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Figure 1: Comparison of toy figurines photographed in an outdoor lighting environment (b), and corresponding lighting reproduction inside

a multispectral LED sphere using RGB LEDs (a), vs spectral lighting reproduction inside the LED sphere using our proposed spectral

upsampling method (c). As can be seen, our RGB-to-spectral upsampling of the input RGB lightprobe achieves a closer qualitative lighting

reproduction on the figurines compared to simply driving the LED sphere with RGB values.

Abstract

We present two practical approaches for high fidelity spectral upsampling of previously recorded RGB illumination in the form

of an image-based representation such as an RGB light probe. Unlike previous approaches that require multiple measurements

with a spectrometer or a reference color chart under a target illumination environment, our method requires no additional

information for the spectral upsampling step. Instead, we construct a data-driven basis of spectral distributions for incident

illumination from a set of six RGBW LEDs (three narrowband and three broadband) that we employ to represent a given RGB

color using a convex combination of the six basis spectra. We propose two different approaches for estimating the weights of

the convex combination using – (a) genetic algorithm, and (b) neural networks. We additionally propose a theoretical basis

consisting of a set of narrow and broad Gaussians as a generalization of the approach, and also evaluate an alternate LED

basis for spectral upsampling. We achieve good qualitative matches of the predicted illumination spectrum using our spectral

upsampling approach to ground truth illumination spectrum while achieving near perfect matching of the RGB color of the given

illumination in the vast majority of cases. We demonstrate that the spectrally upsampled RGB illumination can be employed for

various applications including improved lighting reproduction as well as more accurate spectral rendering.

CCS Concepts

• Computing methodologies → Rendering; Image and video acquisition;

1. Introduction

Illumination is one of the fundamental elements of virtual scenes
alongside shape/geometry and materials and has a major effect on

the overall scene appearance. Modern rendering software allows
to render scenes with complex spectral reflectance and illumina-
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tion ([NDVZJ19, PJH16]), allowing to precisely simulate optical
phenomenon such as iridescence, refraction or diffraction. Spectral
illumination has also been demonstrated to improve the accuracy
of on-set lighting reproduction [WHD03, LYL∗16]. However, the
main challenge for any of these applications is that spectral data
for illumination is not commonly available.

While recent works have proposed to facilitate RGB to
spectral reflectance upsampling for driving spectral render-
ing [JH19, MY19], the creation or acquisition of spectral illumi-

nation remains a challenge, particularly for environmental illumi-
nation. Previous work on spectral upsampling has relied on the
smoothness of reflectance spectra, a property not shared by most
illumination spectra. In this work, we present practical approaches
for high fidelity spectral upsampling of RGB illumination, includ-
ing image-based representations such as light probes, and demon-
strate its application in improved spectral lighting reproduction and
more accurate spectral rendering.

Given an illuminant RGB color, our approach combines 6 basis
spectra to create a metamer illuminant spectrum. We demonstrate
our results by upsampling legacy RGB HDR environment maps
to a spectral representation. In addition to the spectral rendering
possibilities enabled by this solution, it also enables more accurate
lighting reproduction using a multispectral LED sphere (see Fig. 1).

Our proposed solution relies on a basis composed of 6 RGBW
LEDs mixing narrowband and broadband spectra. We propose two
different approaches for estimating weights of this basis given in-
put RGB color: using (a) Genetic algorithm based optimization,
and (b) using neural networks. Additionally, we discuss other bases
with our approach including a theoretical Gaussian basis, and an
alternate LED bases previously employed for multispectral light-
ing [LYD17].

We carefully validate our method against measured spectra and
demonstrate good qualitative results on both object relighting and
color checker reflectance reconstruction. We demonstrate our re-
sults to be of comparable quality to the state-of-the-art method of
LeGendre et al. [LYL∗16] without requiring additional reference
color chart measurements. We also compare our approach to re-
flectance spectral upsampling methods [JH19, MY19] and confirm
that our approach allows to better reconstruct non smooth illumi-
nation spectra.

To summarize, in this paper we propose the following contribu-
tions:

• Practical RGB to spectral upsampling approaches for illumina-
tion with a compact basis representation.

