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Flexible Learning Models Utilizing Different Neural

Plasticities
Lingling An, Ye Yuan, Yunhao Liu, Fan Zhao, Quan Wang and Jian K. Liu

Abstract—The existing models for vestibulo-ocular reflex
(VOR) and optokinetic response (OKR) learning utilize neural
circuit structure and capture a few characteristics of these two
learning systems. However, it remains unclear how the error
signals guide these learning processes. Here, we propose novel
dynamic learning models using error feedback in a flexible
fashion to account for both VOR and OKR learning. We first
used a feedback modulation model and found the error signals
play an essential guiding role in gain compensation of wild-
type mice. However, this feedback modulation model cannot
accurately reproduce gain changes during the recovery period.
Therefore, we propose a non-uniform feedback modulation model
using flexible plasticity learning rules of different memory sites
to take into account the effect of classical linearity models in
both training and recovery periods. To further study learning
characteristics of gain reduction, we introduce a reversal-phase
feedback modulation model and explore the contribution of
synaptic plasticity to adaptive learning, in which characteristics
and bidirectional synaptic plasticity in the VOR-decrease learning
mode can be fully recovered. Taken together, our results suggest
that, to explain VOR and OKR learning systems, one needs
dynamical models with flexible and multiple components at
different or same sites of neuronal circuits.

Index Terms—Vestibulo-ocular reflex (VOR), optokinetic re-
sponse (OKR), synaptic plasticity, feedback modulation, learning

I. INTRODUCTION

T
HE cerebellum contains roughly half of all neurons in the

brain [1], yet it has a relatively simple circuit architecture

with a few types of neurons, which makes it a tractable model

for studying the dynamics and function of neurons and neural

circuits [2]–[6]. Although the architecture of cerebellum is

simple, it plays an important role in a variety of motor and

cognitive functions [7], such as vestibulo-ocular reflex (VOR)

[1] and optokinetic response (OKR) [8]. The VOR circuit uses

head movement information and visual feedback information

to continuously calibrate eye movements to reduce visual

errors, which come from the retinal image slip caused by

animal’s head movement. The VOR gain [9] is the amplitude
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of eye movement in VOR, which is calculated as dividing the

subject’s eye movement rate by the head movement rate in

experiments. VOR gain-adaptation is the process of continuous

calibration of VOR gain by the VOR circuit with gain-increase

and gain-decrease modes. When the head movement direction

is opposite to the visual target movement direction, it causes

an increase in VOR gain, otherwise there is a decrease in VOR

gain [10]. Similar to VOR, the OKR gain is the ratio of visual

screen movement rate to eye movement rate with the same

change induction rules [11]. Experimental results suggested

that the stabilization of retinal imaging needs to consider the

effects of both VOR (spatial stability) and OKR (visual scene

stability) [12], [13].

For the cerebellum, Purkinje cells (PCs), as the only output

cells the cerebellum, receive excitatory inputs from granule

cells (GCs) and inhibition inputs from molecular layer in-

terneurons (MLIs) [14]–[18]. On the other hand, GCs, as the

only input cells of the cerebellum receive sensory information

via their synapses, named mossy fibers [4]. As a result, PCs

receive sensory information from GCs via their synaptic con-

nections, named parallel fibers [19], and also collect feedback

information from vestibular nucleus (VN) via their synaptic

connections, named climbing fibers (CFs) [20]. The interaction

between these cells and synapses shape the learning process

involved in the cerebellum [18].

It has been suggested that there are two branches of VOR

loops [3], [21], in one loop vestibular information is through

MFs to PFs and then to PCs projecting to the VN, in the

end, the VN delivers information to extra-ocular motor neu-

rons. In another loop the vestibular system directly translates

information to VN producing the command to motor neurons.

Studies have shown that the conjunction of CFs and PFs can

induce long-term depression (LTD) [22], [23] or long-term

potentiation (LTP) [10], [19] on the synapses between PFs and

PCs, resulting in the change of VOR gain. A simple linearly

filtered cerebellar model can explain some observations of

VOR [24]. Although the existing VOR adaptive models can

effectively describe the VOR learning, there are still remaining

issues unclear. First, models reproduce the learning in the

cerebellum well [14], [25], [26], but they do not have a

feedback circuit revealing the teacher effects of CFs to the

adaptability of learning [27], [28]. Then, models only consider

a linear form for the consolidation of memory learning [24],

[26]. However, experimental data show that this incremental

approach is too simple to match observations well. Moreover,

physiologic studies have shown that the increase and decrease

in the VOR gain could be due to a bidirectional plastic mech-

anism at the same synaptic site [10], [29], which however,
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results in a divergence of VOR adaptive models [30], [31].

In this study, we propose a set of unified dynamic models

to capture flexible learning in VOR and OKR. It is generally

believed that the feedback loop in VOR from lower olive

through CF to PC plays a role in error signals [27], [28],

therefore, we propose a feedback modulation model to include

the CF error signals that are considered to be balanced values

of LTP on the PF-PC synapse and CF activity. We found

adding the feedback loop to the existing VOR model can

further optimize the VOR adaptive learning gain. We then

propose a non-uniform feedback modulation model to take

into account long-term learning with an incremental rate of

synaptic plasticity, where the sensitivity of LTD between PF-

PC and LTP between MF-VN obeys the normal distribution.

