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Abstract—Artificial Neural Network (ANN) has been exten-
sively applied to microwave device modeling, design and simula-
tions. In the present paper, the prediction of concrete embedded
antenna performance using ANN is presented. The ANN model
takes antenna embedded depth and concrete dielectric constant
as inputs and gives antenna radiation efficiency, gain and input
impedance as outputs. The Particle Swarm Optimisation (PSO)
is employed to search the global optimal weights and bias for
ANN, then Bayesian Regularisation (BR) is used to train the
ANN for overcoming the overfitting issue. It is found that the
PSO computation iteration for optimal network weights and
bias searching is less than gradient descent algorithm. A PSO-
BR neural network (PSO-BRNN) and back-propagation neural
network (BPNN) are trained to compute and predict the antenna
performance. The PSO-BRNN performance is better than BPNN
in terms of accuracy and generalisation.

Index Terms—Artificial neural network, Bayesian Regularisa-
tion, concrete embedded antenna, particle swarm optimisation.

I. INTRODUCTION

Mobile operators have experienced an exponential traffic

growth in their network in the last decade. Ultra dense cell

deployment is considered as a promising way to fulfil the

large amount of traffic demand that takes place indoors, and

the dense deployment of small cells in buildings facilitates

the improvement of throughput in the next generation of

cellular communication [1]. However, the physical dimension

of indoor small cells can lead to the extra space occupation

and disfunction of the building [2]. A feasible solution for

these issues is to integrate antennas with the building materials,

such as embedding antennas into concrete walls. In fact, due

to the strong coupling between antennas and concrete, it is

challenging to calculate and predict the antenna performance

once antennas are embedded. The numerical method based on

full-wave simulations (e.g. method of moments, finite element

analysis) can provide rigorous solution to the antenna perfor-

mance in concrete wall. However, the full-wave simulations

are computation-intensive, and requiring a large amount of

computation time and computer memory. As a result, time-

saving and fast surrogate models are required to address high-

dimensional and nonlinear electromagnetic problems.

Artificial neural network (ANN) has already been recog-

nised as a feasible tool for microwave modelling and sim-

ulation in recent years [3], which can learn and solve the
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Fig. 1. Antenna model geometry. The parameters of antenna unit are A=60
mm, W=33.85 mm, L=28.39 mm, x=8 mm, y=2.69 mm, w=3.12 mm, and
l=23.805 mm

complex and nonlinear problems in a relative short time. To

a certain extent, ANN could be used as a surrogate model

that substitutes the computationally intensive EM simulation

solver. By far, ANN have been successfully applied to various

antenna applications, such as antenna optimisation [4][5] and

antenna analysis and synthesis [6]. In [7], the ANN based

models were presented to compute the resonant frequency

of antenna with lower error. Generally, the gradient based

training algorithm such as back-propagation (BP) algorithm is

used in ANN training process. However, the slow convergence

ratio and local optimum issues are the main drawbacks of

gradient based algorithm [8]. As a result, the optimisation

algorithm such as particle swarm optimisation (PSO) [9] and

genetic algorithm (GA) [10] are combined with ANN and can

significantly improve the performance of ANN. In addition,

the PSO could also be applied to optimise the topology and

parameters in the ANN [8]. On the other hand, the overfitting

issue and generalisation capability are main concerns for ANN

model. In order to improve the accuracy of ANN, Early-

Stopping strategy and Bayesian Regularisation (BR) [11] are

introduced to address these issues, which prevents the over-

training occurring and effectively improves the generalisation

capability of network.

In the present work, ANN is utilised to compute and predict

the performance of a concrete embedded antenna for indoor



TABLE I
ELECTRICAL PROPERTIES AND THICKNESS FOR EACH LAYER

Layer Material ǫr tanσ Thickness (mm)

UF Roger 3003 3 0.001 d1 = 0.25mm

HC Air 1 0 d2 = 10mm

Substrate Roger 5880 2.2 0.0009 d3 = 1mm

LF Roger 3003 3 0.001 d4 = 0.25mm

communications. A hybrid ANN model with PSO, BP and

Bayesian Regularisation (PSO-BRNN) and a classic back-

propagation neural network (BPNN) are developed for the

computation and prediction. The performance of PSO-BRNN

in terms of accuracy and computational savings are compared

with BPNN, and the generalisation capabilities of PSO-BRNN

and BPNN are tested.

II. ANTENNA SYSTEM MODEL

An structurally integrated antenna with multi-layer configu-

ration that proposed in [12] is selected because of its excellent

mechanical and electrical performances. The antenna is fully

embedded in a solid concrete slab as shown in Fig. 1, and the

concrete has a dimension of 1000mm× 1000mm× 200mm.