• A Genetic algorithm for basis optimization and a cascaded feed-
forward neural network for basis-driven spectral upsampling.

• Evaluation of multiple bases for spectral lighting representation.

2. Previous Work

In the following, we discuss the background and the most relevant
related work.

Background: The human eye contains three types of cone cells,
each with a different sensitivity to a broad range of light wave-
lengths. Each cone i integrates spectral data over the visible range

ω = [380nm − 780nm]: overall, cones act as color receptors and
allow trichromatic vision:

ci =
∫

ω
fi(λ)s(λ)dλ (1)

where c = [c1,c2,c3] is the color response, fi(λ) is the spectral sen-
sitivity of cones of type i, s(λ) is a spectrum, either an illuminant
spectral power distribution or the light reflected by a surface with
a given spectral surface reflectance; λ ∈ ω is the wavelength. CIE
has defined a standard observer, with published spectral responses
(Color Matching Functions x̄(λ), ȳ(λ) and ẑ(λ)), leading to the CIE
XYZ tristimulus color space [WS82]. The integration performed by
the cone cells compresses the complete spectral information into
just three sensory quantities, thus leading to a phenomenon known
as metamerism, that arises when two different spectra s1 and s2 de-
fined metamers [CIE86], generate the same tristimulus values:

∫
ω

fi(λ)s1(λ)dλ =
∫

ω
fi(λ)s2(λ)dλ, i = 1,2,3. (2)

The concept of metamerism is not limited to human observers,
but can be extended to any imaging system with three spectral
channels [FRJ01]; similar considerations apply to monochrome
sensors. In general, the recovery of the original spectral informa-
tion from trichromatic colors is severely underconstrained. In the-
ory, each color can be generated by an infinite number of differ-
ent spectra [Har01, MY19, PMHD19]. However, the frequency of
metamerism in outdoor natural scenes, where the illumination is
given by daylight at different color-correlated temperatures, is rel-
atively rare [FF12, ABS16, AG18]; in the reflective case, there are
significantly less metameric matches for complex or saturated re-
flective spectra than for simpler and neutral ones.

Lighting Reproduction: RGB light probes [Deb98] record the
incident illumination at a specific location, typically by stitching
together fisheye images from different directions or by acquiring
a HDR sequence of a mirrored sphere. As demonstrated by De-
bevec et al. [DGBB12], the inclusion of diffuse strips between
the quadrants of a cut-apart mirrored sphere allows the estima-
tion of the full dynamic range from a single photograph. Such
light probes can then be used for rendering virtual objects [Deb98]
or for lighting reproduction applications, for instance by driving
colour and intensity of inward pointing LED lights in spherical
domes [DHT∗00, UWH∗03, LYL∗16]. However, relying solely on
RGB LEDs for real-world lighting reproductions leads to poor
color rendition and visible color casts, particularly when directly
minimizing the sum of the square residuals of the reproduction
light spectra to the target illuminant (Spectral Illumination Match-
ing - SIM) [WHD03], due to gaps in the spectral power distribution
of the resulting illumination. By increasing the number of LEDs
beyond RGB, it is possible to significantly improve the quality of
lighting reproduction results, matching a wider set of real-wold il-
luminants. Similarly, relighting applications can benefit from more
accurate spectral reflectance estimation achievable with a 5-LED
basis [PLGN07]. Legendre et al. [LYD17] demonstrated that by ac-
counting for the color rendition capabilities of different LED basis
in a lighting reproduction setup, material color appearance under
arbitrary lighting can be accurately matched with just 5 LEDs. Leg-
endre et al. [LYL∗16] proposed a Metameric Reflectance Matching
(MRM) technique, which requires a specialized physical setup con-
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sisting of 5 oriented color charts that have to be measured along
with a light probe in order to drive a multispectral LED sphere
with 6 types of LEDs. Unlike the approach of Legendre et al.,
our proposed method focuses on Metameric Illuminant Matching
(MIM) and does not require any other information besides RGB
illumination as input (such as a light probe) for the spectral up-
sampling step. In this respect, our method can be used for spectral
conversion of any recorded legacy RGB illumination, for which a
color chart is often not included, and it allows driving a multispec-
tral lighting system with just RGB input. Overall, our method is
more general and applies to non-LED bases and has broader ap-
plications in spectral rendering and AR. While [LYL∗16] does not
require the use of specialized equipment for camera characteriza-
tion, the use of color charts is common in illuminant estimation
techniques [GRB∗08, HFG∗20].