Finally, we propose a reversal-phase feedback modulation

model, in which we implemented the bidirectional plastic

mechanism in MF-VN synapses and considered this to be the

trigger of the intrinsic change in gain. We further deduced

that the change of MF-VN synaptic weights in reversal-phase

training mode was the equilibrium value of PF-PC synaptic

weights and the synaptic weights of the intermediate molecular

layer. With these models, we provide a dynamic yet flexible

framework accounting for both VOR and OKR learning.

II. METHODS

In this section, we first introduce a learning model of

the cerebellum based on the anatomical and morphological

results, including the feedback modulation model(FMM) and

reversal-phase feedback modulation model(RFMM). Physio-

logical studies have shown that the increase and decrease of

the VOR gain is due to the stimulation of different learning

mechanisms at the same synaptic site [10]. Therefore, we con-

sider the plasticity mechanism of the PF-PC synapses and MF-

VN synapses in FMM and RFMM. The model well describes

the bidirectional plasticity mechanism in the reflective circuit,

and can simulate the VOR reduction mode and the gain of eye

movement changes in the large mode. Then, we propose a non-

uniformity feedback modulation model(NFMM) to describe

the non-linear change law of the synaptic plasticity LTD

and LTP learning rate. Finally, we construct the error signal

mediated by CF and intend to add it to the FMM to test

whether it has a guiding effect on the VOR system.

A. Neural Model

Similar to the previous work [26], the neural activity νV N (t)
of vestibular nuclei (VN) was modeled as

νV N (t) = wMF−V N (t)νMF (t)− νPC(t) + νV N,0 (1)

where νMF is the input activity from mossy fibers (MFs),

and νPC is the neural activity from Purkinje cells (PCs).

wMF−V N (t) represents synaptic dynamics between MFs and

VNs. νV N,0 is the spontaneous activity of VN neurons.

PCs receive excitatory inputs from granule cells (GCs)

and inhibitory inputs from molecular layer interneurons

(MLIs) [32], [33], so the neural activity of PCs was modeled

as

νPC(t) = wPF−PC(t)νGC(t)− νMLI(t) + νPC,0 (2)

where νGC is the neural activity from GCs, and νMLI is the

neural activity from MLIs. wPF−PC(t) represents synaptic

dynamics between GCs and PCs. νPC,0 is the spontaneous

activity of PCs. As MLIs receive excitatory inputs from GCs

directly, the neural activity of MLIs can be directly modulated

by GCs with a static weight, and was modeled as νMLI(t) =
wMLIνGC(t), where wMLI represents the synaptic weights

between GCs and MLIs.

For simplicity, the activity of GCs is assumed to the

same as MF inputs, νGC(t) = νMF (t). Experimental studies

have shown that the MF activity is related to optokinetic

stimulation, such that the peak modulation amplitude of the

screen speed is as large as its average amplitude, and the peak

of neuronal dynamics is a characteristic event excited at a

certain time [34]. Thus the MF activity can be modeled as

asνMF (t) = 1+sin( 2πt
T

) during the head rotation, otherwise,

it is the constant 1.

B. Feedback Modulation Model

The feedback modulation model (FMM) involves the impact

of CF signals in the feedback loop on learning to establish the

feedback regulation mechanism and more accurately represent

the learning rule. We used a feedback signal, i.e., the error

signal from the inferior olivary nucleus backed to CFs target-

ing to PCs as in Fig. 1. In the neural circuit, CFs originate

from the inferior olivary body passing through the cerebellar

cortex and provide strong excitatory synapses for PCs and

other inhibitory interneurons. The CF error signals act as a

motion command and in turn act on a controlled target. It has

been suggested that the retinal error signal is the net difference

between the head rotation provided by the vestibular organ and

the eyeball information that represents the perceived error of

retinal modulation [35].

In order to study the guiding role of error signals, we

propose a new model for error signals. In this model, the

error signal is generated by the lower olive body and trans-

mitted to the PCs through CFs, and finally to the VN. The

error signal guides the PF-PC plasticity learning through the

feedback loop. Therefore, the CF signal can be considered as

proportionally related to the change of the LTP and the GC

activity of the PF-PC plasticity site [25], as follows,

e(t) = η×νMF (t)−ς×wPF−PC(t)×νMF (t)+ρ×νCF (3)

where η, ς and ρ represent impact factors with values of 1.86,

0.75 and 0.5, respectively, to match the physiological data as

previously [25]. wPF−PC(t) represents the influence factor of

the MF activity on PCs. νCF is the CF activity following an

exponential distribution λn

n!
e−λ with λ = 1.

