinder.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100090

I. INTRODUCTION

In this paper, we study the stability of the Couette flow with

radial throughflow between two permeable circular cylinders. The sta-

bility of steady flows of this type has been studied by many authors

(see Refs. 1–15). Most papers were motivated by applications to

dynamic filtration devices (see, e.g., Refs. 16 and 17) and vortex

flow reactors (see Ref. 18 and references therein). It was also argued in

Refs. 8 and 10 that such flows may have some relevance to astrophysi-

cal flows in accretion disks (see also Ref. 19). Similar inviscid flows

have been also used as a model of a flow in the vaneless diffuser of a

radial pump.20–22

In all these papers (except the ones on the flow in vaneless dif-
fusers), all components of the velocity vector are prescribed on the
permeable boundary of the flow domain. In what follows, these
boundary conditions are called the reference boundary conditions.
They are commonly used for modeling flows with injection/suction
of the fluid through porous walls. This approach ignores the prob-
lem of modeling the flow in the porous medium and effectively

assumes that it is known. However, real flows involve a multitude
of physically different permeable boundaries for which very differ-
ent boundary conditions may turn out to be suitable. At the same
time, it is known that a change in the boundary conditions at the
inflow and/or outflow boundaries can have a considerable effect on
the stability properties of the flow. This is so, for example, for a
simple swirling flow in a pipe of finite length.23 It is, therefore, nat-
ural to raise the same question for other simple flows. In the pre-
sent paper, we study the effect of changing the outflow boundary
conditions on the stability of the Couette flow with radial through-
flow between rotating permeable cylinders.

We focus on the following boundary conditions, different from
the reference conditions. At the inflow part of the boundary (the flow
inlet), which is either the inner or the outer cylinder, we specify all
components of the velocity. At the outflow part (the flow outlet), rep-
resented by the other cylinder, the viscous normal stress in the free
fluid is balanced by a given pressure and, in addition to that, either the
tangential stress or the tangential velocity is prescribed. Since the nor-
mal stress contains the pressure, these two sets of boundary conditions
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will be referred to as the pressure–stress and pressure-no-slip
conditions. Both sets of conditions arise in weak formulations of
the Navier–Stokes equations (see, e.g., Refs. 24 and 25). The rele-
vance of these boundary conditions to real flows will be discussed
in Sec. II B.

For both types of conditions at the outlet, the corresponding
boundary-value problems formally reduce to the same inviscid prob-
lem for the Euler equations in the limit of high radial Reynolds num-
bers (based on the radial velocity at the inner cylinder and its radius).
In the inviscid problem, the boundary conditions at the inlet remain
the same (as those in the viscous problem), while only the pressure is
prescribed at the outlet. This suggests that in both viscous problems,
an inviscid instability, similar to that studied earlier,10,12 is likely to
occur for sufficiently high radial Reynolds numbers.

In the case of the reference conditions, it had been shown10,12,13

that for sufficiently high radial Reynolds numbers, the basic steady
flow between rotating permeable cylinders becomes unstable to two-
dimensional (axially independent) azimuthal waves and that the
mechanism of the instability is inviscid. Studies of the three-
dimensional problem14,15 had shown that this instability becomes
dominant in a wide range of parameters of the problem and, in partic-
ular, at rather moderate values of the radial Reynolds number. Thus,
the two-dimensional problem has proved useful in studying the stabil-
ity of the Couette flow with radial throughflow. Since the dependence
of the inviscid instability on flow details at the outlet is weak,10,12 it is
natural to expect that two-dimensional inviscid instability will also
occur in the case of different boundary conditions at the outlet, so that
the two-dimensional stability problem remains relevant to the stability
of real Couette flows with radial throughflow. Given that the two
dimensional stability problem is computationally much easier and the
results are likely to be useful in the three-dimensional problem, we
restrict our study to the two-dimensional case. An example of solving
the three-dimensional inviscid stability problem that supports the
above argument will be presented in Sec. III.

For both types of viscous boundary conditions, we investigate the
linear stability of the Couette flow with radial throughflow. Numerical
calculations show that for high radial Reynolds numbers, the stability
properties of the viscous flows are well described by the inviscid the-
ory, while for small and moderate values of the radial Reynolds num-
ber, the stability properties for both types of the outlet boundary
conditions may be very different from what was found in Ref. 13 for
the reference problem. In particular, in the problem with the pressure-
no-slip conditions, it turns out that the corresponding Couette flow is
unstable at arbitrarily small radial Reynolds numbers. In this case, it is
possible to construct an asymptotic approximation of the linear stabil-
ity problem, which agrees with numerical results. An interesting by-
product of this asymptotic approximation is that a particular case of
the classical Couette flow (with purely azimuthal velocity), where one
cylinder is impermeable and rotating and the other one is permeable
and stationary, turns out to be unstable to two-dimensional perturba-
tions provided the normal stress condition (instead of the normal
velocity condition) at the permeable cylinder is imposed. This is strik-
ingly different from the classical Couette flow, which is stable to two-
dimensional perturbations. Another unexpected result, valid for both
types of boundary conditions, is that there are flow regimes where the
converging flows are unstable even if the azimuthal velocity at the inlet
is zero.

This paper is organized as follows: Sec. II contains a formulation
of the problem, including a discussion of the physical relevance of the
boundary conditions. Inviscid stability results are briefly described in
Sec. III. Results of numerical solution of the viscous stability problem
are presented in Sec. IV. Section V contains a discussion of the results.

II. FORMULATION OF THE PROBLEM

A. Governing equations

We consider two-dimensional (axially independent) viscous
incompressible flows in a gap between two concentric cylinders with
radii r1 and r2 (r2 > r1). The cylinders are permeable for the fluid, and
there is a constant volume flux 2pQ (per unit length along the com-
mon axis of the cylinders) of the fluid through the gap. We shall call
the flow diverging if the fluid is pumped into the gap at the inner cyl-
inder and taken out at the outer one and converging if the flow direc-
tion is reversed (i.e., the fluid enters the gap at the outer cylinder and
leaves it at the inner one). The quantity Q is positive for the diverging
flow and negative for the converging flow. For later use, we define the
parameter

b ¼
Q

jQj
;

so that b¼ 1 for the diverging flow and b ¼ �1 for the converging
flow.

Suppose that r1 is taken as a length scale, r21=jQj as a timescale,
jQj=r1 as a scale for the velocity, and qQ2=r21 for the pressure where q
is the fluid density. Then, the two-dimensional Navier–Stokes equa-
tions, written in non-dimensional variables, have the following form:

ut þ uur þ
v

r
uh �

v2

r
¼ �pr þ

1

R
r2u�

u

r2
�

2

r2
vh

� �

; (1)

vt þ uvr þ
v

r
vh þ

uv

r
¼ �

1

r
ph þ

1

R
r2v �

v

r2
þ

2

r2
uh

� �

; (2)

1

r
ruð Þr þ

1

r
vh ¼ 0; (3)

where ðr; hÞ are the polar coordinates, u and v are the radial and azi-
muthal components of the velocity, p is the pressure, R ¼ jQj=� is the
radial Reynolds number (� is the kinematic viscosity of the fluid), and
r2 is the polar form of the Laplace operator,

r2 ¼ @2
r þ

1

r
@r þ

1

r2
@2
h :

Both components of the velocity are prescribed at the inlet

u jr¼1 ¼ 1; vjr¼1 ¼ c1 (4)

for the diverging flow (b¼ 1) and

u jr¼a ¼ �
1

a
; vjr¼a ¼

c2
a

(5)

for the converging flow (b ¼ �1). Here, a ¼ r2=r1 and c1;2 are con-
stants (c1;2 are the ratios of the azimuthal velocity to the radial velocity
at the inner and outer cylinders, respectively).

If both components of the velocity were also prescribed at the
outlet, we would get the reference problem studied previously. Instead,
we consider two sets of alternative conditions at the outlet.
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(i) The pressure–stress conditions: for the diverging flows,
these are given by

�pþ
2

R
ur

� ��

�

�

�

r¼a

¼ �p0; (6)

1

R

1

r
uh þ vr �

1

r
v

� ��

�

�

�

r¼a

¼ s0; (7)

and, for the converging flows, by

�pþ
2

R
ur

� ��

�

�

�

r¼1

¼ �p0; (8)

1

R

1

r
uh þ vr �

1

r
v

� ��

�

�

�

r¼1

¼ s0; (9)

where p0 and s0 are constants. Here, p0 is the dimensionless
pressure at the outlet and, for the diverging flows, s0 is the
(dimensionless) external tangential force per unit area. For
the converging flow, the sign of s0 in Eq. (9) is chosen so as
to make this condition look similar to condition (7). This
means that ð�s0Þ [not s0 as in Eq. (7)] is the external tan-
gential force (per unit area).

