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Abstract

The question of how individual patient data from cohort studies or histori-

cal clinical trials can be leveraged for designing more powerful, or smaller yet

equally powerful, clinical trials becomes increasingly important in the era of

digitalization. Today, the traditional statistical analyses approaches may seem

questionable to practitioners in light of ubiquitous historical prognostic infor-

mation. Several methodological developments aim at incorporating historical

information in the design and analysis of future clinical trials, most impor-

tantly Bayesian information borrowing, propensity scoremethods, stratification,

and covariate adjustment. Adjusting the analysis with respect to a prognostic

score, which was obtained from some model applied to historical data, received

renewed interest from a machine learning perspective, and we study the poten-

tial of this approach for randomized clinical trials. In an idealized situation of a

normal outcome in a two-arm trial with 1:1 allocation, we derive a simple sample

size reduction formula as a function of two criteria characterizing the prognos-

tic score: (1) the coefficient of determination 𝑅2 on historical data and (2) the

correlation 𝜌 between the estimated and the true unknown prognostic scores.

While maintaining the same power, the original total sample size 𝑛 planned

for the unadjusted analysis reduces to (1 − 𝑅2𝜌2) × 𝑛 in an adjusted analysis.

Robustness in less ideal situations was assessed empirically. We conclude that

there is potential for substantiallymore powerful or smaller trials, but only when

prognostic scores can be accurately estimated.
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1 INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard design for the estimation of an average treatment effect of

some novel intervention. The high level of evidence deducible from such a study, however, comes at a high price: Large

sample sizes are often required to demonstrate an anticipated treatment effect with sufficient power. This not only renders

many RCTs financially intensive, but also raises ethical considerations. An important goal of methodological research is

therefore the development of methods allowing for a substantial reduction of the overall sample size or to estimate the

treatment effect with higher precision from equally large trials.

In many contexts, individual patient data from large cohort studies or previously conducted RCTs have been collected

with great effort over long periods of time. Such data contain valuable information about the course of a disease under

standard of care or even in untreated patient populations. When planning a novel RCT, the questions “if” and “how” such

prognostic information can be leveraged to increase precision or to reduce the necessary future sample size arise naturally.

Many contributions to contemporary RCT methodology can be understood as attempts to solve this common problem.

Information borrowing, propensity score matching and adjustment, stratification, and covariate adjustment are the main

strands of research concentrating on the “how” part of the question. We focus on the “if” aspect and try to identify con-

ditions allowing trials to be smaller through incorporation of historical prognostic information. In an idealized normal

model, we derive a simple relationship between the strength of prognostic information contained in historical controls,

the quality of a prognostic score capturing this information, and the reduction in total sample size or gain in precision

achievable by adjusting for such a prognostic score in an RCT.

A prognostic score represents a baseline risk in terms of a summary score of observed covariates (Breslow, 1979). More

specifically, the score quantifies the expected response under control conditions, estimated from reference data, for exam-

ple, historical control data. The concept of prognostic scores can thus be utilized to collapse large number of covariates,

and potentially high-dimensional or unstructured information, in a composite score. In clinical practice, prognostic scores

aim to provide a tool for risk stratification, for example, for clinical behavior of a disease (e.g., in prostate cancer, Kreuz

et al., 2020) or in the intensive care unit (e.g., FOUR score, Wijdicks et al., 2005). Prognostic scores have been used for

defining strata in clinical trials (Cellini et al., 2019; Herrera et al., 2020), constituting a simple form of incorporating his-

torical information in the trial design. In observational studies, Hansen (2008) formalized the concept of adjusting with

respect to a prognostic score, which has since been studied for various applications (Arbogast & Ray, 2009, 2011; Hajage

et al., 2017; Pfeiffer & Riedl, 2015; Wyss et al., 2016). Although the idea of adjusting with respect to historical prognostic

scores in clinical trials was briefly sketched in an earlier paper by Cox (1982) and has been suggested for heterogeneous

treatment effect estimation (Kent et al., 2020), an in-depth development of this principle has been published only recently

(Anonymous, 2022; Branders et al., 2021; Schuler et al., 2021, which was under consultation for qualification opinion by

the European Medicines Agency [EMA]).

Prognostic score methods have strong ties to stratification and covariate adjustment, where, in practice, little is known

about the actual extent of the efficiency gained by stratification (Kernan et al., 1999) or covariate adjustment (Robinson &

Jewell, 1991; Steingrimsson et al., 2017). Similar to information borrowing or propensity score matching and adjustment,

the prognostic score dynamically leverages historical information.

In our work, we explore this idea in an exemplary setup to quantify the benefits, “if” prognostic information is leveraged

in the statistical analysis. We present a simple and general situation in Section 2, and contrast conditions determining the

potential benefits when employing this approach in Section 3.