The embedding depth d of antenna is measured as the distance

between the top concrete-air interface and the top surface

of the antenna. The effect embedding depth d and concrete

dielectric constant ǫr on antenna performance are going to

be investigated, thus other electrical property such as loss

tangent is fixed to 0.03 (tan δ = 0.03). The proposed antenna

is optimised to operate at 3.5 GHz, and it is sandwiched

among lower facesheet (LF), a honeycomb (HC) structure and

an upper facesheet (UF) for obtaining better electrical and

mechanical characteristics in the concrete wall, the electrical

properties and thickness of each layer are listed in Table I.

III. ANN ARCHITECTURE AND TRAINING

A. ANN construction and data preparing

Neural network is a powerful tool to map the nonlinear

and complicated relationship between inputs and outputs. In

the present work, ANN model is used for the prediction of

proposed antenna performance while embedded in the concrete

wall. For the concerned input variables, the antenna embedding

depth d and the concrete dielectric constant ǫr are selected,

while the antenna’s radiation efficiency ηrad, gain G, input

resistance Rin and input reactance Xin are considered as

outputs. Therefore, the suggested network architecture consists

of one hidden layer, 2 input neurons and 4 output neurons as

shown in Fig. 2. The hidden layer consists of 75 neurons which

are fully connected to the output layer that gives the desired

values of antenna performance. The activation function used in

hidden layer is tangent sigmoid, while simple linear function

is used in the output layer.

Given a data set D = [xj , yj ]
T consists of inputs vector xj

and outputs vector yj , a supervised nonlinear regression task

is going to be solved by ANN. The relationship between the

inputs vector and the outputs vector could be written as:

yj = f(xj), (1)

…
 …
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Fig. 2. Architecture of neural network model

where the corresponding inputs and outputs of ANN model

are:

xj = [d, ǫr]
T , (2)

yj = [ηrad, G,Rin, Xin]
T . (3)

The range of inputs are 0.001 m to 0.189 m with step width

of 0.002 m for the embedding depth d, and 4 to 9 with step

width of 1 for the concrete dielectric constant ǫr. The data set

D is generated using Computer Simulation Technology (CST)

Studio. The length of D is 570, all the obtained data have

been normalised between 0 and 1 for avoiding the error caused

by different order of magnitude. The data set D is randomly

divided as training set and testing set, wherein, 85% data are

classified as training set and the rest of 15% are testing set.

All the optimisations and ANN trainings are performed on an

Intel Xeon W2135 3.70 GHz machine with 32 GB RAM.

B. PSO and ANN

The conventional ANN utilises the gradient based method to

train generally, and the convergence of ANN strongly depends

on the initial guess of weights and bias. BP algorithm is a well

known training method for neural networks, it is based on the

gradient descent algorithm. Hence, the initial point of weights

and bias is essential for the BP training, if the weights and

bias are not initialised properly, the results are likely to get

stuck in a local optimum and consequently the solution is not

the best.

PSO is a random search algorithm based on group cooper-

ation, which is developed by emulating the foraging behavior

of birds. It is an effective evolutionary algorithm that can find

the global maximum or minimum of target function. In this

study, the mean square error of neural network is taken as the

evaluated fitness in PSO, which is calculated as:

E =
1

N

N∑

1

k∑

1

(ŷj − yj)
2, (4)

where ŷj is the network outputs vector, yj is the outputs vector

of data set D, N is the total number of data, k is the total

number of output. In the present work, the N and k are 570

and 4, respectively.

(4) is the target function that needs to be optimised in PSO.

Since the neural network learning process is mainly to update

the weights and bias, thus the location of the particles in PSO

are corresponding to all weights and bias in the network. E



TABLE II
PSO PARAMETERS

Parameter value

Number of particle 500
Position boundry [-1,1]
Velocity boundry [-0.8,0.8]

inertial weight [0.2,1]
learning factor c1 2
learning factor c2 2

Maximum iteration 700

is taken as the fitness function of the PSO algorithm, and all

the weights and bias are optimised by PSO algorithm in order

to obtain the global minimum of the fitness function. In each

iteration, the fitness function of each particle is calculated,

and the corresponding position Pi and velocity Vi are updated

according to the calculated value of fitness function, personal

best pbest and global best gbest, and the updated regulations

are:

Vi = ωVi + c1φ1(pbest − Pi) + c2φ2(gbest − Pi), (5)

Pi = Pi + Vi, (6)

where c1 and c2 are acceleration coefficients, φ1 and φ2 are

random and positive number with uniform distribution ranged

between 0 and 1, pbest is the personal best position of particle,

and gbest is the global optimum position of particle. ω is the

inertial weight, the linear decline weight (LDW) strategy is

used to manipulate ω for the optimum solution search. The

larger ω facilitates global searching, while the smaller ω is

beneficial to precise local searching. The LDW strategy is

expressed as:

ω = ωmax −
t× (ωmax − ωmin)

tmax

, (7)

where ωmax is the maximum inertial weight, ωmin is the

minimum inertial weight, t is current iteration, and tmax is

the maximum iteration of PSO.