(ii) The pressure-no-slip conditions are

�pþ
2

R
ur

� ��

�

�

�

r¼a

¼ �p0; vjr¼a ¼
c2
a

(10)

for the diverging flow and

�pþ
2

R
ur

� ��

�

�

�

r¼1

¼ �p0; vjr¼1 ¼ c1 (11)

for the converging flow.

B. On relevance of the pressure-no-slip

and pressure–stress conditions to real flows

1. The pressure-no-slip conditions

There are numerous papers on boundary conditions on an interface
between a free fluid and a porous medium (see, e.g., Refs. 26–28). There
seems to be a consensus that the normal velocity and the normal stress
must be continuous across the interface. As for the tangential velocity,
either the no-slip condition (with the tangential velocity in the porous
medium being zero) or the Beavers–Joseph or Saffman conditions26,27

are used. In what follows, we assume that the permeability of the porous
medium in the tangential direction is much smaller than its permeability
in the normal direction, so that the tangential velocity in the walls is very
small and can be ignored. As a result, we have the no-slip condition
for the free fluid velocity. There are still two more conditions on the
interface (for the normal velocity and the normal stress). If we want to
decouple the flow of the free fluid from the flow in the porous medium
and assume that the latter is known, one of these conditions should be
discarded in order to obtain a solvable problem for the Navier–Stokes
equations. The most common approach1,2,6–11,13,15 is to assume that the
normal velocity in the porous medium is known and discard the condi-
tion for the normal stress. The result will be the reference boundary con-
ditions. Sometimes, however, it is necessary to keep the condition for

normal stress because it is preferable to assume that the pressure (rather
than the normal velocity) in the porous medium is known or simply
because it would be too restrictive to prescribe the normal velocity.
Indeed, suppose that we study the stability of purely azimuthal flow
between rotating porous cylinders to initial perturbations that do not
change the boundary data. Then, if we use the reference boundary con-
ditions, the perturbation velocity will have to be zero at both cylinders
and we end up with the stability problem for the classical Couette flow
between rotating impermeable cylinders, so that the fact that the cylin-
ders are porous does not make any difference. However, if we prescribe
the normal stress instead of the normal velocity, there will be perturba-
tions with the nonzero normal velocity at the porous cylinders, and this
wider class of perturbations looks more reasonable physically.

Here is a concrete example of a flowwhere the pressure-no-slip con-
ditions may be appropriate. Consider a flow between rotating permeable
cylinders and suppose that the cylinder representing the outlet is a thin
highly permeable membrane, whose permeability is due to many, evenly
(or randomly) spaced holes, with a considerable fraction of the holes per
unit area of the membrane. If the thickness of the membrane is suffi-
ciently small (smaller than the averaged diameter of the holes), we can
ignore the pressure difference across the membrane and assume that the
pressure in the membrane on the free fluid–membrane interface is the
same as the given pressure on the other side of the membrane. The total
normal force applied to a fluid element on the interface must be zero
(otherwise it will experience infinite acceleration). As a result, we have the
boundary condition that the normal stress at the interface is given by the
known pressure on the other side of the membrane. Furthermore, since
the tangential permeability of the membrane is zero, the flow through
each hole can be assumed to be nearly radial, so that, at first approxima-
tion, the no-slip condition for the tangential velocity can be imposed.

The pressure–stress conditions are widely used in modeling open
flows where only a part of the flow is studied, and the domain of inter-
est is bounded, entirely or partially, by an artificial boundary.
Consider, for example, an open flow through a finite domain where
the velocity at the inlet (but not at the outlet) is known and the fluid
exits the domain of interest to a very large reservoir containing the
same fluid. If we ignore the pressure changes throughout the reservoir
and assume that it is almost constant, then it is natural to impose the
condition that the normal force acting on the fluid at the outlet is a
force due to the pressure outside. Of course, this is not the only possi-
ble condition and other conditions may be chosen [e.g., one can sim-
ply impose the pressure at the outlet (e.g., Ref. 21) or the condition
that the normal derivative of the normal velocity is zero (e.g., Refs. 24
and 29)]. The second boundary condition that is most widely used is
that the tangential force exerted on the fluid at the outlet is zero.
Although it is not the only possible choice of the second condition
(see, e.g., Ref. 24), this condition (or a similar, so-called “do-nothing”
condition) is employed in numerous works to model different flows
ranging from flows past an obstacle30,31 to blood flows in arteries.32,33

In the present paper, we focus on the case where the tangential stress
at the outlet is zero [i.e., s0 ¼ 0 in Eqs. (7) and (9)] because it is this
condition that often appears in the literature. The results below may
shed some light onto the upstream influence of this condition.

C. Basic flow

Steady rotationally symmetric flows whose stability we want to
examine are given by
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u ¼
b

r
; v ¼ VðrÞ ¼ A rbRþ1 þ

B

r
; (12)

where constants A and B are different for different boundary condi-
tions at the outlet. For both sets of boundary conditions, the pressure
is given by

p ¼ PðrÞ ¼ p0 �
2R�1

a2
�
1

2

1

r2
�

1

a2

� �

�

ð

a

r

V2ðsÞ

s
ds

for the diverging flow (b¼ 1) and

p ¼ PðrÞ ¼ p0 þ 2R�1 þ
1

2
1�

1

r2

� �

þ

ð

r

1

V2ðsÞ

s
ds

for the converging flow (b ¼ �1).

1. The pressure-stress conditions

Constants A and B are given by the following formulas:

A ¼
ðs0 þ 2c1a

�2R�1Þa�R

1þ 2R�1a�ð2þRÞ
; B ¼

c1 � s0a
�R

1þ 2R�1a�ð2þRÞ
(13)

for the diverging flow (b¼ 1) and

A ¼ �
s0 þ 2c2R

�1

1� 2R�1a2�R
; B ¼

c2 þ s0a
2�R

1� 2R�1a2�R
(14)

for the converging flow (b ¼ �1). Note that constants A and B, given
by Eq. (13), are well-defined for all R> 0, while Eq. (14) defines A and
B for all positive R except R¼ 2 (because the denominator in the

expressions for A and B vanishes). In the particular case of b ¼ �1
and R¼ 2, the solution is given by

u ¼ �
1

r
; v ¼ VðrÞ ¼ ~A

ln r

r
þ

~B

r
; (15)

where

~A ¼
2c2 þ s0

1þ 2 ln a
; ~B ¼

c2 � 2s0 ln a

1þ 2 ln a
:

The dependence of the steady flow (12)–(14) on R is non-trivial, and,
for R � 1, it has a boundary layer either at the outer cylinder (for the
diverging flow) or at the inner one (for the converging flow).

It can be shown that, for R � 1, the azimuthal velocity profile is
well approximated by the following asymptotic formula:

VðrÞ ¼
c1=r þ s0a e

�g þ OðR�1Þ for b ¼ 1;

c2=r � s0 e
�n þ OðR�1Þ for b ¼ �1;

(

(16)

where n ¼ Rðr � 1Þ and g ¼ Rð1� r=aÞ. Note that if s0 ¼ 0 (or if
s0�R�1 as R ! 1), the above asymptotic formula is different,

VðrÞ ¼
c1=r þ

2c1
a

e�g R�1 þ OðR�2Þ for b ¼ 1;

c2=r � 2c2 e
�n R�1 þ OðR�2Þ for b ¼ �1;

8

>

<

>

:

which means that we have a weaker boundary layer.
Typical velocity profiles V(r) for various R, as well as the corre-

sponding asymptotic profiles given by (16), are shown in Fig. 1.
Evidently, the asymptotic formula produces good approximations to
the exact profile even for R¼ 20.

FIG. 1. Typical velocity profiles for a¼ 4
and R ¼ 1:5; 8; 20. (a) corresponds to
the diverging flow (b¼ 1) with c1 ¼ 10
and s0 ¼ 1. (b) corresponds to the con-
verging flow (b ¼ �1) with c2 ¼ 10 and
s0 ¼ 1. Dotted curves represent the inviscid
velocity profiles. Dashed curves show V(r)
computed using the asymptotic formulas
(16) for R¼ 20.
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2. The pressure-no-slip conditions

In this case, the azimuthal velocity profile is the same as the one
considered in Ref. 13. Constants A and B can be written as

A ¼
c2 � c1

abRþ2 � 1
; B ¼

abRþ2c1 � c2
abRþ2 � 1

: (17)

The steady solution depends on c1, c2, and bR and is well defined for
all bR 6¼ �2. For bR ¼ �2, the solution is given by Eq. (15) with

~A ¼
c2 � c1
ln a

; ~B ¼ c1:

The asymptotic formula for R � 1 is

VðrÞ ¼
c1=r þ ððc2 � c1Þ=aÞe

�g þ OðR�1Þ if b ¼ 1;

c2=r � ðc2 � c1Þe
�n þ OðR�1Þ if b ¼ �1;

(

where the boundary layer variables n and g are the same as before:
n ¼ Rðr � 1Þ and g ¼ Rð1� r=aÞ.