Recent studies suggest that multiple synapses in the cere-

bellar cortex are involved in memory formation, including the

LTD on PF-PC synapses to explain short-term PC memory

during 1 hour training, whereas the LTP on MF-VN synapses

to explain the repeated VN long-term memory formed after 1

hour training, i.e., learning after the transfer of the memory

from cerebellar cortex to the brain stem [14]. Thus, we propose

a learning model including two parts: the MF-VN and PF-PC

synaptic plasticity.
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We used a simplified formula for the MF-VN synaptic

plasticity as

dwMF−V N

dt
=

1

τMF−V N

(−wMF−V N (t) + wMLI) (4)

For the PF-PC synaptic plasticity, physiological experiments

show that in the recovery phase, because the observed object

is in the dark, there is no visual information input, so no CF

error signal in the feedback loop is generated. Thus, in the

recovery phase, the PF-PC synaptic plasticity is only related to

the spontaneous decay of the PF-PC synapse and the activated

LTP of GCs. The complete PF-PC synaptic plasticity learning

rule can be written as follows:

dwPF−PC

dt
=















1

τlearn

( −wPF−PC(t) + w0

−ϕV OR (t)) During
1

τrecov
( −wPF−PC(t) + w0)

After

(5)

where τlearn and τrecov are the time constants during and

after training, τlearn = 1/3 hours and τrecov = 2.5 hours. w0

represents the only activated LTP of GCs. ϕV OR (t) represents

the LTD caused by the combination of GCs and CFs, so we

simplified ϕV OR (t) = θMF (t)θCF (t). θMF (t) and θCF (t)
describe the fluctuation of the MF activity and the CF activity

around the mean, respectively, which can be calculated as

θMF (t) = νMF (t) − νMF , and θCF (t) = e(t) − e, where

νMF = 1, e = 1. Therefor, the learning rules of the

MF-VN synaptic weight wMF−V N (t) and PF-PC synaptic

weight wPF−PC(t) have been effectively expressed, setting

νV N,0= 1, νPC,0= 1, w0= 1, wMLI = 1 and τMF−V N = 5.5
hours.

In the VOR-OKR neural system, the gain is the ratio of

the output signal rate to the input signal rate. As the final

output is the VN activity, following the notation as in [26], eye

movement was defined to be in proportion to the modulatory

activity of the VN(t) in response to the sinusoidally oscillating

screen:

Eye(t) = geyeδMF (t)(wMF−V N (t)−wPF−PC(t)+wMLI),
(6)

where geye is a constant to translate the neuronal activity to

eye movement. δMF (t) is the fluctuation around the mean.

The VOR-OKR gain is defined as the maximum amplitude of

the eye movement with respect to the screen oscillation whose

amplitude to 1 without loss of generality. Thus, the VOR-OKR

gain can be defined as follows:

g(t) = geye2∥δMF (t)∥(wMF−V N (t)−wPF−PC(t)+wMLI),
(7)

and can be further rewritten as

g(t) = g0(wMF−V N (t)− wPF−PC(t) + wMLI) (8)

where ∥δMF (t)∥ is the max of δMF (t). g0 =
geye2∥δMF (t)∥ representing the scale constant and the size

is determined by the initial gain value. g0= 0.3 was used here

as in the experiment [26].

C. Non-uniform Feedback Modulation Model

Using the FMM above, it can be seen that, when the neural

system is in the learning stage, the gain value increases at a

constant speed with time, in other words, the synaptic plastic-

ity increases or decreases linearly with time. However, experi-

mental data show that the gain value grows non-uniformly with

a growth rate increasing gradually in a certain period, and then

decreasing gradually to zero [36], [37]. Therefore, we propose

a non-uniform feedback modulation model (NFMM) assuming

that the learning rates of synaptic plasticity at both PF-PC and

MF-VN are not static but normally distributed, such that the

non-uniformity of learning is considered, and experiment data

are more reasonably simulated.

Specifically, the iterative formula of PF-PC synaptic weights

is as follows:

dwPF−PC

dt
=















1

τlearn

h(t)( −wPF−PC(t) + w0

−ϕV OR (t)) During
1

τrecov
h(t)( −wPF−PC(t) + w0)

After

(9)

where h(t) is a kernel function that adjusts the iterative rule

of PF-PC synaptic updates as h(t) = 19.09τ exp(−(t −
τ)2/98τ2). τ = 24 hours, the parameters 19.09 and 98 are

the optimized values to give the best fitting.

Similarly, we also used h(t) to adjust the LTP learning rate

of MF-VN synaptic plasticity. The learning rule of MF-VN

synaptic plasticity is

dwMF−V N

dt
=

1

τMF−V N

h(t)(−wPF−PC(t) + wMLI) (10)

The gain was computed in a similar way, except that the

synaptic weight w exhibits nonlinear growth instead of linear

growth.

D. Reversal-phase Feedback Modulation Model

Motor learning must be able to increase or decrease the

amplitude of motion to accommodate the changes of the

environment. Physiological studies have shown that the in-

crease and decrease in gain is due to the different learning

mechanisms that excite in the same synaptic site. In the

gain-decrease training, MFs and PCs are activated at the

same time, while in the gain-increase training, MFs and PCs

have only one activated neuron [38]. Thus we propose a

reversal-phase feedback modulation model (RFMM), such that

the bidirectional plastic mechanism in MF-VN synapses was

realized, and different learning mechanisms were excited at

this site in both decrease and increase modes.

FMM and RFMM share the same loop of neural circuit,

but inspire different LTD and LTP in different learning modes.

Therefore, the expression of neural activity in RFMM is the

same as that in the in-phase learning model except for the

PCs and VN activity. We re-established the expression of PC

and VN activity. PCs are still directly stimulated by PFs and

MLIs, and they have spontaneous inhibitory activity as

νPC−rever(t) =wPF−PC(t)νGC(t)

+ νMLI(t)− νPC,0

(11)
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where wPF−PC(t) represents the synaptic plasticity LTD of

PF-PC synapses. νPC,0 indicates the PC spontaneous activity.