2 METHODS

We consider a simple two-arm RCT aiming to estimate the effect of a treatment on some continuous primary outcome

𝑌 ∈ ℝ. In the trial, patients were randomly assigned to either the treatment, 𝑧 = 1, or the control arm, 𝑧 = 0. For each

patient a set of patient characteristics 𝑿 ∈ 𝜒 were retrieved at baseline, from potentially high-dimensional, structured,

or unstructured information. The prognostic score is defined in terms of an unknown function 𝑠 ∶ 𝜒 → ℝ collapsing the

𝑘 baseline covariates in 𝑿. Assuming the outcome 𝑌 stems from a normal distribution, we study the following data-

generating process (DGP)

𝑌 = 𝛼 + 𝛽𝑧 + {𝜋𝑠(𝑿) +
√

𝜎2 − 𝜋2𝜀} ∼ N(𝛼 + 𝛽𝑧, 𝜎2), (1)
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where 𝛼 is the intercept parameter and 𝛽 the treatment effect we wish to estimate. The unexplained variability 𝜎2 is

decomposed into a structured error term,

{𝜋𝑠(𝐗) +
√

𝜎2 − 𝜋2𝜀} ∼ N(0, 𝜎2), 𝐗 ⟂⟂ 𝜀, (2)

consisting of a mixture distribution of a prognostic score 𝑠(𝑿) ∼ N(0, 1), which follows a standard normal distribution by

assumption, and an independent standard normal residual 𝜀 ∼ N(0, 1). The parameter 𝜋 ∈ [0, 𝜎] governs the fraction of

variability explained by the prognostic score 𝑠(𝑿).

The standard deviation of the residual,
√

𝜎2 − 𝜋2, depends on 𝜋, such that the variance 𝜎2 of the structured error

term (2) is constant. For 𝜋 = 0, the residual variance is 𝜎2 and the prognostic score does not impact the outcome in any

way. For 𝜋 = 𝜎, the prognostic score 𝑠(𝑿) accounts for the total variability and the residual variance is zero. Values of

𝜋 ∈ (0, 𝜎) indicate DGPs with different signal-to-noise ratios regarding the prognostic score 𝑠(𝑿). Large values of 𝜋𝑠(𝑿)

are associated with large values of the outcome 𝑌, in both the treatment and control groups.

In rare cases, the prognostic score function 𝜋𝑠() might be known and 𝜋𝑠(𝒙) can be used as an offset in (1), when 𝑿 =

𝒙 was observed for patients in the trial. The standard error of the treatment parameter estimate, 𝛽, and thus also the

sample size necessary to demonstrate a certain clinically relevant effect, only depend on the residual variance 𝜎2 − 𝜋2

in this case. Typically, neither 𝜋 nor the prognostic score 𝑠(𝒙) are available and need to be estimated. Sometimes, it is

appropriate to assume a linearmodel𝜋𝑠(𝒙) = 𝒙⊤𝜸 , where an adjusted estimate for the treatment effect 𝛽 is computed from

simultaneous estimationwith𝜸 . Using trial data, the joint estimation of the treatment parameter𝛽 and𝜋𝑠(𝒙) ismuchmore

difficult, inefficient, or even impossible for high-dimensional (e.g., high-throughput, biomarker data) or unstructured

(e.g., clinical notes and reports) covariates 𝑿 (Zhang & Ma, 2019), thus potentially necessitating an independent sample

for the estimation of 𝜋𝑠(𝒙).

We are interested in the setup,where onewas able to obtain an estimate, 𝔰(𝒙) = 𝜋𝑠(𝒙), of𝜋𝑠(𝒙) either from the literature

or from historical control data. The latter situation received some interest recently (Branders et al., 2021; Glynn et al.,

2012; Schuler et al., 2021; Wyss et al., 2014). Assuming one has access to data from past trials on the same outcome 𝑌 and

covariates 𝑿 for control patients, 𝑧 = 0, many statistical and machine learning procedures, for example, random forests

and neural networks, can be used to estimate the prognostic score function from the conditional mean 𝔰(𝒙) = 𝜋𝑠(𝒙) =

𝔼(𝑌 ∣ 𝑿 = 𝒙, 𝑧 = 0) − 𝛼̂ (with some estimate 𝛼̂ of themodel’s intercept parameter).Model (1) for historical controls (𝑧 = 0)

regressing on 𝑿 = 𝒙 is associated with an ideal percent explained variability of 𝑅2 = 𝜋2∕𝜎2, or, more formally

𝑅2(𝑔) ∶= 1 −
𝕍{𝑌 − 𝑔(𝐗) ∣ 𝑧 = 0}

𝕍{𝑌 ∣ 𝑧 = 0}
for some regression function 𝑔 and

𝑅2 = 𝑅2(𝜋𝑠) = 1 −
𝜎2 − 𝜋2

𝜎2
=

𝜋2

𝜎2
.