At the beginning, the ANN is building with specific topol-

ogy, thus the dimension of particle can be determined. The

dimension of each particle equals to the total number of

weights and bias in the network, in this work we implement a

PSO to optimise 529 weights and bias in total. 500 particles are

employed and the computation iterates 700 times. Firstly, the

number of particle is selected, then the particle positions and

velocities are randomly initialised, each particle i is charac-

terised by its position vectors Xi and velocity Vi. The position

boundry [−Xmax, Xmax], velocity boundry [−Vmax, Vmax],

inertial weight range [ωmin, ωmax], acceleration coefficients

c1 and c2, and the maximum iteration are defined, and these

parameters are presented in Table II.

In each iteration of PSO, the value of fitness function of

individual particle is calculated, and the velocity and position

of all particles is updated using (5) and (6). Once the op-

timisation criteria meets, the PSO iteration terminates. gbest
stores the global optimum solution for the network weights

and bias, then the gbest is reshaped and assigned according to

the topology of network which is prepared to be trained.

StartCode weights and bias as 

particles

Determine the number of 

initial weights and bias

Initialise weights and bias in 

ANN

ANN training error as fitness 

value

Find pbest and gbest

Update the particle velocities 

and positions using (5) (6)

Calculate fitness of particles 

using ANN feedforward 

computation 

Update pbest and gbest

Minimum 

fitness?

No

Initialise particles with 

random positions and 

velocities

Yes

Calculate the training 

errors ED

Calculate fitness value using 

ANN feedforward 

computation 

Evaluate errors

NoTraining goal 

meets?

End

Yes

Obtain optimal weights and 

bias from PSO (in gbest)

Update ANN weights and 

bias

Calculate MSE of weights Ew

Fig. 3. The training process of PSO-BRNN

C. Bayesian regularisation of ANN

The Bayesian regularisation (BR) is used to mitigate the

potential overfitting problem that may occurs in ANN training

process. The overfitting and overtraining can lead to the loss

of regression accuracy and generalisation of the network. For

the purpose of overcoming overfitting issue, the BR adds an

addition regularisation term to the object function as:

F = βED + αEw, (8)

where the F is the objective fucntion, ED is the sum of

squared errors of network, Eω = 1

m

∑m

i=1
w2

i is the sum

of squared errors of the weights in network, m is the total

number of weights. α and β are the hyperparameters that need

to be estimated in the training process. Network weights ω are

regarded as random variables and the density function could

be written as:

P (w|D,α, β,M) =
P (D|w, β,M)P (w|α,M)

P (D|α, β,M)
, (9)

where D represents data set, and M is the ANN topol-

ogy; P (w|D,α, β,M) is the posterior distribution of ANN

weights, P (D|w, β,M) is the likelihood function represents

the training data occurrence probability with given weights,

P (w|α,M) is the prior density of weights before data is fed.

The BR algorithm is explained in detail in [10]. In general, all

the noise in data is assumed to be Gaussian additive noise, with

this assumption the probability density function of weights

in (9) could be estimated. Then the hyperparameters α and

β are determined by solving the Hessian matrix of F at the

minimum point. Gauss-Newton approximation is used to solve

Hessian matrix while the Levenburg-Marquardt (LM) training

algorithm is used to search the minimum point, the training

process terminates once the training goal is met. The flow chart

summarizing major step of PSO-BRNN training is shown in

Fig. 3.