Remark 1 (on the limit R ! 0). To consider the classical Couette
flow, we need to pass to the limit R ! 0. We cannot simply set R¼ 0
in Eqs. (12) and (17) because of the non-dimensionalization adopted
above (which is very convenient for flows with a nonzero radial flux,
but not for the classical Couette flow). Thus, we assume that c1 6¼ 0
and re-scale the dimensionless quantities in (1)–(11) as

t ! t=c1; v ! c1v; p ! c21p:

Note that this re-scaling is equivalent to a non-dimensionalization
with the azimuthal velocity of the basic flow at the inner cylinder,
V�
1 , as the characteristic scale for the velocity, r1 as the length scale,

r1=V
�
1 as the timescale, and qðV�

1 Þ
2 as the characteristic scale for

the pressure. As a result of this re-scaling, the radial Reynolds
number R in (1), (2), and (6)–(11) is replaced by the azimuthal
Reynolds number,

Re1 ¼ c1R ¼
V�
1 r1

�
: (18)

If c1 ¼ 0, a similar re-scaling can be done with c1 replaced by c2. This
results in the appearance of the second azimuthal Reynolds number,

Re2 ¼ c2R ¼
V�
2 r2

�
; (19)

where V�
2 is the azimuthal velocity in the basic flow at the outer cylin-

der. In both cases, we end up with the classical circular Couette flow
profile,

VðrÞ ¼ Ar þ B=r;

with appropriate constants A and B.
From now on, we study the stability of the above steady flows.

The corresponding problem for the reference boundary conditions has
been studied in detail in Ref. 13. In what follows, all facts concerning
the reference boundary conditions are taken from that paper.

D. Linear stability problem

Consider a small perturbation ð~u;~v; ~pÞ in the form of the normal
mode,

f~u;~v; ~pg ¼ Re fûðrÞ; v̂ðrÞ; p̂ðrÞgertþinh
� �

;

where n 2 Z. This leads to the following linearized equations:

K û �
b

r2
û �

2Vb

r
v̂ ¼ �@r p̂ þ

1

R
Lû �

û

r2
�
2in

r2
v̂

� �

;

K v̂ þ
b

r2
v̂ þ Xbû ¼ �

in

r
p̂ þ

1

R
Lv̂ �

v̂

r2
þ
2in

r2
û

� �

;

@r rûð Þ þ in v̂ ¼ 0:

(20)

In Eq. (20), Vb with b ¼ 61 is the azimuthal velocity for the diverging
(b¼ 1) and converging (b ¼ �1) flows, XbðrÞ ¼ V 0

bðrÞ þ VbðrÞ=r,
and

K ¼ rþ
inVb

r
þ
b

r

d

dr
; L ¼

d2

dr2
þ
1

r

d

dr
�
n2

r2
:

At the inlet, the boundary conditions for Eq. (20) are

ûð1Þ ¼ 0; v̂ð1Þ ¼ 0 (21)

for b¼ 1 and

ûðaÞ ¼ 0; v̂ðaÞ ¼ 0 (22)

for b ¼ �1. At the outlet, the boundary conditions are either the
pressure-stress conditions [that follow from Eqs. (6)–(9)],

p̂ðaÞ ¼
2

R
û0ðaÞ;

in

a
ûðaÞ þ v̂ 0ðaÞ �

1

a
v̂ðaÞ ¼ 0 (23)

for b¼ 1 and

p̂ð1Þ ¼
2

R
û0ð1Þ; in ûð1Þ þ v̂ 0ð1Þ � v̂ð1Þ ¼ 0 (24)

for b ¼ �1, or the pressure-no-slip conditions

p̂ðaÞ ¼
2

R
û0ðaÞ; v̂ðaÞ ¼ 0 (25)

for b¼ 1 and

p̂ð1Þ ¼
2

R
û0ð1Þ; v̂ð1Þ ¼ 0 (26)

for b ¼ �1.
It can be shown that if we restrict our analysis to axisymmetric

perturbations, then the basic steady flow (12) is asymptotically stable
not only to small perturbations but also to perturbations of arbitrary
amplitude. For the sake of completeness, the proof of this fact is given
in Appendix A. In particular, it implies that the mode with n¼ 0 can-
not be unstable for any value of the Reynolds number. Thus, we shall
consider only the modes with n 6¼ 0.

In terms of stream function ŵðrÞ, such that û ¼ in
r
ŵðrÞ and

v̂ ¼ �ŵ
0
ðrÞ, the first two equations (20) are replaced by the vorticity

equation,

rþ
inVb

r
þ
b

r
@r

� �

Lŵ �
in

r
X

0
bðrÞŵ ¼ R�1L2ŵ: (27)

The inlet boundary conditions become

ŵð1Þ ¼ 0; ŵ
0
ð1Þ ¼ 0 for b ¼ 1; (28)
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ŵðaÞ ¼ 0; ŵ
0
ðaÞ ¼ 0 for b ¼ �1: (29)

To find the pressure, we employ the second equation (20). As a result,
we have

p̂ ¼
ir

nR
Lŵr �

ŵr

r2
þ
2n2

r3
ŵ

� �

�
ir

n
rþ

inVb

r
þ
b

r
@r

� �

ŵrþ
b

r2
ŵr �

in

r
Xb ŵ

� �

: (30)

Thus, the normal stress conditions at the outlet [the first equations in
(23)–(26)] can be written as

1

R
Lŵr �

1þ 2n2

r2
ŵr þ

4n2

r3
ŵ

� �

� rþ
inV1

r
þ
1

r
@r

� �

ŵr

"

�
1

r2
ŵr þ

in

r
X1 ŵ

��

�

�

�

r¼a

¼ 0 (31)

for b¼ 1 and

1

R
Lŵr �

1þ 2n2

r2
ŵr þ

4n2

r3
ŵ

� �

� rþ
inV�1

r
�
1

r
@r

� �

ŵr

"

þ
1

r2
ŵr þ

in

r
X�1 ŵ

#

�

�

�

�

r¼1

¼ 0 (32)

for b ¼ �1. The tangent stress conditions at the outlet [the second
equations in (23) and (24)] take the following form:

ŵ
00
ðaÞ �

1

a
ŵ

0
ðaÞ þ

n2

a2
ŵðaÞ ¼ 0 for b ¼ 1; (33)

ŵ
00
ð1Þ � ŵ

0
ð1Þ þ n2ŵð1Þ ¼ 0 for b ¼ �1: (34)

The no-slip conditions at the outlet [given by the second equations in
(25) and (26)] become

ŵ
0
ðaÞ ¼ 0 for b ¼ 1; ŵ

0
ð1Þ ¼ 0 for b ¼ �1: (35)

Note that, in view of (35), conditions (31) and (32) simplify to

1

R
ŵrrr þ

1

r
ŵrr þ

4n2

r3
ŵ

� �

�
1

r
ŵrr þ

in

r
X1 ŵ

� �

�

�

�

�

r¼a

¼ 0 (36)

for b¼ 1 and

1

R
ŵrrr þ

1

r
ŵrr þ

4n2

r3
ŵ

� �

þ
1

r
ŵrr þ

in

r
X�1 ŵ

� �

�

�

�

�

r¼1

¼ 0 (37)

for b ¼ �1.
Simply by looking at Eqs. (12)–(17) and (27)–(35), one can deduce

the following. First, for a given b, an eigenvalue is a function of five
parameters: r ¼ rða; n; c1; c2;RÞ in the case of the pressure-no-slip
conditions; r ¼ rða; n; ca; s0;RÞ, with a¼ 1 for b¼ 1 and a¼ 2 for
b ¼ �1, in the case of the pressure-stress conditions. Second, if
rða; n; c1; c2;RÞ [or rða; n; ca; s0;RÞ] is an eigenvalue, then so are
�rða;�n; c1; c2;RÞ [or �rða;�n; ca; s0;RÞ] and rða;�n;�c1;�c2;RÞ
[or rða;�n;�ca;�s0;RÞ]. Here, �r is the complex conjugate of r.
These properties imply that it suffices to consider only positive n and,
also, a certain symmetry of the neutral curves (which will be used later).

For R � 1, an asymptotic theory of the eigenvalue problems
with the pressure–stress or pressure-no-slip conditions can be devel-
oped along the same lines as in Ref. 13. In particular, it can be shown
that both problems reduce to an inviscid spectral problem, which will
be briefly discussed in Sec. III. We note in passing that this is a non-
trivial property because of the following two facts: (i) the basic viscous
flow depends on the Reynolds number R and (ii) a single inviscid
steady flow represents a vanishing viscosity limit for continuous fami-
lies of viscous steady flows [given by Eqs. (12)–(17)].