Instead of studying properties of specific estimators, we make an assumption about the joint distribution of the estimated

and the true prognostic scores in terms of a correlation coefficient 𝜌 ∈ [0, 1] for the relevant situation 𝜋 > 0,

(𝔰(𝑿), 𝜋𝑠(𝑿)) ∼ N2

[(

0

0

)

, 𝜋2

(

1 𝜌

𝜌 1

)]

. (3)

The setup 𝜌 = 0 corresponds to a failed attempt to estimate the prognostic score on historical data. For 𝜌 = 1, we obtained

an oracle𝔰(𝑿) = 𝜋𝑠(𝑿), possibly from some very big database or fromexpert elicitation.More realistically, values𝜌 ∈ (0, 1)

describe how well the prognostic model 𝔰(𝑿) characterizes the prognostic score 𝜋𝑠(𝑿); the corresponding mean-squared

error is

𝔼[{𝜋𝑠(𝑿) − 𝔰(𝑿)}2] = 2𝜋2(1 − 𝜌).

For the sake of completeness, we introduce a symbol for the out-of-sample (OOS) percent explained variability one would

obtain, for example, by cross-validation or an additional test sample evaluating the prognostic score 𝔰 fitted to historical
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data only in model (1) :

𝑅2
OOS= 𝑅2(𝔰) = 1 −

𝕍{𝑌 − 𝔰(𝑿) ∣ 𝑧 = 0}

𝕍{𝑌 ∣ 𝑧 = 0}

= 1 −
𝔼[{𝜋𝑠(𝑿) − 𝔰(𝑿)}2] + 𝜎2 − 𝜋2

𝜎2

= (2𝜌 − 1)×𝑅2.

The predicted variance reduction for the trial, following Borm et al. (2007) and also more recently Branders et al. (2021)

and Schuler et al. (2021), would then be 1 − 𝑅2
OOS.

In our simple setup, it is straightforward to see that one can replace the unknown prognostic score𝜋𝑠(𝑿) by 𝜌𝔰(𝑿) in (1)

without changing the distribution of the outcome,

𝑌 = 𝛼 + 𝛽𝑧 + 𝜋𝑠(𝑿) +
√

𝜎2 − 𝜋2𝜀 ∼ N(𝛼 + 𝛽𝑧, 𝜎2)

𝑑
= 𝛼 + 𝛽𝑧 + 𝜌𝔰(𝑿) +

√

𝜎2 − 𝜋2𝜌2𝜀 ∼ N(𝛼 + 𝛽𝑧, 𝜎2).

For the trial patients, this change means that treating 𝔰(𝑿) ∈ ℝ as a single observable and random covariate with

unknown regression coefficient 𝜌 leads to a reduction of the residual variance from 𝜎2 (in a model 𝑌 ∣ 𝑧 ∼ N(𝛼 + 𝛽𝑧, 𝜎2)

ignoring prognostic information) to 𝜎2 − 𝜋2𝜌2 (in a model 𝑌 ∣ 𝑧, 𝔰(𝒙) ∼ N(𝛼 + 𝛽𝑧 + 𝜌𝔰(𝒙), 𝜎2 − 𝜋2𝜌2) adjusting for prog-

nostic information 𝔰(𝒙)) whenever 𝜋 > 0 and 𝜌 > 0. At the price of estimating one additional parameter 𝜌 in the linear

model 𝑌 ∣ 𝑧, 𝔰(𝒙) ∼ N(𝛼 + 𝛽𝑧 + 𝜌𝔰(𝒙), 𝜎2 − 𝜋2𝜌2), one can expect a considerable reduction of the residual variance, and

therefore more powerful tests and confidence intervals for 𝛽, when employing this method of adjustment. The fraction

residual variance 𝑌 ∣ 𝑧, 𝔰(𝐱)

residual variance 𝑌 ∣ 𝑧
=

𝜎2 − 𝜋2𝜌2

𝜎2
= 1 − 𝑅2𝜌2 (4)

of the residual variances with and without adjustment for prognostic information approximately corresponds to the frac-

tion of necessary sample sizes to demonstrate a specific clinically relevant treatment effect. This holds for any nominal

significance level and power because the sample size of the 𝑡-test decreases linearly with residual variance when the esti-

mation of the additional parameter 𝜌 is ignored. This issue and the connection to ANCOVA is discussed in Section 4.

Equivalently, for fixed sample size 𝑛 the precision of the treatment effect estimate increases as the residual variance

decreases. It should be noted that the classical “design factor” 1 − 𝑅2
OOS (Borm et al., 2007; Branders et al., 2021; Schuler

et al., 2021) is biased in our setup, because 1 − 𝑅2
OOS = 1 − (2𝜌 − 1)𝑅2 ≠ 1 − 𝜌2𝑅2. This discrepancy will be demonstrated

empirically in Section 3.