0 100 200 300 400 500 600 700

Training iteration

10
-2

10
0

10
2

10
4

M
ea

n
 s

q
u
ar

e 
er

ro
r 

(M
S

E
)

BP best

PSO best

Fig. 4. Comparison between PSO and BP algorithm

TABLE III
TRAINING METRICS OF THE DIFFERENT ALGORITHM

Algorithm MSE MAPE (%) Iteration Time (s)

BPNN 0.15 3.92 1984 270
PSO-BRNN 0.0002 1.79 1076 151

IV. RESULT AND DISCUSSION

PSO are used for ANN learning process, weights and bias

are adjusted in order to reach the minimum of the error

between ANN estimation and actual values. The training effect

of PSO is compared with the BP algorithm, the comparisons

of convergence and regression accuracy are exhibited. Fig. 4

presents the comparison of PSO and BP algorithm in terms

of convergence rate. It can be observed that PSO performs

better than the BP algorithm. PSO converges faster than

BP algorithm, and the iteration is terminated with a lower

mean square error (MSE) and mean absolute percentage error

(MAPE) which is calculated in (10). The training metrics such

as performance, accuracy and training time are illustrated in

Table III. It apparently shows that the MSE of PSO-BRNN

is much lower than the classic BPNN, with 0.0002 to 0.15,

as well as the error ratio, 1.79% to 3.92%. In addition, by

applying the PSO and Bayesian regularisation, the iteration

times of convergence is lower than BPNN, thus result in the

reduction of training time of PSO-BRNN (151 seconds) than

BPNN (270 seconds).

MAPE =
1

N

N∑

1

k∑

1

|
ŷj − yj

yj
| × 100%, (10)

Fig. 5 presents the antenna performance prediction results

of PSO-BRNN and BPNN with the actual value as reference.

It can be observed that the learning accuracy of PSO-BRNN is

better than the BPNN, the BPNN cannot map the fluctuation

as the embedded depth increases. This problem is caused

by the local minima issue, once a network is trained with

gradient descent based algorithm, the local minima is likely

to be considered as the best result by network. Therefore the

error between network estimation and actual value cannot be

further minimised, then the weights and bias in the network

stop adjusting and maintain in a plateau. While the PSO-

BRNN is trained with optimum weights and bias, so it can map

the nuanced fluctuation of the antenna performance, which

indicates the learning ability of PSO-BRNN is better.

The generalisation capability is essential for networks, and

the performance of network is mainly measured by its gener-

0 0.05 0.1 0.15 0.2

Embedding depth (m)

20

40

60

R
ad

ia
ti

o
n

 e
ff

ic
ie

n
cy

 (
%

)

BPNN

PSO-BRNN

Actual value

0 0.05 0.1 0.15

Embedding depth (m)

4

6

8

G
ai

n
 (

d
B

i)

BPNN

PSO-BRNN

Actual value

0 0.05 0.1 0.15 0.2

Embedding depth (m)

20

30

40

50

In
p

u
t 

re
si

st
an

ce
 (

)

BPNN

PSO-BRNN

Actual value

0 0.05 0.1 0.15 0.2

Embedding depth (m)

-20

-10

0

10

In
p

u
t 

re
ac

ta
n

ce
 (

)

BPNN

PSO-BRNN

Actual value

Fig. 5. Comparision of BPNN prediction, PSO-BRNN prediction and actual
value for the antenna performances
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Fig. 6. Generalisation capability comparision of BPNN and PSO-BRNN

alisation capability. For testing the generalisation capability

of trained ANN model, the data other than that used in

training process is introduced. The selected embedded depth

d and dielectric constant ǫr are exclusive from the data set

D, the d is sampled with step width of 0.004 m and ranged

from 0.001 m to 0.189 m, and the ǫr is 4.5. The outputs of

different networks are obtained and depicted in Fig. 6. The

PSO-BRNN gives rational responses to the new inputs vector,

the antenna performance curve tendency is agree with the

actual values. The BPNN performs poorly when a novel inputs

is fed, the regression curves of BPNN are diverged beyond

the point where d approximates to 0.07 m, and its MSE of

generalisation is larger than PSO-BRNN, which are 30.46 and

12.64, respectively.

V. CONCLUSION

In this paper, the ANN-based method has been presented

to predict the performance of concrete embedded antenna.

A hybrid ANN (PSO-BRNN) is trained to predict the per-

formance of concrete embedded antenna, and the training

metrics are compared to the BPNN. The PSO algorithm is

utilised to search for the global optimum weights and bias

for ANN, and the BR algorithm is employed to overcome the

overfitting issue of ANN. Compared to BPNN, PSO-BRNN



exhibits an more accurate and efficient manner in computation

and prediction, and leads to a reduction in MSE and iteration

times. The generalisation capability of different networks is

tested with the new inputs vector, the outputs of PSO-BRNN

reveals an excellent generalisation capability, and its learning

ability excels BPNN. The result indicates that the PSO-BRNN

is an effective method for the concrete embedded antenna

performance prediction for indoor communication.
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