PCs receive excitatory inputs from PFs and inhibitory inputs

from intermediate neurons. In the reversal-phase learning

model, the effect of PCs on VN in the gain-decrease stage is

exactly opposite with the gain-increase stage. The VN activity

can be expressed as

νV N−rever(t) =wMF−V N (t)νMF (t)

+ νMF (t) + νV N,0

(12)

where wMF−V N (t) stands for LTP between MF-VN synapses.

νV N,0 indicates the activity of VN.

PF-PC synapses and MF-VN synapses are still responsible

for motor learning, but the plasticity of excited synapses is

very different. The learning rules of PF-PC synapse in the

gain-decrease learning mode are as

dwPF−PC

dt
=















1

τlearn

( −wPF−PC(t) + w0

−ϕV OR (t)) During
1

τrecov
( −wPF−PC(t) + w0)

After

(13)

where w0 = 1 is the spontaneous activity of MFs, wPF−PC(t)
is the spontaneous decay of synapses, and ϕV OR(t) represents

the LTD excited by GCs and CFs. It is known from experi-

ments that, when MF and PC are simultaneously activated

or resting at the same time, synaptic weights from MFs to

VNs decrease; when only one of the two is activated, synaptic

weights from MFs to VNs increases. Therefore, the expression

of learning plasticity at MF-VN synapses in the gain-increase

learning mode is

dwMF−V N

dt
=

1

τMF−V N

(wPF−PC(t)− wMLI) (14)

According to the definition of gain, the expression of decreased

gain in the reversal-phase learning mode is

gd(t) = gd0(wMF−V N (t)− wPF−PC(t) + wMLI) (15)

where gd0=0.35 was used in simulations.

III. RESULTS

A. Neural Circuit of the VOR and OKR Learning

The neural circuitry involving the VOR and OKR learning

is illustrated in Fig. 1, where the cells and fibers play an

indispensable role. MFs, as the input systems, penetrate the

granular layer of the Cerebellum and convey information from

the vestibular system to the cerebellar cortex. PFs transmit

the information of the granular layer to PCs, which are the

important information transfer units. The axons of PCs are

the only output of the cerebellar cortex and form inhibitory

synapses with cerebellar nucleus cells. VN receives inhibitory

signals from PCs and excitatory signals of MFs, then pro-

cesses the information to send the resulting information to

external motor neurons, which is the central processor in the

VOR/OKR system.

VOR learning modes can be divided into the VOR-increase

and VOR-decrease modes according to the relative direction

of head movement and visual target movement. In the VOR-

increase mode, the direction of the subject’s head is opposite

to the target, which will cause an increase in VOR gain; in the

VOR-decrease mode, the direction of the subject’s head and

the direction of target’s are the same, which will cause the

VOR gain to decrease (phase reversal) [26]. Here, the VOR

gain is defined as the ratio of the eye movement rate of the

observer to the head movement rate, reflecting the strength of

VOR adaptive learning [Fig.1(b)]. VOR and OKR are operated

in a similar way, except that MFs mediate optokinetic signals

and vestibular signals, respectively.

PC

GCs

VN

MFs

head/screen movement

CF

eye movement

PF

vestibular/optokinetic

signals

error

signals

IO

-

MLIs

VOR gainsignal phase

increase

decrease

+ excitatory

inhibtatory

-
+

in-phase

reversal-phase

VOR OKR VOR gain VOR gain

(a) Neural circuitry of VOR and OKR learning

(b) Schematic representation of VOR gain

Fig. 1. Illustration of neural circuitry of VOR and OKR learning. (a) During the VOR-

increase period, the decrease in the excitation rate of PCs causes the VN to receive the

inhibitory signal from the PC, which is out of phase with the excitation signal from

the MF, and leads to an increase in VN response and VOR gain. On the contrary, CF

increases the excitation rate of PCs during the VOR-decrease period, which caused the

inhibitory signal from PC and the vestibular excitation signal from MF in phase, resulting

in a smaller VN response and a decrease in VOR gain. Other elements of VOR gain

adaptation and OKR gain adaptation are the same except that MFs mediate vestibular

signals and optomotor signals, respectively. Therefore, the VOR gain adaptation model

is also suitable for OKR gain adaptation with modifying the signal mediated by MFs. (b)

Schematic representation of VOR gain. In the experiment, turn the mouse’s head in the

dark can cause VOR (1st from left); Fix the mouse’s head and swipe the screen in front

of the mouse can cause OKR (2nd from left). When the direction of screen movement

and head movement are the same, VOR gain will increase, otherwise will decrease.

In this study, we first simulated the gain change of the

eye movement of wild-types mice in the VOR-increase mode

through the feedback modulation model (FMM). Compared to

the previous model [denoted as Yamazaki model, [26]] without

feedback modulation, our results demonstrate that the CF has

a significant guiding effect on the VOR leaning. However,

neither the Yamazaki model nor the FMM can accurately

fit the experimental results of the recovery period. There-

fore, we developed the non-uniform feedback modulation

model(NFMM), which can reconstruct the staged non-uniform

learning mechanism of PF-PC and MF-VN synapses. The
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NFMM can better explain the effects of interval training and

concentrated training on the formation of long-term memory.

The NFMM is comparably with the Yamazaki model to

describe experimental results of different training protocols.