The setup also captures a potential distribution drift from the historical to the trial data: Even if 𝔰(𝑿) is a very precise

estimator of the true prognostic score on the historical data, a considerable lack of fit on the trial data, and thus a small 𝜌,

might be due to a temporal drift in the prognostic score, which applies to trial but not historical patients.

In contrast to classical covariate adjustment, the relationship between𝑿 and𝑌 can be highly nonlinear or unstructured

in our studied setup, for example,when𝑿 represents image data and a complex deep neural network is used to obtain 𝔰(𝑿).

Still only a single additional parameter 𝜌 has to be estimated in addition to the treatment effect 𝛽 from the present trial

data. The type I error for hypothesis tests on 𝛽 is maintained, assuming the test procedure deals with random covariates

in an appropriate way, and thus lack of type I error control reported for Bayesian borrowing procedures (Kopp-Schneider

et al., 2020) is avoided here.

Themost important question is: When does it actually theoretically pay off to leverage prognostic information by incor-

porating prognostic scores 𝔰(𝒙) estimated on historical data? We assess this question theoretically and empirically for

specific values 𝑅2 = 𝜋2∕𝜎2 ∈ (0, 1) and 𝜌 ∈ (0, 1) in Section 3.1. Furthermore, we study the impact of deviations from the

rather strict distributional assumption (3) on the prognostic score and its estimate in Section 3.2. Unfortunately, it is impos-

sible to estimate the theoretical model parameters 𝜌 and 𝑅2 from historical or contemporary data. This makes it difficult

to provide practical rules of thumb guiding an informed decision on leveraging prognostic scores in the analysis of clinical

trial data.
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3 RESULTS

3.1 Illustration of theoretical result

The fraction (4) of residual variances with and without adjustment 1 − 𝑅2𝜌2 for values of 𝑅2 ∈ (0, 1) and 𝜌 ∈ (0, 1) lead

to the following interpretation: For a clinical trial powered for the demonstration of a certain clinically relevant effect 𝛽

in a normal model with variance 𝜎2 with a specific nominal level and power, the planned sample size 𝑛 can be reduced

to (1 − 𝑅2𝜌2) × 𝑛 through adjustment for prognostic information. For example, with 𝑅2 = 0.5 on a large historical data

set resulting in a very precise estimate 𝔰(𝑿) of 𝜋𝑠(𝑿) with 𝜌 = 0.8, say, only (1 − 0.5 × 0.82) × 100% = 68% of the original

sample size 𝑛 would be required in an adjusted analysis. Substantial reductions by more than 20% of the original sample

size (i.e., 1 − 𝑅2𝜌2 < 0.8) can only be expected for 𝑅2 > 0.3 and rather large values of 𝜌. The higher 𝑅2, the less precision of

the estimate 𝔰(𝑿) is necessary to achieve the same level of reduction. For situations with either small 𝑅2 on the historical

data and/or small historical sample sizes 𝔫 resulting in smaller values of 𝜌, expected sample size reductions of less than

10% (i.e., 1 − 𝑅2𝜌2 > 0.9) suggest that accounting for prognostic information might not be worth the effort.

3.2 Sensitivity analysis

To study the impact of deviations from the distributional assumption (3), we contrasted the above presented results with

a more complex DGP. For the prognostic score, we employed the process

𝑠(𝑿) = 10 sin(𝜋𝑋1𝑋2) + 20(𝑋3 − 0.5)2 + 10𝑋4 + 5𝑋5 + 𝜀, (5)

arising from Friedman’ regression equation 1 (Friedman, 1991) with 𝑿 ∼ U(0, 1)10 and 𝜀 ∼ N(0, 1).

We simulated historical control data (𝑧 = 0) of varying sample size 𝔫 = 50, 100, and 10,000 as well as trial data with

sample size 𝑛 = 1000 from DGP (1) with 𝜎2 = 1 for different values of 𝜋 ∈ (0, 1) and repeated the experiment 1000 times.

We estimated the prognostic model 𝔰(𝑿) from the simulated historical control data with a random forest and fitted a nor-

mal linear regression model for the treatment effect to the trial data and a model additionally adjusting for the prognostic

score estimate 𝔰(𝒙). The additive DGP (5) cannot be exactly recovered by a random forest model and thus an additional

bias is introduced. The precision of the random forest 𝜌̂, which was estimated from data, increases with larger values of 𝑅2

and sample size 𝔫 (Figure 2). The results in Figure 1 convey similar findings as obtained theoretically. The residual vari-

ance when adjusting for the prognostic score estimated from historical data decreases with higher 𝑅2, which translates

into higher precision of the treatment effect estimates 𝛽 (Figure 3).