III. INVISCID STABILITY PROBLEM

In the inviscid limit (R ! 1), Eq. (27) simplifies to

rþ
inca
r2

þ
b

r
@r

� �

Lŵ ¼ 0; (38)

where a ¼ 1 if b¼ 1 and a ¼ 2 if b ¼ �1. Boundary conditions at
the inlet remain the same,

ŵð1Þ ¼ 0; ŵ
0
ð1Þ ¼ 0 (39)

for the diverging flow (b¼ 1) and

ŵðaÞ ¼ 0; ŵ
0
ðaÞ ¼ 0 (40)

for the converging flow (b ¼ �1).
At the outlet, the normal stress conditions (31) and (32) reduce to

rþ
inc1
r2

þ
1

r
@r

� �

ŵ
0
ðrÞ þ

1

r2
ŵ

0
ðrÞ

� ��

�

�

�

r¼a

¼ 0 (41)

for b¼ 1 and

rþ
inc2
r2

�
1

r
@r

� �

ŵ
0
ðrÞ �

1

r2
ŵ

0
ðrÞ

� ��

�

�

�

r¼1

¼ 0 (42)

for b ¼ �1, and the tangent stress conditions (33) and (34) and the
no-slip conditions (35) must be discarded (as irrelevant for the inviscid
fluid). Conditions (41) and (42) imply that the perturbation pressure
p̂ðrÞ must be zero at the outlet. Thus, we shall call them the pressure
conditions.

Equations (38)–(42) represent eigenvalue problems for r arising
in the stability analysis of the steady inviscid diverging and converging
inviscid flows, given by

u ¼
b

r
; v ¼

ca
r
: (43)

In these problems, we can analytically derive dispersion relations
for r.

A. Diverging flow (b¼ 1)

For b¼ 1, eigenvalues r satisfy the dispersion relation
Dðr; n; a; c1Þ ¼ 0 with

D � a2rþ inc1 þ n
	 


an�3 I1

þ a2rþ inc1 � n
	 


a�ðnþ3Þ I2 þ
2

a
e�g1ðaÞ; (44)

where g1ðrÞ ¼ rr2=2þ inc1 ln r and
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I1 ¼

ð

a

1

r�nþ1 e�g1ðrÞ dr; I2 ¼

ð

a

1

rnþ1 e�g1ðrÞ dr: (45)

Evidently, the dispersion relation has the following properties:

Dðr; n; a; c1Þ ¼ Dð�r;�n; a; c1Þ;

Dðr;�n; a;�c1Þ ¼ Dðr; n; a; c1Þ:

(Here “bar” denotes complex conjugation.) These properties imply
that we need to consider only positive n and c1.

Numerical evaluation of the dispersion relation shows that there
are no eigenvalues with positive real parts if c1 ¼ 0. If c1 increases
from 0, the roots of Eq. (44) move on the complex plane and, at some
critical value, c1 ¼ c1cr , one of the eigenvalues crosses the imaginary
axis, so that for c1 > c1cr , there is an eigenvalue with a positive real
part, and hence, the flow is unstable.

Numerical calculations produced the stability diagram presented
in Fig. 2. It shows neutral curves on the ða; c1Þ plane for normal
modes with n ¼ 1;…; 6. The instability region for each mode is above
the corresponding curve. Solid curves correspond to the pressure con-
dition (41), and dashed curves correspond to the normal velocity con-
dition (which sets the normal velocity perturbation at the outlet to
zero). For all curves in Fig. 2, ImðrÞ 6¼ 0, i.e., the instability is oscilla-
tory, and neutral modes are periodic traveling azimuthal waves.

Although the neutral curves in both problems look qualitatively
similar, there are two interesting differences, namely,

(i) For each azimuthal mode, the curve for the pressure condi-
tion is below the one corresponding to the normal velocity
condition, which means that the same flow is more unstable
if the pressure condition is used, and the gap between each
pair of curves corresponding to the same n is larger for
smaller a.

(ii) For the normal velocity condition, the critical value of c1 is
a monotonically decreasing function of a, for all azimuthal

modes. However, in the case of the pressure condition, the
neutral curves for modes with higher azimuthal wave num-
bers (for n ¼ 3;…; 6) have a local minimum, and the mini-
mum is attained at smaller values of a for higher n.

It should be mentioned here that, motivated by an application to
a flow in a radial vaneless diffusor, the stability of the diverging flow
[given by Eq. (43) with b¼ 1] has been recently studied in Ref. 22.
Although the paper contains several typos/errors (most notably, in the
dispersion relation), the neutral curves presented there seem to agree
with the curves in Fig. 2.

Remark 2 (on the limit of weak radial flow). It can be shown that,
in the limit c1 ! 1,

r ¼ �inc1 þ c
1=2
1 kþ Oðc

�1=2
1 Þ

� �

;

where k is a root of the equation

ð

1

0

e�kxþinx2 dx ¼ 0:

The corresponding eigenfunction is given by

/̂ðrÞ ¼ FðnÞ �
Fð0Þrn

1þ a2n
1þ a2n=r2n
	 


� �

;

where

FðnÞ ¼

ð

1

n

ðx � nÞe�kxþinx2 dx; n ¼ c
1=2
1 ðr � 1Þ:

The derivation of this approximation simply repeats the arguments
laid down in Ref. 12 (see also Ref. 10) for the case of the normal veloc-
ity conditions.

It turns out that the leading-order approximations to r are the
same for both the pressure condition and the normal velocity condi-
tion. This suggests that, for c1 � 1, the instability has the same mech-
anism in both problems. This, however, does not mean that the
change in the boundary condition at the outlet has little effect at all
values of c1. Indeed, the neutral curves are notably different in these
two problems, as one can see in Fig. 2.

B. Converging flow (b521)

The dispersion relation for the converging flow is given by

~Dðr;n;a; c2Þ � rþ inc2 � nð Þ~I 1 þ rþ inc2 þ nð Þ~I 2 þ 2 eg2ð1Þ ¼ 0;

(46)

where g2ðrÞ ¼ rr2=2þ inc2 ln r and

~I 1 ¼

ð

a

1

r�nþ1 eg2ðrÞ dr; ~I 2 ¼

ð

a

1

rnþ1 eg2ðrÞ dr: (47)

Evidently, it has the same properties as those for the diverging flow,

~Dðr; n; a; c2Þ ¼ ~Dð�r;�n; a; c2Þ;

~Dðr;�n; a;�c2Þ ¼ ~Dðr; n; a; c2Þ:

FIG. 2. Diverging flow: solid curves represent neutral curves for azimuthal modes
with n ¼ 1;…; 6; dashed curves show neutral curves for the normal velocity condi-
tion, taken from Ref. 12.
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Again, these imply that we need to consider only positive n and c2.
The neutral curves on the ða; c2Þ plane for modes with

n ¼ 1;…; 6 are shown in Fig. 3. The instability region for each mode
is above the corresponding curve. As before, the solid curves represent
neutral curves for the pressure condition, and the dashed curves are
curves for the normal velocity condition.12 Qualitatively, the only dif-
ference between Figs. 2 and 3 is that every neutral curve in the latter
has a local minimum. Conclusions (i) and (ii) and the remark on the
limit of weak radial flow made for the diverging flows are also true for
the converging flows.

Remark 3 (on three-dimensional perturbations). To further justify
our hypothesis that the two-dimensional theory may describe observ-
able phenomena in this problem, consider the stability of the diverging
inviscid flows to three-dimensional perturbations. In the 3D case, a
small perturbation is assumed to have the form f~u;~v; ~w; ~pg
¼ Re½fûðrÞ; v̂ðrÞ; ŵðrÞ; p̂ðrÞgertþinhþikz�, where ~w is the axial compo-
nent of the perturbation velocity, and k> 0 is the axial wave number.
This leads to the following dispersion relation for r:
Dðr; n; k; a; c1Þ ¼ 0, where

D ¼ k arþ
inc1
a

� �

J1 þ k2J2 þ a e�g1ðaÞ;

J1 ¼

ð

a

1

I0nðksÞKnðkaÞ � InðkaÞK
0
nðksÞ

� �

e�g1ðsÞs2 ds;

J2 ¼

ð

a

1

I0nðksÞK
0
nðkaÞ � I0nðkaÞK

0
nðksÞ

� �

e�g1ðsÞs2 ds:

(48)

Here, InðzÞ and KnðzÞ are the modified Bessel functions of the first
and second kind. It can be shown that in the limit k ! 0, it reduces to
the two-dimensional dispersion relation, given by (44) and (45).

Critical values of c1 vs the axial wave number k for a¼ 2 are
shown in Fig. 4 (solid curves). The dashed curves represent neutral
curves for the normal velocity condition.14 Figure shows that for all

azimuthal modes, the minimum critical value of c1 is attained at k¼ 0,
i.e., for two-dimensional modes. Note that this is not so in the case of
normal velocity conditions where, for lower modes (n¼ 1, 2), the min-
imum is attained at a finite value of k. Nevertheless, the most unstable
perturbation (minimized over all n) is two-dimensional in both cases.