Finally, we simulated the gain changes of eye movements

in the VOR-decrease mode through reversal-phase feedback

modulation model (RFMM) and achieved the two-way plas-

ticity mechanism between MF-VN synapses, that is, different

learning mechanisms are stimulated at the same site with

different modes.

B. The Guiding Effect of the CF Error Signal on the OKR

Learning

The FMM model combines the LTD of PF-PC synapses

and the LTP of MF-VN synapses. The MF-VN synapses

update synaptic weights according to the correlation between

the pre-synaptic MF activity and post-synaptic VN activity.

Compared to the Yamazaki model, the FMM innovatively

considers the effect of the CF signals in the feedback loop on

learning, establishes a feedback adjustment mechanism, and

more accurately represents the VOR learning rule. The VOR

learning and OKR learning have the similar circuit structure,

cell activity, and synaptic learning rules. The difference is that

the input signal of OKR is the optokinetic signal instead of

the vestibular signal. Therefore, the proposed VOR adaptive

learning model, the FMM, is also applicable to the OKR. The

experimental data used in this section come from the data used

in the Yamazaki model, which is derived from the average

value of the OKR experimental gain of a group of mice (12

mice) [26].

We simulated the OKR learning of this group of mice

through the FMM model, and the results show that the initial

gain is 0.3, the 1 hour training on the first day cause that

the gain rapidly increase to 0.12. After the training, the gain

gradually decrease and reaches a stable value within 23 hours.

These results show that the 1 hour training can form a short-

term memory that disappears within 1 day. In other words,

the OKR gain does not immediately return to the level before

training after each training session. After 5 days of repeated

training, the OKR gain gradually increased to 0.55, indicating

that the period of 5-day training form a long-term memory

[Fig. 2(a)]. The results from the feedback model simulation

here perfectly fit physiological experiment data. Furthermore,

the feedback adjustment mechanism more accurately fits the

OKR learning during training. It can be seen that after the

third day, the model does not reach the experimental data after

training, and the FMM is closer to the experimental data, with

a linear correlation coefficient as 0.98 and the summed square

of error as only 0.0019.

Then we observed the changes in the weights of PF-PC

and MF-VN synapses [it’s change trend is similar to Fig.

2(b)]. The PC-PF synaptic weight is repeatedly reduced five

times and can be completely recovered. Instead, the weights

between MF and VN synapses increase day by day, mainly

during the recovery period. The MF-VN synaptic weights only

increase a little during training. After that, the weight continue

to increase to a larger value, indicating that the weight change

0.6
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Fig. 2. Experimental data of OKR training explained better by NFMM. (a) Time course

of experimental data fitted by the Yamazaki model, FMM, and NFMM. (b) Time course

of synapse weight in NFMM. v is the weight of MF-VN and w is the weight of PF-PC.

(c) Errors indicated by the Manhattan distance between experimental data (gray data

points in (a)) and different modeling data (colored data in (a).

mainly occurs after training. These results indicate that the

PF-PC synapse stores short-term memory, which is formed

during the 1-hour training and decays within 1 day; on the

contrary, the MF-VN synapse stores long-term memory that

passes the repeated training and can last up to several days. It is

worth noting that the MF-VN synaptic weights did not deviate

to infinity or decay spontaneously to 0 after training. The

continuous increase of MF-VN weights indicates the formation

of long-term memory.

These results suggest that the simulation of the FMM in
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the VOR-increase learning stage has reached a very precise

effect. In order to illustrate the superiority of the FMM, the

error, quantified by the Manhattan distance, of the Yamazaki

model and the FMM model are calculated separately, and the

correlation between the simulation results of the two models

and physiological experimental data [Fig. 2(c)] are compared.

The difference between the FMM and the Yamazaki model

is significantly. The error distance is significantly reduced,

indicating that the model proposed in this paper is superior

to the Yamazaki model, and the CF error signal has a clear

guiding effect. The VOR learning model FMM established the

feedback adjustment mechanism that can discribe the VOR

learning more accurately.

It is not difficult to find that, from the simulation results of

the FMM, although the OKR gain of FMM can reach the peak

after the training period, it can not fit the learning of the recov-

ery period very accurately, which means the synaptic plasticity

of the recovery period is insufficiently decayed. Therefore,

we propose the NFMM based on the FMM. The NMMM

assumes that the learning rate of the synaptic plasticity of

the LTD between PF-PC synapses and the LTP between the

MF-VN synapses are not uniformed, but following a normal

distribution. We found this heterogeneous learning rates can

further improve the fitting of physiological experimental data.

From the experimental results obtained by the NFMM [Fig.

2(a)], it can be seen that through the first day’s training, the

average VOR gain of wild-type mice increase to 0.38 after the

training period, then gradually decrease to 0.32 after a 23-hour

recovery period; through the second day of training, the gain

reaches to 0.47 after the training period, and then gradually

decrease to 0.36 after 23 hours; a five-day cycle produces a

process in which the gain first increase and then gradually

decrease. It can be clearly found that in both the training

period and the recovery period, the NFMM shows a good

fit to physiological experiment data, particularly capturing the

dynamical time course of neural activity. The recovery period

is obviously closer to the actual situation.