3.3 Comparison of predicted and empirical variance reduction

We further compared the variance reduction achieved by prognostic score adjustment as predicted by the “design factor”

1 − 𝑅2
OOS (Borm et al., 2007), using the estimated 𝑅2

OOS from the prognostic random forest model on historical data, to

the empirical variance reduction 1 − 𝜌2𝑅2 in our setup. For the DGP in Section 3.2, random forests’ 𝑅2
OOS was estimated

using a large evaluation data set (OOS). The true 𝑅2 was calculated using 𝜋2∕𝜎2.

The lines in Figure 1 contrast the variance reduction predicted by the “design factor” 1 − 𝑅2
OOS (Borm et al., 2007)

and 1 − 𝜌2𝑅2 (Fraction 4) with the variance reduction achieved empirically (boxplots). The latter variance reduction fits

the empirical results very closely, whereas the “design factor” is biased and underestimates the actual observed variance

reduction. For very large historical sample sizes, the variance reduction is well described by the “design factor.”

3.4 Illustration

A recent study by Goemans et al. (2020) reported on the development of a prognostic score for timed four-stair climb

in Duchenne muscular dystrophy patients and discussed its potential benefits in terms of design and analysis of future

trials. The explained variability (𝑅2
OOS) in the prognostic model was described to be maximally 36%, which according to
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F IGURE 1 Simulated fraction of residual variances in a model with prognostic score as defined in (5). The fractions are shown for the

normal linear model regressing on the treatment effect (𝔼(𝑌 ∣ 𝑧); left), and the model additionally adjusting for the prognostic score estimate

(𝔼(𝑌 ∣ 𝑧, 𝔰(𝒙)); right) for various values of 𝑅2 = 𝜋2∕𝜎2 and different sample sizes 𝔫 = 50, 100, and 10,000. The light gray line depicts the

theoretical fraction 1 − 𝑅2𝜌̂2, with the precision of the random forest 𝜌̂ estimated from the data. The variance reduction predicted by the

“design factor” (Borm et al., 2007) is shown as dashed dark gray line

the “design factor” would allow for a variance reduction to 64% of the unadjusted analysis when employing prognostic

score adjustment. The empirical reduction however is difficult to quantify, because in practice 𝑅2 and 𝜌 are unknown.

Based on our derivations, the reported reduction to 64% would only be attainable in absence of distributional drift, for

example, with 𝜌 = 0.9 and corresponding 𝑅2 = 0.44. However, for trial data deviating from the historical training data

and thus smaller values of 𝜌, this variance reduction would require larger values of 𝑅2, for example, with 𝜌 = 0.7 the

corresponding 𝑅2 = 0.73 would be needed.
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F IGURE 2 Characteristics of the employed prognostic model 𝔰(𝑿). The precision of the random forest 𝜌̂ estimated from the data are

shown along different values of 𝑅2 = 𝜋2∕𝜎2 for different historical sample sizes 𝔫 = 50, 100, and 10,000

4 RELATION TO COVARIATE ADJUSTMENT

In the analysis of covariance (ANCOVA) framework, an interesting practical question is when it will be more beneficial

to directly adjust for prognostic variables instead of adjusting for a prognostic score, or even not to adjust at all (Lesaffre

& Senn, 2003). We shall discuss this issue in more detail.

Suppose we have 𝑛 subjects in total and 𝑘 ≥ 2 prognostic covariates. (The lower bound is set at 2 since the case 𝑘 = 1

is without interest.) The loss due to nonorthogonality, which we refer to as the imbalance effect is a random variable

depending on the observed imbalance in the trial. However, choosing whether to fit the score or the covariates based on

an inspection of the data has the danger of increasing the type 1 error rate. Thus, there is merit in making a prespecified

choice of amodel, which, in any case, is in line with ICHe9 recommendations. It can be shown, however, that the expected

imbalance effect due to fitting 𝑘 covariates compared to 1 is (𝑛 − 4)∕(𝑛 − 3 − 𝑘). On the other hand, the expected inflation

in the mean square error (MSE), which we refer to as theMSE effect, due to fitting a score based on historical data rather

than the 𝑘 covariates on which it is based is 𝜎2
1∕𝜎2

𝑘
≥ 1, where the numerator is the expected MSE for the prognostic score

and the denominator the correspondingMSEwith all covariates fitted. Thus, by comparing theMSE effect to the expected

imbalance effect, one can make a decision. Note that a third element to consider is that the residual degrees of freedom

for error will lead to the 𝑡-table having to be entered at a less favorable point, the more covariates are fitted. As is discussed

in the Appendix this further effect, which we refer to as second-order precision, will favor the prognostic score.

In summary, when the trial sample size 𝑛 is large and only a few prognostic variables are studied, using ANCOVA

without any involvement of historical data should be preferred (Borm et al., 2007; Cox & McCullagh, 1982; Pocock et al.,

2002), whenever the linearity assumption is justified. In situations where either the trial sample size 𝑛 is relatively small,

many and potentially unstructured prognostic variables shall be adjusted for, and a large set of 𝔫 historical patient records

is available, it seems preferable to adjust for the prognostic score in situations where 𝑅2 > 0.3, because only one additional

parameter needs to be estimated in a classical statistical model.