It is also clearly seen that for k of order unity and smaller, the
pressure condition has destabilizing effect (in comparison with the
normal velocity condition). For large k (short axial waves), the neutral
curves for both conditions almost coincide. This is consistent with an
earlier asymptotic result14 that for k � 1, the eigenfunctions are con-
centrated near the inlet (r¼ 1) and do not depend on the boundary
condition at the outlet (r¼ a).

We have not computed neutral curves for other values of a and
for the converging flows. However, the general patterns of what we
can see here and what was observed earlier14 for the normal velocity
condition look very similar, so that it is reasonable to expect that for
converging flows as well as for other values of a, the two-dimensional
modes will remain to be the most unstable ones.

In Sec. IV, we shall describe the results of solving the viscous sta-
bility problem numerically.

IV. VISCOUS STABILITY RESULTS

A. Numerical method

The eigenvalue problems with the pressure-stress and pressure-
no-slip conditions are solved numerically using the Galerkin method
with polynomial basis functions based on Legendre polynomials. For
the problem with the pressure-stress conditions, the basis functions
are chosen to satisfy the boundary conditions at the inlet, given by Eq.
(28) or (29), and at the outlet by (33) or (34). Thus, ŵ is approximated
by

ŵðrÞ ¼
X

N

k¼0

ck/kðxÞ; x ¼ �1þ
2

a� 1
ðr � 1Þ;

with basis functions /kðxÞ, given by

FIG. 3. Converging flow: solid curves represent neutral curves for azimuthal modes
with n ¼ 1;…; 6; dashed curves show the results for the normal velocity condi-
tions, obtained from Ref. 12.

FIG. 4. Neutral curves for three-dimensional modes for the diverging flow with
a¼ 2 and n ¼ 1;…; 6; dashed curves show the results for the normal velocity
conditions.14
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/kðxÞ ¼
ð1þ xÞ2ðx þ kkÞPkðxÞ for b ¼ 1;

ð1� xÞ2ðx þ kkÞPkðxÞ for b ¼ �1;

(

for k ¼ 0;…;N , where PkðxÞ is the Legendre polynomial of degree k
and kk is a constant chosen so as to satisfy (33) or (34) [note that con-
ditions (28) or (29) are automatically satisfied]. The normal stress con-
dition, given by Eq. (31) or (32), is satisfied using the s-method (see,
e.g., Ref. 34).

In the case of the pressure-no-slip conditions, the s-method
yields spurious eigenvalues because conditions (36) and (37) do not
contain the spectral parameter r. However, the same fact makes it pos-
sible to construct basis functions that satisfy all the boundary condi-
tions. These basis functions have the following form:

/kðxÞ ¼
ð1þ xÞ2ðx2 þ kkx þ dkÞPkðxÞ for b ¼ 1;

ð1� xÞ2ðx2 þ kkx þ dkÞPkðxÞ for b ¼ �1;

(

where constants kk and dk are chosen to satisfy the conditions given
by the first Eqs. (35) and (36) if b¼ 1 and the second Eqs. (35) and
(37) if b ¼ �1.

To verify the method, some of the computed eigenvalues were
compared with eigenvalues obtained using the shooting method. Table
I displays the difference between eigenvalues computed using the
Galerkin method and the shooting method for the diverging flows for
a¼ 2, n¼ 1, c1 ¼ 10; s0 ¼ 0 for the pressure-stress conditions, and
c2 ¼ 0 for the pressure-no-slip conditions and for several values of the
radial Reynolds number. The number of basis functions in the
Galerkin method was N¼ 100. The table shows that the difference is
very small for both types of boundary conditions. Further verification
was provided by checking the consistency of the results for high radial
Reynolds numbers with the inviscid theory of Sec. III. Figure 5 shows
how neutral curves for the diverging flow with the pressure-no-slip
conditions approach the critical values of c1 (computed using the
inviscid theory) in the limit R ! 1. In Fig. 5, solid lines represent
neutral curves for a¼ 2, c2 ¼ 0, and n ¼ 1;…; 5, and the vertical
dashed lines correspond to critical values of c1 from the inviscid the-
ory. Evidently, each neutral curves approach the relevant inviscid limit
as R ! 1, which shows that the numerical method produces results
consistent with the inviscid theory of Sec. III.

In most calculations, the number of basis functions was in the
range from N¼ 100 to N¼ 200. To check the convergence of the
numerical algorithm, we performed a few calculations with a double
number of basis functions for each curve shown in Figs. 7–17 and
increased N whenever the results showed the dependence on N. To
demonstrate that N¼ 100 is enough to capture the boundary layer
behavior of eigenfunctions at least for R � 1000, we plotted real and
imaginary parts of v̂ðrÞ ¼ �ŵ

0
ðrÞ for neutral modes for the diverging

and converging flows with the pressure-no-slip boundary conditions

in Fig. 6. In Fig. 6, panel (a) shows real (solid curves) and imaginary
(dashed curves) parts of v̂ðrÞ for the diverging flow with a¼ 2, n¼ 3,
c1 ¼ 3:414; c2 ¼ 0, R¼ 1002.8, and r ¼ �1:6496i; panel (b) is a
magnified part of (a) near r¼ 2; panel (c) shows real (solid curves)
and imaginary (dashed curves) parts of v̂ðrÞ for the converging flow
with a¼ 2, n¼ 1, c1 ¼ 0; c2 ¼ 3, R¼ 1002.9, and r ¼ �0:413 08i;
and panel (d) is a magnified part of (c) near r¼ 1. Evidently, the eigen-
functions display boundary layer behavior at the outlet, as expected,
and the spatial resolution of the numerical method is sufficient to
accurately reproduce boundary layers. Note also that thickness of the
boundary layer for the diverging flow [panel (b)] looks twice larger
than that for the converging flows [panel (d)]. This is consistent with
the fact that the boundary layer thickness for the diverging flow is
Oða=RÞ, compared with Oð1=RÞ for the converging flow, as follows
from the definition of the boundary layer variables g and n in Sec. IIIA.

B. Problemwith the pressure–stress conditions

1. Diverging flow

Figures 7 and 8 show neutral curves on the ðc1;RÞ plane for
a¼ 2 and a¼ 8, respectively. The solid curves correspond to the pres-
sure–stress conditions with s0 ¼ 0. The dashed curves are neutral
curves for the reference boundary conditions with c2 ¼ 0, obtained in
Ref. 13. All curves in Figs. 7 and 8 approach vertical asymptotes as c1
tends to c�1ða; nÞ from the right, where c�1ða; nÞ is the critical value of
c1 for the inviscid mode with azimuthal number n. Numbers c�1ða; nÞ
can be determined from the inviscid diagram shown in Fig. 2.

We note in passing that, in view of the symmetry properties of
the eigenvalue problem, critical curves for negative c1 can be obtained
by reflecting the curves in Figs. 7 and 8 about the vertical axis.

TABLE I. The difference between the eigenvalues with the largest real part computed using the Galerkin method (rG) and the shooting method (rS): the diverging flow for
a¼ 2, n¼ 1, and c1 ¼ 10 with s0 ¼ 0 for the pressure-stress conditions and c2 ¼ 0 for the pressure-no-slip conditions.

Pressure-stress conditions Pressure-no-slip conditions

R 40 100 500 40 100 500

jrG � rSj 3:3352� 10�9 1:2040� 10�9 5:1103� 10�10 1:4622� 10�7 8:2404� 10�8 1:4389� 10�7

FIG. 5. Neutral curves for R � 1 for the diverging flow with the pressure-no-slip
conditions (solid curves): a¼ 2, c2 ¼ 0, and n ¼ 1;…; 5. The dashed lines corre-
spond to critical values of c1 in the inviscid theory.
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Figure 7 shows that the critical curves for a¼ 2 are below the cor-
responding curves for the problem with the reference boundary condi-
tions, and the gap between the curves with the same azimuthal wave
number n is larger for smaller n and decreases when n increases. The
same is true for the critical curves for a¼ 8, but the effect is much
weaker: one can see in Fig. 8 that the gap between the curves with
n¼ 1 is much smaller than the corresponding gap for a¼ 2, and it
becomes invisible for modes with n>1. We can conclude that the

pressure-stress boundary conditions make the flow more unstable,
and this effect is stronger for smaller a. The latter is not surprising, as
it is natural to expect that for wider annuli the effect of the boundary
conditions at the outlet is weaker. Nevertheless, it is a useful observa-
tion: It implies that the upstream influence of the pressure-stress con-
ditions becomes much weaker for larger gaps, which justifies using
these conditions on artificial boundaries sufficiently distant from a
region of interest.

FIG. 6. Eigenfunctions v̂ðrÞ ¼ �ŵ
0
ðrÞ

for neutral modes with pressure-no-slip
conditions (solid curves—Re v̂ , dashed
curves—Im v̂ ). (a) and (b) Diverging flow
for a¼ 2, n¼ 3, c1 ¼ 3:414; c2 ¼ 0,
and R¼ 1002.8; (b) shows a magnified
part of (a) near r¼ a. (c) and (d)
Converging flow for a¼ 2, n¼ 1,
c1 ¼ 0; c2 ¼ 3, and R¼ 1002.9; (d) is a
magnified part of (c) near r¼ 1.