Illumination Estimation: Estimating the scene illuminant from
RGB image data, either as a spectrum or a RGB color [BCS17],
is the main step in computational color constancy [Ebn07], with
a number of applications, ranging from color imaging to com-
puter vision. Often, the key assumption is that there is only a sin-
gle, dominant illuminant in the scene [GRB∗08]. While 3 vari-
ables are necessary and sufficient to define a color [Gra53], due
to metamerism more than three channels are required to obtain
a device-independent estimate of an illuminant spectrum [Har01].
Ratnasingam and Hernández-Andrés [RHA11] focused on daylight
illumination to demonstrate accurate per-pixel recovery of spectral
data from 6 channels input data, modelling the Camera Spectral
Sensitivities (CSSs) as Gaussian functions and constructing an il-
luminant invariant feature space from a large set of measured re-
flectances. Tominaga and Tanaka [TT06] demonstrated spectral es-
timation from spherical RGB images, for mixed daylight and incan-
descent bulb illumination, under the assumption that the CSSs are
known, and that spectra in the input image can be expressed as a lin-
ear combination of three basis spectra; the basis are obtained as the
first three principal components of a dataset containing both CIE
standard illuminants and measured light sources [Tom96]. In order
to deal with spiky fluorescent spectra, Tominaga and Tanaka [TF07]
extended the number of basis to 5 and replaced the RGB camera
with a monochrome camera equipped either with 6 gelatin filters or
a liquid-crystal tunable filter, used to sample the visible spectrum
using up to 61 narrow bands; for each spectral band, the corre-
sponding CSS must be known. As opposed to these work, we do
not perform SIM and do not attempt to recover the unknown il-
luminant spectrum from the incomplete RGB information. Instead,
our work focuses on per-pixel MIM, providing a plausible spectrum
that visually matches the reference color for a human observer.

Spectral Upsampling: In general, most techniques for spec-
tral estimation greatly benefit from accurate camera characteriza-
tion, required to convert device-dependent RGB data to device-
independent CIE XYZ tristimulus values [KK08, GBS19]. Shi et
al. [SYH∗14] estimate the incident illumination spectrum from the
photograph of a color chart with known spectral reflectances, used
to compute the corresponding CIE XYZ values. Similar concepts
have been applied to spectral reflectance estimation from RGB
data (spectral upsampling), with some key differences, since spec-
tral reflectance is the ratio of the reflected light to the incident
light and thus defined in the range [0 − 1], while emission spec-