5 DISCUSSION

In our work, we studied the question, in what situations leveraging prognostic information actually pays off in practice.

We presented a simple and general setup in Section 2, allowing us to assess the theoretical properties of this adjustment

method without making strong distributional assumptions or limiting it to specific estimators.

In Section 3.1, we quantified the maximally attainable benefit when adjusting for a prognostic score analytically, and

contrasted our findings with a more complex set-up in Section 3.2. The results suggest that leveraging prognostic baseline

covariates reduces residual variability, however the magnitude of this reduction might often be irrelevant in practice.

These situations can be characterized by small historical samples sizes (and as a result smaller 𝜌) and/or small 𝑅2 of the

prognostic model on historical data.
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F IGURE 3 Simulated distribution of the treatment effect estimate. The treatment effect estimates 𝛽 from the normal linear model

regressing on the treatment effect (𝔼(𝑌 ∣ 𝑧); left), and the model additionally adjusting for the prognostic score estimate (𝔼(𝑌 ∣ 𝑧, 𝔰(𝒙)); right)

are shown for various values of 𝑅2 = 𝜋2∕𝜎2 and different sample sizes 𝔫 = 50, 100, and 10,000. The true treatment effect 𝛽 = 0.12 is indicated

by the horizontal line

As a rough rule of thumb, sample size reductions ofmore than 20% are achievablewith an𝑅2 > 0.3 on historical controls

when there is a high confidence in the prognostic score, with 𝜌 > 0.8 say, requiring a large number of historical controls

and the absence of drift in 𝑠(𝑿). When there is more uncertainty regarding the prognostic score, with 𝜌 ≈ 0.6 for example,

an 𝑅2 > 0.5 is necessary to obtain a 20% reduction in total sample size. Likewise, the corresponding increase in precision

of the treatment effect estimate can be considered for fixed samples sizes. It depends on the context whether or not such
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an increase is relevant: It might be a game-changer in one setup but only marginally interesting in other situations. Athey

and Imbens (2017) point out that randomization is sufficient for lack of bias in 𝛽 from including or excluding a prognostic

score, however “the gain in precision is often modest.”

While it is easy to estimate𝑅2
OOS for historical controls, estimating ourmodel parameters𝑅2 and𝜌 is less straightforward.

One possibility would be to perform an interim analysis regressing the outcome𝑌 on the prognostic score 𝔰(𝑿) on the trial

controls (𝑌, 𝑿, 𝑧 = 0), which, after appropriate standardization such that𝕍(𝔰(𝑿)) = 1, gives an estimate𝜋𝜌 for𝜋𝜌, which,

together with an estimate of the residual variance 𝜎2, can be plugged into (4). In the absence of information about 𝜌, our

interpretation of the theoretical results presented here is that trial designers should definitively look into the possibility

of adjusting for an established prognostic score when its 𝑅2
OOS has been demonstrated to exceed 0.5.

These findings are in agreement with earlier results quantifying the impact of covariate adjustment on the necessary

sample size in clinical trials. Adjusting for a single numeric covariate 𝑋1 is a special case of our model with 𝜋𝑠(𝑿) = 𝜋𝑋1

and 𝜌 ≡ 1, resulting in a “design factor” of 1 − 𝑅2, meaning a sample size reduction to (1 − 𝑅2) × 100% of original sample

size is possible (Borm et al., 2007; Cox & McCullagh, 1982; Pocock et al., 2002). This “design factor” however disregards

that the covariate (or equivalently the prognostic score) might be measured with error 𝜌 or that there might be potential

distribution drift.

Although accounting for prognostic information through adjustment for 𝔰(𝑿) seems rather unorthodox, a simpler

version known as poststratification is well established. For two strata, the prognostic score 𝔰(𝑿) ∈ {0, 1} is an indica-

tor for the patient’s stratum, 𝜌 an unknown prognostic parameter, typically estimated from trial data. The rational is the

same: leveraging information from historical controls (used to define reasonable strata) for reducing the residual variance

while safeguarding against distribution shift or incorrectly specified strata. If available, such information further can be

employed to randomize patients into more homogeneous subgroups.

6 FUTURE RESEARCH AND CONCLUSION

If and how historical controls can be leveraged for future clinical trials has been discussed extensively, yet the debate

did not converge to some consensus. With the increasing application of machine learning in clinical research, the general

hope is that these techniques will eventually help to designmore efficient trials. Prognostic score adjustment seems to play

an important role toward this goal (Branders et al., 2021; Kent et al., 2020; Schuler et al., 2021). New sample size planning

instruments are required, which properly take into account a realistic assessment of the prognostic value of existing or

new scores for trial patients. Our contribution can only serve as a best-case benchmark scenario future methodological

developments can be compared to.