FIG. 7. Diverging flow with the pressure-stress conditions: critical R vs c1 for a¼ 2
and n ¼ 1;…; 5. Solid curves correspond to the pressure-stress conditions with
s0 ¼ 0, and dashed curves correspond to the reference conditions with c2 ¼ 0.

FIG. 8. Diverging flow with the pressure-stress conditions: critical R vs c1 for a¼ 8
and n ¼ 1;…; 5. Solid curves correspond to the pressure-stress boundary condi-
tions with s0 ¼ 0, and dashed curves correspond to the reference conditions with
c2 ¼ 0.
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2. Converging flow

Figures 9 and 10 show critical curves on the ðc2;RÞ plane for
the converging flow (b ¼ �1) for a¼ 2 and a¼ 8. The solid curves
correspond to the pressure–stress conditions with s0 ¼ 0, and the
dashed curves—to the reference boundary conditions with c1 ¼ 0.
Everything that has been said about the diverging flows can also be
said about the neutral curves for the converging flows. The only dif-
ference is that the critical curves for the converging flows are above
the corresponding curves for the diverging flows, i.e., the former is
more stable than the latter, but we still have the result that the flows
with the pressure–stress conditions are more unstable than those
with the reference conditions.

C. Problemwith the pressure-no-slip conditions

1. Diverging flow

Figures 11(a) and 12(a) display the critical curves for the pressure-
no-slip conditions (solid curves), as well as the curves for the reference
conditions (dashed curves), for a¼ 2 and a¼ 8. Figures 11(b) and 12(b)
show the same curves for small R in more detail. Evidently, as c1 ! 1,
the neutral curves monotonically approach the horizontal line R¼ 0,
which suggests that in the limit c1 ! 1 (equivalently, in the limit of a
weak radial flow), the basic flow is unstable for all R> 0. This behavior
is very different from both the case of the pressure–stress conditions
and the case of the reference conditions, for which the critical Reynolds
number grows linearly with c1 for c1 � 1.

FIG. 9. Converging flow with the pressure-stress conditions: critical R vs c2 for
a¼ 2 and n ¼ 1;…; 5. Solid curves correspond to the pressure-stress conditions
with s0 ¼ 0, and dashed curves correspond to the reference boundary conditions
with c1 ¼ 0.

FIG. 10. Converging flow with the pressure-stress conditions: critical R vs c2 for
a¼ 8 and n ¼ 1;…; 5. Solid curves correspond to the pressure-stress boundary
conditions with s0 ¼ 0; dashed curves correspond to the reference boundary condi-
tions with c1 ¼ 0.

FIG. 11. Diverging flow with the pressure-no-slip conditions: critical R vs c1 for
a¼ 2, c2 ¼ 0, and n ¼ 1;…; 5: (a) solid curves correspond to the pressure-no-
slip conditions and dashed curves correspond to the reference boundary conditions;
(b) shows a magnified lower part of (a).

FIG. 12. Diverging flow with the pressure-no-slip conditions: critical R vs c1 for
a¼ 8, c2 ¼ 0, and n ¼ 1;…; 5: (a) solid curves correspond to the pressure-no-
slip conditions and dashed curves correspond to the reference boundary conditions;
(b) shows a magnified lower part of (a).
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The critical curves for a¼ 2, n¼ 1 and several values of c2 are
shown in Fig. 13. While the curve for c2 ¼ 0 is symmetric relative to
the vertical axis, the curves for c2 6¼ 0 are not symmetric. However,
due to the symmetries of the eigenvalue problem mentioned earlier,
the critical curves for the same a and n and for c2 ¼ 0; 20; 40; 60 can
be obtained by reflecting the curves in Fig. 13 about the vertical axis
c1 ¼ 0. Note that, for sufficiently large jc1j, the critical curves for all
values of c2 approach the axis R¼ 0. Thus, this effect appears to be
independent of c2. Note also that the dependence of the critical curves
on c2 (i.e., on what is happening at the outlet) is relatively weak.

It turns out that it is possible to construct an asymptotic approxi-
mation of the eigenvalue problem for large c1. This is done in
Appendix B, where it is shown that, in the leading order, the critical
values of R are given by

Rcr ¼
Re1crða; nÞ

c1
þ O c�2

1

	 


; (49)

where Re1crða; nÞ is a certain critical value of the azimuthal Reynolds
number, Re1, defined by Eq. (18). The leading-order approximations
computed using Eq. (49), as well as the critical curves obtained by solv-
ing the original eigenvalue problem, are shown as dashed and solid
curves, respectively, in Fig. 14. One can see that the dashed curves
approach the solid curves as c1 increases, which indicates that the
asymptotic formula (49), obtained in Appendix B, works. Note also
that Re1cr depends only on a and n and does not depend on c2, i.e., on
the azimuthal velocity at the outlet (of course, higher-order approxi-
mations will depend on c2). This means that, in the leading order, the
asymptotic behavior of the critical curves for c2 6¼ 0 is the same as

FIG. 13. Diverging flow with the pressure-no-slip conditions: critical R vs c1 for
a¼ 2, n¼ 1, and c2 ¼ 0;�20;�40;�60.

FIG. 14. Diverging flow with the pressure-no-slip conditions: critical R vs c1 for
large c1 for a¼ 2 (upper plot) and a¼ 8 (lower plot). Dashed curves show the
leading-order asymptotic values of Rcr for c1 � 1.

FIG. 15. Converging flow with the pressure-no-slip conditions: critical R vs c2 for
a¼ 2 and c1 ¼ 0.

FIG. 16. Converging flow with the pressure-no-slip conditions: critical R vs c2 for
c2 � 1 for a¼ 2, c1 ¼ 0, and n ¼ 4;…; 9 (solid curves). Dashed curves show
the leading-order asymptotic values of Rcr for c2 � 1.
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that for c2 ¼ 0. This explains our earlier observation that the critical
curves for all values of c2 approach the axis R¼ 0 as c1 ! 1.

The fact that the flow becomes unstable at an arbitrarily small
radial Reynolds number provided that jc1j is sufficiently large is quite
unexpected because (in contrast with the case of the pressure–stress
conditions) the basic flow is exactly the same as the one studied in Ref.
13. The only difference is that here the normal velocity condition at
the outlet is replaced by the normal stress condition. Thus, we can
conclude that the normal stress condition drastically destabilizes the
same viscous flow. Note also that Figs. 11(a) and 12(a) show that the
destabilizing effect does not weaken if a is increased and remains as
strong for a¼ 8 as it is for a¼ 2. This is very different from the pres-
sure–stress conditions, where the destabilizing effect becomes much
weaker for a¼ 8.

The asymptotic analysis of Appendix B has an interesting
by-product, namely, it turns out that the Couette flow between rotat-
ing cylinders (with a rotating impermeable inner cylinder and a
non-rotating permeable outer cylinder) is linearly unstable to two
dimensional perturbations provided that the pressure-no-slip condi-
tions are imposed at the outer cylinder. This is in contrast with the
well-known fact that the classical Couette flow (with the normal
velocity condition at the outer cylinder) is stable to two-dimensional
perturbations.

2. Converging flow

Figure 15 shows neutral curves for the converging flows with the
pressure-no-slip conditions for c1 ¼ 0 and a¼ 2. The curves in the
top half of the picture for n ¼ 1;…; 5 are very similar to the neutral
curves in the reference problem. These curves are associated with the
inviscid instability described in Sec. III. They approach the vertical
asymptotes c2 ¼ c�2ða; nÞ, where c�2ða; nÞ is the inviscid instability
boundary on the ða; c2Þ plane, shown in Fig. 3. For each azimuthal
mode with n ¼ 4;…; 7, there are another two disjoint regions where
the corresponding modes are unstable. This is also true for the mode
with n¼ 3 but only one of the two regions is visible, as the other is

outside the range of c2 in Fig. 15. For higher n, these two regions
merge into a single one (e.g., the curves for n¼ 8 and 9).