Fig. 2(b) shows the changes of PF-PC and MF-VN synaptic

weights in the NFMM. The PC-PF synaptic weights are

repeatedly reduced five times and completely recovered, but

the degree of daily decrease is not the same, that is, the

daily learning rate changes. The daily increase in synaptic

weights between MF-VNs is different, which means that the

effectiveness of memory consolidation after training changes

every day as the training progresses. Such changes are ob-

viously closer to real learning than linear changes. And the

non-uniform learning mechanism in the NFMM predicts that,

when the training days are long enough, the weights of the

PF-PC synapses and MF-VN synapses can reach a convergent

extreme value. Thus, the plasticity of the synapse reaches the

upper limit of saturation and cannot strengthen though training.

In addition, the errors between experimental data and mod-

els is quantified as the Manhattan distance computing between

individual experimental data points and those corresponding

model data from the two learning models of NFMM and FMM

[Fig. 2(c)]. It shows that the NFMM combined with the non-

uniform synaptic learning mechanism has a significantly better

result for reproducing physiological experiments than the

linear FMM and Yamazaki model. Taken together, these results

shows that the NFMM is able to optimize the performance of

the learning model very well and explain the missing learning

dynamics over time.

C. Spacing Effect for the VOR Gain Adaptation

Experiments have shown that the spaced training scheme in-

terspersed with the effective recovery period provide a stronger

long-term memory after 24 hours of the 1-hour centralized

training interval [39]. It shows that interval training is more

effective than concentrated training in the formation of long-

term memory, and this phenomenon is known as the spacing

effect in general [40]. We reproduced the spacing effect using

our model. Fig. 3 shows the simulated VOR gain obtained

in different interval training schemes, including the following

four spaced training modes [26]: 1) 1-h concentrated training;

2) 15 mins training rest for 1 hour, repeat 4 times in 1 day;

3) training for 15 mins every day for 4 days; 4) training for

7.5 mins again or for 8 days.
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Fig. 3. VOR gain using different training protocols. (a) VOR gain over the training

time course using massed training as 1-h training in a day (red), spaced training as

15-min training spaced by 1 h, four times in a day (yellow), spaced training as 15-min

training each day for 4 d and total time was 1 h (green), and spaced training as 7.5-min

training each day for 8 d and total time was 1 h (blue). (b) Comparison of simulated

VOR gain from NFMM (colored) and Yamazaki model (slashed) with experimental data

(gray). Colors for simulation data represent the training paradigms as in (a).

In these training modes, intensive training shows the largest

instantaneous VOR gain at the moment after the end of
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training [Fig. 3 (a)]. The VOR instantaneous gain of the

interval training after each training is relatively flat, but the

gain increases gradually throughout all training periods. After

training, the gain of interval training exceeds the gain of

concentrated training [Fig. 3(b)]. The result shows that a

proper scheme of interval training can promote the formation

of long-term memory, which is consistent with the results

given in experiments. The NFMM has a comparable perfor-

mance for spaced training, compared to the Yamazaki model.

The VOR gains of NFMM in different training protocols are

slightly better or worse than the Yamazaki model. However,

both models are able to reveal the final outcome of training

protocols. Instead, our NFMM is more powerful to recover

the underlying missing learning dynamics over time, which is

important for understanding the learning process.

D. Bidirectional Synaptic Plasticity

The research on the generalization index of monkeys at

different training frequencies, i.e., representing the general-

ization ability of the VOR gain at different test frequencies,

shows that the increase and decrease of the VOR gain is not

exact inversion on the loop [31]. Therefore, we constructed

a reversal-phase feedback modulation model (RFMM) to

study the synaptic plasticity learning mechanism in the VOR-

increase mode. Some studies [10], [42] have found that the

VOR-decrease mode and VOR-increase mode share the same

VOR circuit, but stimulate LTD and LTP in different learning

modes respectively. As a result, the activity of other cells in

the VOR-decrease mode has the same expression as that in

VOR-increase mode, except PC and VN activity.

We tested the predictive effect of the RFMM on the ×0
training of wild-type mice in the VOR-decrease mode, in

which experimental data were the average value for sample

individuals [41]. We computed the Manhattan distance using

the data and model results [41], then compare them with the

RFMM. Fig. 4(a) describes changes in wild-type mice for the

VOR gain, where the gain reduces from 1 to 0.5 and then

returns to 0.6 after the first day of training, and the total

gain reduction of the first day is 0.4. On the second day, the

gain drops sharply from 0.6 to 0.38 after 1-hour training and

recovers to 0.52 after 23 hours, the training gain reduction

is 0.24. On the third day, the gain decreases from 0.52 to

0.39 after 1-hour training and recovers to 0.52 after 23 hours,

the total training gain reduction is 0. On the fourth day, the

gain decreases from 0.52 to 0.38 after training for 1 hour and

reaches to 0.7 after 23 hours, the total training gain reduction

is -0.18. One can easily see that training of the fourth day

does not make the gain value decreased but larger, which is

consistent with experiments. However, currently there is no

theory to explain this phenomenon. Although the VOR gain

has been repeated locally, the overall VOR gain has been

decreasing during the four days of training.