An extension to nonnormal models is not straightforward. From a computational point of view, the estimation of prog-

nostic scores on appropriate scales (log-odds or log-hazard ratios, for example) is possible by application of somemachine

learning procedures, for example, in model-based boosting (Bühlmann & Hothorn, 2007; Ridgeway, 1999; Schmid et al.,

2011). Adjusting for such prognostic scores in logistic, proportional odds, or proportional hazards regression models will

lead to increasing power for testing the null hypothesis 𝛽 = 0 at the price of changing the interpretation of the treatment

effect estimate 𝛽 from amarginal to a conditional one (Daniel et al., 2021; Ford et al., 1995; Ford &Norrie, 2002; Hernández

et al., 2004; Robinson & Jewell, 1991), owing to the fact that, unlike in nonlinear models, 𝜋𝑠(𝑿) can be absorbed into the

error term (2) in the linear model (1).

In summary, the lack of ability to estimate the relevant parameters 𝑅2 and 𝜌 on historical data, the inability to a priori

assess potential drift between historical and future controls, the associated uncertainties when planning the sample size

for a future trial, and the low cost of prognostic score adjustment in the final analysis suggest a pragmatic approach.

Instead of a priori factoring in a certain sample size reduction, one should treat the potential for power increase by means

of prognostic score adjustment as a nest egg. For traditionally planned trials aiming at differences in means, post hoc

prognostic score adjustment with an insufficient score neither affects size nor power of the final analysis. However, post

hoc adjustment with an informative prognostic score holds some potential for power increase without making strong a

priori commitments.
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APPENDIX: ADJUSTING FOR COVARIATES: GAINS AND LOSSES

An easy way to see the effect of fitting covariates on the efficiency of an estimator is to consider adding a binary covariate

(we shall take sex as an example) to the analysis of a design that is currently balanced by treatment with 2𝑁 patients per

arm, there being two arms in total. If the covariate is not fitted, the variance of the treatment contrast will be

(

1

2𝑁
+

1

2𝑁

)

×𝜎2
0 =

𝜎2
0

𝑁
,

where 𝜎2
0 is the within-treatment groups variance, which will be estimated using 2𝑁 − 2 degrees of freedom and where

the subscript 0 is used to represent that no covariates have been fitted. Now suppose that the two sexes are equally well

represented but having randomized and having decoded the data, we see that the disposition of subjects by group and

sex is

Control Treatment

Females 𝑓 2𝑁 − 𝑓 2𝑁

Males 2𝑁 − 𝑓 𝑓 2𝑁

2𝑁 2𝑁 4𝑁 = 𝑛

where the entries in the cells represent frequencies of patients of the four types. The within-sex stratum estimates now

have variances proportional to

(

1

𝑓
+

1

2𝑁 − 𝑓

)

×𝜎2
1,

where the subscript 1 is used to represent that one covariate has been fitted. Note, that one degree of freedom is lost if the

fitting process uses sex as a main effect in an analysis of covariance. However, strict stratification estimates the variance

within strata and loses one further degree of freedom. Here, we consider the former case, where the degrees of freedom

available to estimate this variance are now 2𝑁 − 3. Clearly, the two within-stratum estimates are equally efficient and

should be weighted equally, that is to say by one half. Thus, the combined estimate will have a variance equal to

(

1

22

1

22

)

×

(

1

𝑓
+

1

2𝑁 − 𝑓

)

×𝜎2
1 =

1

2
×

(

2𝑁

𝑓(2𝑁 − 𝑓)

)

×𝜎2
1

=
𝑁

𝑓(2𝑁 − 𝑓)
×𝜎2

1 .

Note that the divisor of this expression can be expressed as 𝑁2 − (𝑓 − 𝑁)2 and that −(𝑓 − 𝑁)2 ≤ 0, so that the divisor

reaches its maximum when 𝑓 = 𝑁 that is to say the design is balanced, at which point, the variance will be 𝜎2
1∕𝑁.

We thus see that we can expect three consequences of fitting sex in the model. (1) If sex is predictive, we may expect

𝜎2
1 < 𝜎2

0 . We can refer to this as theMSE effect. (2) The variance multiplier will be

𝑁

𝑓(2𝑁 − 𝑓)
≥

1

𝑁



SIEGFRIED et al. 13

with equality only being achieved in the case of perfect balance. More generally, we may expect some imbalance and so

some loss in efficiency. We can refer to this as the imbalance effect. (3) A completely predictable loss is that the degrees of

freedom associated with the relevant 𝑡-distribution will be reduced by 1. This, unlike the other two effects, is not an effect

on precision itself but an effect on our estimates of precision and may be referred to as the second-order precision effect.