tra are unbounded. Furthermore, reflectance spectra are typically
very smooth in the visible range [Wan87], while emission spec-
tra can display sharp peaks and have complex shapes, such as in
the case of fluorescent lamps. A third important point is that some
CIE XYZ triplets (therefore, some chromaticities), cannot be ob-
tained from reflectance spectra, thus leading to concept of gamut
of solid reflectances. Bianco [Bia10] proposed a method based
on local optimization, aimed at recovering smooth, metameric re-
flectance spectra from user-specified tristimulus values. Meng et
al. [MSHD15] precompute spectra for a set of points forming a reg-
ular grid on the 2D CIE 1931 xy chromaticity diagram. To compute
the spectrum corresponding to arbitrary CIE XYZ values, the pre-
computed spectra are interpolated, either using bilinear or barycen-
tric interpolation, depending on their location on the chromatic-
ity diagram. Since the resulting spectrum might not conserve en-
ergy, a normalization step is required, potentially introducing er-
rors [JH19]. Jakob and Hanika [JH19] focused on the sRGB color
space, defining a 3 dimensional non-linear function space, whose
coefficients are precomputed and stored in a 3D table that account
also for the brightness; the coefficients are then converted into a
spectrum at runtime. The advantage of explicitly accounting for
brightness is the ability to produce smooth spectra even in case
of dark input colors. Jung et al. [JWH∗19] addressed material be-
yond the gamut of solid reflectances, including a fluorescent com-
ponent expressed in parametric form. Using optimization, Mallett
and Yuksel [MY19] defined three spectral primaries that allow to
obtain relatively smooth, energy conserving reflectance spectra as
a linear combination of the primaries, for any given input sRGB
triplet. Peters et al. [PMHD19] introduced a compact representa-
tion for reflectance spectra with known shape, complemented by
a lookup table approach for assets stored in three color channels.
They demonstrated that with three to six scalars per pixel (4 to 8
bytes per pixel), any reflectance spectra can be accurately recon-
structed by their bounded maximum entropy spectral estimate. In
case of emission spectra, the number of coefficients m required for
a satisfactory reconstruction can be significantly higher (16 to 32),
as well as the run time of their algorithm, with complexity O(m2).
While their approach has the ability to encode very complex illu-
mination spectra, it requires a known spectrum for computing the
coefficients. Instead, our employed basis focuses on compactly rep-
resenting many common illumination spectra while requiring only
the corresponding RGB color as input. Similarly to [JH19], Tó-
dová et al. [TWF21] proposed the use of a pre-computed sRGB
coefficient cube to map colors to the corresponding moment based
representation of the reflectance spectra [PMHD19]. Their method
allows to input a set of constraints, i.e. user-supplied spectra for
some sRGB colors, that are closely preserved by the moment based
representation and used as priors for the optimization of neighbour-
ing colors in the cube. Fubara et al. [FSD20] proposed CNN-based
upsampling of RGB images, using a modified UNet to jointly learn
a set of 10 basis functions and the weights. Given the lack of indoor
hyperspectral images, particularly under complex illuminants, their
method is limited to natural outdoor illumination.

3. Method

We propose two different procedures for converting measured
RGB values of different illuminants into the spectral domain us-
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Figure 2: Spectral power distributions of 6 different LED types em-

ployed as the basis for spectral upsampling of RGB illumination.

ing a linear combination of selected illumination basis spectra.
This includes a Genetic algorithm based optimization described in
Sec. 3.2, and a neural upsampling procedure described in Sec. 3.3.
Our method assumes the input RGB color has been acquired using
a camera with reasonable color processing (e.g., sRGB colorspace
with daylight white balance setting). We first describe our choice
of basis for the spectral upsampling procedures in Sec. 3.1, which
is primarily motivated by practical spectral lighting reproduction.

3.1. Spectral basis selection

We choose a relatively compact basis of 6 illuminant spectra as
we want to minimize the storage overhead compared to RGB. The
size of basis is also motivated by the previous work of Legendre et
al. [LYL∗16] who show that a set of 6 LEDs allows to cover most
of the illumination spectrum.

We define our basis using the set of measured spectral power
distributions (SPDs) of the 6 LED types installed in a multi-spectral
LED sphere that we have access to. Namely, three narrowband Red,
Green, and Blue LEDs, and three broadband white LEDs (warm
2700K, neutral 4000K, and cool 5700K). We measure the SPDs of
these LEDs with a spectrometer –Sekonic SpectroMaster C700– by
placing it at the center of the LED sphere. Our measured spectral
basis is shown in Figure 2.

Unless stated otherwise, our results are shown with the above de-
scribed basis. We however highlight that our method is not limited
to a specific basis and demonstrate it with the LED basis set em-
ployed by Legendre et al. and an alternate theoretical basis using a
set of Gaussians later in Section 4.5 (see Fig. 10).

To drive the multispectral light stage and to compute its dy-
namic range and the white point, as required by the color space
conversions embedded both in our initialization and optimization,
we recover the absolute value of each LED SPD, expressed in
w/(m2 · sr · nm). The CIE XYZ white point of the device used
in this work, measured with all LEDs on at full intensity, is
[909,897,784]cd/m2. Such measurements are required only once,
and can be obtained with a spectroradiometer or using a col-
orimetrically characterized camera, with support for the absolute

scale [GBS19]. Please note that just the knowledge of the relative
intensity of the LED SPDs, as shown in Fig. 2, would suffice for
most practical applications.