We analyze the changes of the PF-PC and MF-VN synaptic

weights at the same time [Fig. 4(b)]. PC-PF synaptic weights

are repeatedly reduced five times and fully recovered. Unlike

the VOR-increase, PF-PC synaptic weights of VOR-decrease

are at the degree of decrease every day during training. We
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Fig. 4. Experimental data of VOR-decrease training explained better by RFMM. (a)

Experimental data is derived from the average gain of a group of mice in the VOR-

decrease experiment. The curve is simulated data generated by RFMM. (b) Synapse

weight of RFMM. v is the weight of MF-VN and w is the weight of PF-PC. (c) Errors

indicated by the Manhattan distance computed by the Aleksandra model [41] and RFMM.

found that, as gain decreases, the magnitude becomes smaller.

The weights of MF-VN synapses gradually decreases day

by day mainly during training, and are basically unchanged

in the recovery period. MF-VN synaptic weights are only

reduced 0.15 during the 1-hour training of the first day. After

that, the weight continues decreasing to 0.4, which shows

that the weight change mainly occurs in the recovery period:

gain quickly decreases to -0.19 in 1-hour training, and slowly

returns to the initial value in the recovery period. These results

indicate that short-term memory is formed during 1 hour of
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training and decays within 1 day. In contrast, the MF-VN

synapses store long-term memory, which can be obtained from

repeated training and last several days.

Although the VOR-decrease mode has the same loop struc-

ture as the VOR-increase mode, learning rules are not the

same. Therefore, we proposed RFMM based on FMM to

reproduce the learning mode when the VOR gain is reduced,

and achieved VOR through FMM and RFMM via systems

bidirectional synaptic plasticity. In order to illustrate the

superiority of RFMM, a previous model was selected for

comparison [41]. On the one hand, the correlation coefficient

between the simulation data generated by RFMM and the

experimental data is 0.86 while the Aleksandra model is

0.68. On the other hand, errors measured by the Manhattan

distance between RFMM and experimental data is 0.5251,

while the Aleksandra model is 1.384 [Fig. 4(c)]. These results

suggest that bidirectional modulation on synapse can capture

the learning dynamics of short-term and long-term memory

formation.

IV. CONCLUSION AND DISCUSSION

In this study, we presented the FMM to reflect the CF

signal’s guidance on the VOR gain learning using experimental

data of wild-type mice to test the gain and synaptic weight

changes in the VOR-increase mode. It can be seen that

the FMM approximately reproduced the VOR learning and

its effectiveness, with a correlation coefficient of 0.98 for

experiment data and the fitting result better than the previous

model. These results indicate that the error signal from inferior

olivary nucleus transmitted to the PCs via CFs is compared

to the signal from the vestibule to guide plasticity learning

achieving the calibration of the VOR system. These results

are consistent with the previous research on the function of

the CF error signals [43].

We then proposed the NFMM on the basis of the FMM

to further improve the fitting accuracy for the physiological

data of wild-type mice. The simulation results shows that the

NFMM with a staged non-uniform synapse learning mecha-

nism reproduced the experimental data of the VOR learning

better, in particular, it can overcome the problem that FMM

cannot achieve the effective attenuation in the recovery period.

This indicates that the synaptic plasticity of the LTD and

LTP between PF-PC and MF-VN synapses follows a nonlinear

model rather than a uniformly growing model.

Finally, we further proposed the RFMM, using experiment

data of wild mice in the VOR-decrease mode, in order to test

the bidirectional plasticity mechanism of PF-PC and MF-VN

synapses in the VOR learning. The agreement between the

simulation results and experiment data confirmed the view

that different training protocols stimulate different learning

mechanisms in the same memory location so that the direction

of the VOR gain changes is different.

A. Feedback Effect

It is generally believed that the feedback loop in VOR is

from lower olive through CFs to PCs for adaptive control,

and receives the error signal to recalculate the VOR adaptive

learning gain. The error signal originates from the lower olive

[27] and is transmitted through the CFs acting as a teacher

signal [28]. Recent studies found that the CF activity can

be stimulated when a difference direction or speed appears

between the expected movement and the actual movement of

the subject’s eyeball [44], [45]. In addition, the CF signal is

weakly modulated by head movement in a dark environment.

Both suggested that CFs provide PCs with visual error signals

and weak head movement signals as another information entry

of the VOR neural circuit [25]. The existing models include

the synaptic memory site between PCs and PCs, as well as

the synaptic memory site between MFs and VN. However,

they are can not accurately reproduce the performance of the

VOR learning. Therefore, we simulated the CF error signal

that is considered to be the balanced value of LTP on the PF-

PC synapses, activity of the granular cells and climbing fiber

activity. Based on the CF signal model, we added the feedback

loop to the existing VOR model and further optimized the

VOR adaptive learning gain.

B. Dynamical Learning Mechanisms

The motor learning in the cerebellar cortex is mainly respon-

sible for short-term learning, after which learning is transferred

to the cerebellum in a form of memory consolidation, and

then form a long-term learning [8]. Long-term learning is

constantly gained in the repetitive learning process and forms

a memory [46], [47]. The studies on consolidation and transfer

of memory in the cerebellum indicate that PC activity guides

the plasticity of the target neurons in VN, and the polarity of

the PC activity may be calculated by accurately calculating the

time of the simple peak relative to the input of the climbing.