The instability regions that are in the right half of the figure, but
not too close to the horizontal axis R¼ 0 are qualitatively similar to those
discussed in Ref. 13 and associated with the instability of the boundary
layer at the outlet (which reduces to the instability of the asymptotic suc-
tion profile for R � 1). The instability regions that lie near the horizon-
tal axis represent a new instability. Figure 16 shows that the lower
boundary of these approaches is R¼ 0 as c2 ! 1. Asymptotic behavior
of these curves for c2 � 1 can be analyzed in exactly the same manner
as it was done for the diverging flows. It is shown in Appendix B that, in
leading order, the critical values of R are given by

Rcr ¼
Re2crða; nÞ

c2
þ O c�2

2

	 


; (50)

where Re2crða; nÞ is a critical value of the second azimuthal Reynolds
number, Re2, defined by Eq. (19). The leading-order approximations
given by Eq. (50) and the critical curves obtained by solving the origi-
nal eigenvalue problem are shown as dashed and solid curves, respec-
tively, in Fig. 16. Evidently, the dashed curves approach the solid
curves as c2 increases, confirming that the asymptotic formula (50) is
correct. Again, a by-product of the asymptotic analysis is that the clas-
sical Couette flow with a rotating impermeable outer cylinder and a
non-rotating permeable inner cylinder is unstable to two-dimensional
perturbations if the pressure-no-slip conditions are imposed at the
inner cylinder. This is even more surprising than the analogous result
for the diverging flow because it is well known that the classical
Couette flow is stable even to three-dimensional perturbations when
the inner cylinder is not rotating (see, e.g., Refs. 35 and 36).

Figure 17 shows critical curves for a¼ 2, n¼ 1 and c1 ¼ 0, �10,
�20, and �30. Critical curves for the same a and n and for c1 ¼ 0, 10,
20, and 30 can be obtained by reflecting the curves in Fig. 17 about the
vertical axis c2 ¼ 0. For very high R (R ! 1), all critical curves
approach the same vertical asymptotes as before for all values of c1. It is
interesting to note that the curves for c1 ¼ �10, �20, and �30 cross
the vertical axis c2 ¼ 0. For sufficiently large jc1j, there is a finite inter-
val in R where the flow is unstable even for c2 ¼ 0. For c1 ¼ 610, the
flow is unstable if R 2 ð10:38; 14:904Þ; for c1 ¼ 620, if
R 2 ð3:693; 81:635Þ; for c1 ¼ 630, if R 2 ð2:588; 182:578Þ. Such
behavior of neutral curves means that the basic flow may be unstable
even if the azimuthal velocity at the inlet is zero, which is in contrast
with the case of the reference condition where it had not been observed.
We note in passing that a similar result is also valid in the case of the
pressure-stress conditions for basic flows with nonzero s0.

V. DISCUSSION

The results presented above describe the possible effects of
boundary conditions on permeable boundaries on the stability of vis-
cous incompressible flows, driven by these boundary conditions. We
have compared the stability properties of three families of steady flows
between permeable cylinders, which satisfy the same boundary condi-
tions at the inlet, but different conditions at the outlet, taking the
boundary conditions that prescribe the full velocity vector on both cyl-
inders as a reference point. For the other two families, the boundary
conditions prescribe all components of the velocity at the inlet and the
normal stress and either tangential stress or tangential velocity at the
outlet.

FIG. 17. Converging flow with the pressure-no-slip conditions: critical R vs c2 for
a¼ 2, n¼ 1, and c1 ¼ 0;�10;�20;�30.
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In the limit of high radial Reynolds numbers, all three families
tend to a single inviscid flow. This inviscid flow satisfies the same
inflow boundary conditions, but the outflow conditions reduce to a
single condition prescribing either the pressure or the normal velocity.
The inviscid flow becomes unstable if the azimuthal velocity at the
inlet is greater than a certain critical value. For a weak radial flow, this
inviscid instability has the same mechanism for both inviscid outflow
conditions, but, overall, the flows with the pressure condition are more
unstable than those with the normal velocity condition.

As one would expect, all three families of viscous flows are unsta-
ble due to the inviscid instability mechanism for sufficiently high R.
However, it turned out that, for moderate and small radial Reynolds
numbers, a change in the type of the outflow conditions can drastically
change the stability properties of the flow. In most cases, the pressure-
stress and pressure-no-slip conditions have a strong destabilizing
effect, because these conditions are less restrictive than the reference
conditions. (They allow perturbations with the nonzero radial velocity
at the outlet.) In particular, in the problem with the pressure-no-slip
conditions, both the diverging and converging flows turned out to be
unstable for arbitrarily small R, provided that the azimuthal velocity at
the inlet is much higher than the radial velocity. In these cases, we
have derived asymptotic formulas for critical radial Reynolds numbers,
which agree with numerical calculations.

As a by-product of these asymptotic formulas, we have found that
two particular cases of the classical Couette flow, where the imperme-
able cylinder is rotating and the permeable cylinder is stationary, are
unstable to two-dimensional perturbations provided that the normal
stress condition (instead of the normal velocity condition) at the per-
meable cylinder is imposed. This is in contrast with the well-known
fact that the Couette flow is stable to two-dimensional perturbations.
Moreover, in the case where the inner cylinder is non-rotating, the clas-
sical Couette flow is stable even to three-dimensional perturbations
(e.g., Refs. 35 and 36). The reason for this instability is that the normal
stress condition at a permeable wall allows nonzero flow through this
wall. Typical contour plots of the stream function of neutral perturba-
tions for both cases of the Couette flow are shown in Fig. 18. Evidently,
for these neutral modes, the normal velocity at the permeable cylinder
is nonzero. This is impossible in the case of the reference boundary
conditions.

Another interesting result is that in the case of the pressure-no-
slip condition, there are flow regimes where the converging flows are
unstable even if the azimuthal velocity at the inlet is zero as one can
see in Fig. 17. In contrast with this observation, the reference condi-
tions do not allow even three-dimensional unstable modes.

The main conclusion of this paper is that boundary conditions at
the outlet, which includes the normal stress condition may completely
change the stability of the flow. This is particularly apparent in the
case of the pressure-no-slip conditions where the basic steady flow is
exactly the same as the one considered in Ref. 13.

It is known13 that, in addition to an inviscid instability, there is
another instability in the problem with the reference boundary condi-
tions and that it is related to the instability of the boundary layer at the
outlet. For problems considered here, we have not found such instability
in the case of pressure–stress conditions. However, for the converging
flows with the pressure-no-slip conditions, for some azimuthal modes
(with n ¼ 3;…; 7), there are three different instability domains (see Fig.
15) where instability has different mechanisms: inviscid instability, insta-
bility of the boundary layer at the outlet, and instability due to the insta-
bility of the classical Couette flow discussed above. For the diverging
flows with the pressure-no-slip conditions, Figs. 11 and 12 show that the
instability domain already covers almost the entire ðc1;RÞ plane. Even if
there were different mechanisms of instability in different regions of the
plane, it would be impossible to identify those regions.

There are many open questions in this area. Here, we mention only
two, perhaps, the most important questions. The first one concerns three-
dimensional perturbations. As we have shown, for the diverging flows for
a¼ 2, the most unstable inviscid perturbation is two-dimensional and we
expect this to be also true for the converging flows and for different values
of a. This implies that at least for sufficiently high radial Reynolds num-
bers, the most unstable perturbations are very likely to be two-
dimensional (as it occurs in the reference problem15). Interestingly, even
for the classical Couette flow, there are linearly stable flow regimes where
the optimal transient growth is achieved on two-dimensional non-modal
perturbations.37 Nonetheless, to obtain a full picture of the instabilities of
the flows considered in the present paper, it is necessary to investigate the
stability to three-dimensional perturbations.

The second open problem is related to the boundary conditions. As
was argued in Sec. II B, the pressure-no-slip conditions may be relevant

FIG. 18. Neutral modes for the Couette
flow between a rotating impermeable cyl-
inder and a stationary permeable cylinder:
(a) the outer cylinder is permeable and (b)
the inner cylinder is permeable.
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to flows between porous cylinders, provided that the pressure in the
porous cylinders is known. A better approach would be to consider flows
in the free flow domain and in the porous cylinders and match them at
the porous walls. An interesting model of this type has been considered
in Ref. 38, where flows between a porous cylindrical membrane and an
impermeable cylinder were studied, with boundary conditions, obtained
using Darcy’s law for the flow in the membrane. An asymptotic expres-
sion for a steady flow, which includes the axial flow in the gap, in the
limit of weak permeability of the membrane has been derived in Ref. 38,
and its stability has been studied in Ref. 39. It is worth discussing
briefly the connection of the normal stress condition with the condition
of Refs. 38 and 39. The boundary condition used in those papers is
ujr¼1 ¼ �Kðpjr¼1 � p0Þ, where u and p are the radial velocity and the
pressure of the free fluid at the porous membrane (the inner cylinder), p0
is the pressure on the other side of the membrane, and K is the non-
dimensional permeability of the membrane. Tilton et al.38 studied the
case of small permeability K 	 1. In the opposite case, when K � 1, the
above condition reduces to pjr¼1 ¼ p0, and this is almost the same as
the normal stress condition �pjr¼1 þ ð2=RÞ urjr¼1 ¼ �p0, except for
one additional term. Although the above papers make an important con-
tribution to this area of research, the effect of the boundary conditions
employed in these papers on the stability of steady flows without axial
flow has not been studied there and remains an open problem, and this
is a subject of a continuing investigation.
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APPENDIX A: ASYMPTOTIC STABILITY TO

PERTURBATIONS INDEPENDENT OFH

Here, we show that the basic steady flows (12)–(14) are asymp-
totically stable to two-dimensional axisymmetric perturbations of
arbitrary amplitude. In particular, this means that if n¼ 0, then
ReðrÞ < 0, i.e., the mode with n¼ 0 cannot be unstable.