One way of judging it is to compare the variances of the two 𝑡-distributions involved, using the fact that in general this is

𝜈∕(𝜈 − 2), where 𝜈 is the degrees of freedom. In the case with no predictors, we have 𝜈 = 𝑛 − 2 and more generally, if we

have 𝑘 predictors, we have 𝜈 = 𝑛 − 2 − 𝑘 so that the general variance term is

𝑛 − 2 − 𝑘

𝑛 − 4 − 𝑘
,

with this reducing to (𝑛 − 2)∕(𝑛 − 4) if 𝑘 = 0, (𝑛 − 3)∕(𝑛 − 5) if 𝑘 = 1.

More generally, for the caseswhere covariatesmay be continuous and theremay bemore than one covariate but only two

treatments, we may consider the influence of these three factors in terms of the general variance estimator (𝑿⊤𝑿)−1𝜎2
𝑘
.

Here, 𝑿𝑛×(𝑘+2) is the design matrix for which we may assume, without loss of generality, that the first column is an

intercept carrier, the second is a treatment indicator, and the 𝑘 further columns, 𝑘 = 0, 1, 2, … are for the covariates.

This formulation includes not fitting covariates as a special case, for which 𝑘 = 0. Note, however, that for the practical

purpose of comparing using a single score based on covariates to using the original covariates themselves, then the lowest

value that is of any interest is 𝑘 = 2.

The diagonal elements of the (𝑿⊤𝑿)−1 matrix give the variancemultipliers and, givenwhatwe have said about the order

of the columns, the second of these is the multiplier for the variance of the treatment effect. We refer to this as @𝑘, where

the subscript 𝑘 refers to the number of covariates being fitted and not to the position in the matrix . Thus, the variance of

the treatment estimate is @𝑘𝜎2
𝑘
. Given 𝑛 patients, it can be shown that we must have @𝑘 ≥ 4∕𝑛. For our previous example,

we had 𝑛 = 4𝑁, so we had @𝑘 ≥ 1∕𝑁.

As covariates are added to the model and therefore columns are added to the design matrix, the value of @𝑘 cannot

reduce but may increase. The example with sex as a binary covariate illustrates this. In a randomized design, the effect

on @ is not predictable as the design matrix will vary randomly but for normally distributed predictors the expected effect

may be described. If the trial is balanced in the sense that there are the same number of patients on each of the two arms

but otherwise randomized, the expected value is given by

𝔼(@𝑘) =
4

𝑛
×

𝑛 − 3

𝑛 − 3 − 𝑘
.

Special cases are

𝔼(@0) =
4

𝑛
×

𝑛 − 3

𝑛 − 3
=

4

𝑛
,

𝔼(@1) =
4

𝑛
×

𝑛 − 3

𝑛 − 4
.

It thus follows that we have

𝔼(@𝑘)

𝔼(@0)
=

𝑛 − 3

𝑛 − 3 − 𝑘
,

𝔼(@𝑘)

𝔼(@1)
=

𝑛 − 4

𝑛 − 3 − 𝑘
,

the second of these being relevant to the task of comparing adjustment for a single score based on 𝑘 covariates to inde-

pendently fitting them all. Note that this formula does not depend on the covariates being generated by an independent

process. (The covariates, could, for example, be correlated.) This is because, given 𝑘 predictors and assuming that the set

has no redundancy (the generating process is of rank 𝑘), they can be replaced by 𝑘 orthogonal predictors, which together

will have the same identical predictive value as the original 𝑘. Furthermore, if we have a predictive score, which is a linear

combination of the predictors, then given 𝑘 − 1 predictors and the score, the value of the remaining predictor is completely

determined and so redundant. Thus, the formula for 𝔼(@𝑘)∕𝔼(@1) is valid for this case also.
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Thus, consider making a decision as to whether to fit such a score. A relevant comparison is that of the ratio of the two

expected MSEs to the ratio of the expected imbalance factors. Thus, a sufficient condition for fitting such a score would

be

𝜎2
1

𝜎2
𝑘

≤
𝑛 − 4

𝑛 − 3 − 𝑘
, 2 ≤ 𝑘 ≤ 𝑛 − 4,

where 𝜎2
1 is theMSE fitting the score as a single covariate. Note that the right-hand side of the expression is an expectation

but a known quantity that must be greater than one (in expectation). The left-hand side is a random variable, which also

ought to be greater than one, and some judgment must be made by the modeler as to what it will be. The lower bound

of 𝑘 is the lowest value of interest and the higher bound is the highest for which the expression on the right-hand side

is defined.

One could also try to incorporate the second-order precision effect into the decision process. Note, however, that this is

always in favor of using the score rather than the 𝑘 individual predictors. Therefore, if the condition above is satisfied, it

will definitely be an advantage to fit the score. This is why we refer to the condition as sufficient.

However, it should be noted, that the expression provides a means of guiding the choice between fitting 𝑘 predictors

and fitting a linear combination of them all. If 𝑘 ≥ 3 it is possible that fitting a reduced set would be better than either.
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