A simplified learning model [26] was to implement both LTD

and LTP at PF–PC and MF–VN synapses so that long-term

memory formation occurs after training but not during training,

indicating that the memory consolidation occurs during post-

training periods [30]. However, the incremental gain per day is

a fixed value, which means that the consolidation of memory

is an ideal linear model. Similarly, another model [24] was

proposed to use synaptic plasticity mechanisms in which either

the activity of neurons or the plasticity of synapses were

represented by linear equations [48]. However, the data show

that the gain value is non-uniformly increasing [36], [37], and

its growth rate gradually increases in a certain period, and

then gradually reduces. Thus, this fixed incremental approach

is too simple and idealized to match the phenomenon observed

in the physiological experiment.

Instead, we assumed that the LTD between PF-PC and LTP

between MF-VN follow a normal distribution, which refers

to the dynamic rate of synaptic plasticity of LTD/LTP. This

suggests that in the early (2-3 days) training, the increment

of the VOR gain increases and the incremental extremes can

be reached in the middle of training period. At the end of

the training period, the increase in gain gradually decreases

due to the limits of organism, but the gain still presents an

increasing trend, which explains why a weakness period can

occur in the late of learning. Therefore, our model is able to

describe earning dynamics over a time course, instead of a

fixed final output of animal performance.
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C. Bidirectional Mechanisms at the Same Synapses

Physiologic studies have shown that the increase and de-

crease in the VOR gain is due to different learning mechanisms

at the same synaptic site [10]. The research on generalization

index suggests that the learning change of motion amplitude

at the loop level is not completely reversible. Two hypotheses

have been proposed. One assumes that different training modes

provide different neurons, and the other assumes that different

training modes can trigger different synaptic sites [31]. Data

show that MFs and PCs are activated simultaneously in the

training of VOR gain reduction, whereas in the training with

increased VOR gain, only MFs or PCs can be activated [33].

Thus, it is necessary to study the VOR adaptive learning

in different modes regardless of the reason leading to the

difference between two models. Here we implemented the

bidirectional plastic mechanism with MF-VN synapses and

considered this to cause intrinsic change in VOR gain. During

reversal-phase training, the PF-PC synaptic plasticity is the

equilibrium value of the MF spontaneous LTD, and synaptic

spontaneous attenuation and LTD excited by the co-stimulation

of PF and PC. For MF-VN plasticity, the synaptic weights

from MF to VN are reduced when MF and PC are simulta-

neously activated or simultaneously resting. We also further

analyzed and deduced that the change of synaptic weights of

MF-VN in reversal-phase training mode was the equilibrium

value of the synaptic weight of PF-PC and the synaptic weights

of intermediate molecular layer. Thus, our model provides a

more flexible framework installing multiple mechanisms on

the same synapses, in line with the studies combining different

types of synaptic plasticity on same synapses [49]–[51], which

enhance the capability of neural computation.

D. Limitations

The gain was defined as the ratio of the eyeball output signal

to the head input signal [24]. In the model, the corresponding

definition is the ratio of the system input and output. In

behaviors, when the target is fixed and the head rotation rate

is 1 unit, the eye movement is opposite to the head movement

and the speed is equal, the gain is 1. When the target speed is 1

unit and the head speed is 1 unit, the object can be seen clearly

when the eye is stationary, the gain is 0. When the target moves

in 2 units, the head moves in 1 unit, the eye must compensate

1 unit motion rate in direction of the target movement to clear

the imaging of the target on the retina, the gain is -1. When

the gain changes from 1 to -1, the eye should appear a process

of adaptation, that is gradually from the opposite direction of

the target movement into the same direction with the target

movement. When the target moves at 1 unit in the opposite

direction to the head, the eye must adjust the movement in the

direction of the target movement. In terms of the inertia law

of kinematics, the eyeball moves in 1 unit rate with the head

movement, but in terms of relative motion, the eyeball moves

in the direction of the target movement toward the head in 2

units. So when the cerebellum fully adapts to this condition

(that is, learns a certain memory), the eye must move to the

target movement at a rate of 2 units to completely catch the

movement of the target, and the movement rate is opposite to

the head movement as the gain of 2. Therefore, the positive or

negative of gain is not the absolute size, but rather represents

the direction of change.

Although the FMM reproduces the learning of in-phase

OKR, different learning requires different kernel functions to

adapt. Therefore, we need a more dynamic model to train or

choose the appropriate kernel function actively. We could not

test the validity of our model with more data due to limited

experimental data, so the robustness of the model remains to be

seen using more data in the future studies. While the reversal-

phase VOR learning model reproduces data from a set of VOR

reversal phase training, the correlation coefficient between the

simulated data and the experimental data may be not ideal,

so one can also find a more appropriate kernel function to

adjust learning. It has suggested that the learning mechanism

of VOR-decrease mode and VOR-increase mode could not be

accurately reversed [41]. Although the model in this study

reflects this view to some extent, more in-depth research is

still needed to explore the essential differences between two

modes of the VOR learning.

When the brain receives different stimuli to implement

tasks, one needs to switch between different computational

rules accounting for flexible working schemes. Specifically,

the neural system needs to implement different learning mech-

anisms on the same memory site to adapt environmental

changes. Thus, one needs to have models for dynamic switch-

ing or routing information as seen in other brain areas [52] or

using different machnisems, such as neural synchrony [53].

One of the limitations in our models is that they can not

accommodate the LTD and LTP in the same network loop. For

now, our FMM, NFMM, and RFMM use different learning

mechanisms for different simulations. The future work is

needed to implement a routing function for different tasks.
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