Let

u ¼
b

r
þ ~uðr; tÞ; v ¼ VbðrÞ þ ~vðr; tÞ;

where VbðrÞ is given by (12), and ~uðr; tÞ and ~vðr; tÞ represent an
axisymmetric perturbation of finite amplitude. Substituting these
into Eq. (20), we obtain

@t þ
b

r
@r

� �

~u �
b

r2
~u �

2Vb

r
~v þ ~u~ur �

~v2

r
¼ �~pr þ

1

R
L0~u �

~u

r2

� �

;

@t þ
b

r
@r

� �

~v þ
b

r2
~v þXb~u þ ~u~v r þ

~u~v

r
¼

1

R
L0~v �

~v

r2

� �

;

r~uð Þr ¼ 0:

Here, ~p is the perturbation pressure and L0 ¼ @2
r þ r�1@r . The

boundary conditions for ~u at the inlet are ~ujr¼1 ¼ 0 for the diverg-
ing flow (b¼ 1) and ~u jr¼a ¼ 0 for the converging flow (b ¼ �1).
The incompressibility condition, together with these boundary con-
ditions, implies that ~u � 0, so that the first two of the above equa-
tions simplify to

�
2Vb

r
~v �

~v2

r
¼ �~pr ;

@t þ
b

r
@r

� �

~v þ
b

r2
~v ¼

1

R
L0~v �

~v

r2

� �

:

(A1)

The second of these is independent from the first one and should be
solved subject to appropriate boundary conditions for ~v , while the
first equation can be used to find pressure ~p.

In the case of the pressure-no-slip conditions, we have

~vjr¼1 ¼ 0; ~vjr¼a ¼ 0:

It had been shown in Ref. 13 that Eq. (A1) with these boundary
conditions has only decaying (with time) solutions. This implies
asymptotic stability.

Consider now the diverging flow (b¼ 1) with the pressure–-
stress conditions, i.e.,

~vð1; tÞ ¼ 0; ~vða; tÞ �
~vða; tÞ

a
¼ 0: (A2)

Let

E ¼

ð

a

1

~v2

2
rdr:

The equation of the balance of the perturbation energy, E, can be
written as

_E þ
~v2

2

�

�

�

�

r¼a

þ

ð

a

1

~v2

r
dr ¼ �

1

R

ð

a

1

~vr �
~v

r

� �2

rdr: (A3)

Equation (A3) follows from the following chain of equalities:

ð

a

1

~vr �
~v

r

� �2

rdr ¼ �~v2jr¼a þ

ð

a

1

~v2r þ
~v2

r2

� �

rdr

¼ �

ð

a

1

~vrr þ
~v r

r
�

~v

r2

� �

~v rdr:

[Here, we used integration by parts and boundary conditions (A2).]
For the converging flow (b ¼ �1), the energy balance does not

work so well, and we employ the perturbation angular momentum,
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C ¼ r~v . In terms of C, Eq. (A1) (with b ¼ �1) takes the following
form:

@t �
1

r
@r

� �

C ¼
1

R
r

1

r
Cr

� �

r

: (A4)

The boundary conditions for Cðr; tÞ that follow from (5) and (9)
can be written as

Cða; tÞ ¼ 0; Crð1; tÞ � 2Cð1; tÞ ¼ 0: (A5)

Let

M ¼

ð

a

1

~C
2

2
rdr:

After multiplying Eq. (A4) by r C, integrating it from 1 to a in r and per-
forming standard calculations involving integration by parts, we find that

_M ¼ �
1

R

ð

a

1

C
2
r rdr � 1þ

2

R

� �

C
2ð1; tÞ

2
: (A6)

It can be shown that Eqs. (A3) and (A6) imply the inequalities

_E

E

 �CþðaÞ and

_M

M

 �

1

R
C�ðaÞ;

where C6 are positive constants that depend on a only. These esti-
mates yield at least exponential decay of all perturbations.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF NEUTRAL

CURVES IN THE LIMITS c1fi ‘ AND c2fi ‘

1. Diverging flow

Consider the eigenvalue problem, given by Eqs. (27), (28),
(35), and (36), in the limit c1 ! 1. It follows from Eqs. (12) and
(17) with b¼ 1 that

VðrÞ ¼ c1V0ðrÞ; V0ðrÞ ¼ �
rRþ2

aRþ2 � 1
þ

aRþ1

aRþ2 � 1

1

r
þ O c�1

1

	 


:

(B1)

Let

r ¼ c1~r: (B2)

Substitution of (B1) and (B2) into Eq. (27) yields

~r þ
inV0

r

� �

Lŵ �
in

r
X

0
0ðrÞŵ ¼

1

Re1
L2ŵ þ O c�1

1

	 


; (B3)

where Re1 is the azimuthal Reynolds number defined by Eq. (18).
Now, we make our key assumption that is consistent with the

behavior of critical curves in Figs. 11–13, namely, Re1 ¼ Oð1Þ as
c1 ! 1. With this assumption, the above formula for V0ðrÞ simpli-
fies to

V0ðrÞ ¼
1

a2 � 1

a2

r
� r

� �

þ O c�1
1

	 


: (B4)

Note that if we discard the Oðc�1
1 Þ term in (B4), then V0ðrÞ is the

same as the azimuthal velocity profile of the classical Couette flow
between rotating impermeable cylinders with radii 1 and a in a par-
ticular case where the outer cylinder does not rotate, and the inner
cylinder rotates with an angular velocity equal to 1.

On substituting (B4) into Eq. (B3), we find that, in the leading
order,

~r þ
in

a2 � 1

a2

r2
� 1

� �� �

Lŵ ¼
1

Re1
L2ŵ: (B5)

In the leading order, boundary conditions (28), (35), and (36) take
the following form:

ŵð1Þ ¼ 0; ŵ
0
ð1Þ ¼ 0; ŵ

0
ðaÞ ¼ 0; (B6)

1

Re1
ŵ

000
ðaÞ þ

1

a
ŵ

00
ðaÞ þ

4n2

a3
ŵðaÞ

� �

�
2in

aða2 � 1Þ
ŵðaÞ ¼ 0: (B7)

Thus, we have obtained the eigenvalue problem for ~r. It was solved
numerically using the same method as the original eigenvalue prob-
lem. We found that each azimuthal mode becomes unstable for Re1
greater than some critical value Re1cr . The critical azimuthal
Reynolds numbers for a¼ 2, 8 and n ¼ 1;…; 5 are shown in
Table II. Using these and formula (49), we plotted the asymptotic
Rcr as a function of c1 in Fig. 14 (dashed curves).

Now, let us discuss the connection of this result with the classi-
cal Couette flow. Evidently, if boundary condition (B7) were
replaced by the condition ŵðaÞ ¼ 0 (i.e., no normal flow at r¼ a),
this eigenvalue problem would coincide with the one arising in the
particular case of the classical Couette flow mentioned above. It is
known that the Couette flow is linearly stable to two-dimensional
perturbations, although there seems to be no formal proof of this
fact (see, e.g., Ref. 40). However, with boundary condition (B7), the
same flow can be unstable. Recalling that the physical meaning of
condition (B7) is that the normal stress applied to the fluid at r¼ a
is zero, we conclude that the Couette flow with the normal stress
condition at the outer cylinder (instead of the normal velocity con-
dition) is unstable to two-dimensional perturbations provided that

Re1 > min
n2N

Re1crða; nÞ:

TABLE II. Re1cr ða; nÞ.

a¼ 2 a¼ 8

n 1 2 3 4 5 1 2 3 4 5

Re1cr 147.29 77.58 69.35 117.36 188.80 12.54 51.79 100.48 165.39 246.62
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2. Converging flow

Consider the eigenvalue problem, given by Eqs. (27), (29),
(35), and (37), in the limit c2 ! 1. The same arguments as for the
diverging flow yield, in the leading order, the following eigenvalue
problem for ~r ¼ r=c2:

~r þ
in

a2 � 1
1�

1

r2

� �� �

Lŵ ¼
1

Re2
L2ŵ; (B8)

ŵðaÞ ¼ 0; ŵ
0
ðaÞ ¼ 0; ŵ

0
ð1Þ ¼ 0; (B9)

1

Re2
ŵ

000
ð1Þ þ ŵ

00
ð1Þ þ 4n2 ŵð1Þ

� �

þ
2in

a2 � 1
ŵð1Þ ¼ 0; (B10)

where Re2 is defined by Eq. (19). Solving this problem numerically, we
find that azimuthal modes with n ¼ 4;…; 9 become unstable for Re2
greater than some critical value Re2cr . The critical azimuthal Reynolds
numbers for a¼ 2 and n ¼ 4;…; 9 are shown in Table III.
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