3.2. Genetic algorithm based optimization

To reconstruct the target illuminant color and spectrum, we pro-
pose an optimization procedure to find a set of weights α∗

k to lin-
early combine a given set of n basis spectra. To guide this optimiza-
tion, we minimize the ∆E94 color difference [CIE95] between the
CIELab values of the reference illumination and our reconstructed
spectrum:

argmin
α∗

k

{

∆E94(Labre f ,XY Z → Lab[
n

∑
k=1

700

∑
λ=400

αkS
∗
k,λ ¯xyx(λ)])

}

,

(3)
where Labre f is the Lab color of the target illuminant, XY Z → Lab

represents a standard conversion that maps CIE XYZ values to the
Lab color space, S∗k is a set of basis spectra and ¯xyz(λ) are the
CIE 1931 2◦ Color Matching Functions (CMFs). While our method
is not limited to a specific colorspace (e.g. it works with sRGB,
Adobe RGB, Rec. 2020 etc.), the colorspace in use must be known,
in order to convert the illuminant color to the corresponding CIE
XYZ value and then to CIE Lab.

Given the one-to-many relationship between trichromatic colors
and possible metamers (see Sec. 2), we found convex optimization
techniques likely to get stuck in local minima. Therefore, to com-
pute the set of weights α∗

k we use a stochastic search strategy based
on genetic algorithms (GA). A comparison between our approach
and interior point convex non-linear optimization is reported in the
supplemental material, as well some examples showing the non-
convexity of the optimization problem addressed by our work.

In our implementation, the set of individuals that will contribute
to the definition of the next generation are selected by means of
pair-wise comparisons in a tournament selection, where pairs are
randomly picked. From this set, parents are selected according to
panmixia; the crossover of their DNA (i.e. their coordinates) is
given by the arithmetic mean. While this solution allows to reduce
the algorithm complexity, it tends to destroy recessive genes in a
small number of generations [Dav51]. To mitigate this effect, 10%
of the individuals for a subsequent generation are produced by ap-
plying small mutations to the coordinates of a single parent (power
mutation [DSKM09]), while the 10% best performing individuals
are included in the next generation. We discretize the parameter do-
main over a regular 6D lattice, constraining each variable to be an
integer in the range [0− 255], thus directly corresponding to the
activation value of an LEDs in the LED sphere; the rules to create
the initial population and the following ones are modified in order
to enforce such constraints [DSKM09]. Using the weight range re-
striction for each element of the basis in the linear combination, we
ensure that the physical LEDs will be capable of reproducing the
intensity of the target spectra.

While GAs do not require to specify an initial parameter guess,
in our implementation we include the possibility to initialize the
population relying on barycentric interpolation, for which the con-
tribution of each basis spectrum corresponds to the inverse of its
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distance to the target illuminant color in the CIE Lab color space.
Each starting weight of one individual are computed as follows:

Wk =
1
N

∗
1

∆E94(Labre f ,Labk)
, (4)

where N is a normalization factor computed as ∑
n
k=1

1
Wk , Labre f is

the Lab color of the target illuminant and Labk is the CIE Lab color
of kth basis spectrum.

The other individuals of the initial population (overall 60 indi-
viduals) are located in the neighborhood of Eq. 4, with weights
randomly chosen according to a uniform distribution in the inter-
val Wk ±5%, if within the [0−255] range. In our experiments, the
GA performance is mostly affected by the size of initial popula-
tion, with smaller values than the one used in this work leading to
suboptimal solutions, while a larger population size does not ap-
pear to improve the results. While we set an upper bound to the
number of generations (600), the number of iterations required is
typically reduced by keeping track of the relative change in the
fitness of the best performing individuals in the previous 50 gen-
erations, stopping if this falls below a predefined threshold. Our
method’s average run-time (single thread unoptimized implemen-
tation) is 5.09s/color on a AMD Ryzen 7 2700 3.20 GHz processor
and 32GB RAM desktop PC.

3.3. Neural upsampling

The optmization-based approach might become unpractical when
a large number of colours need to be upsampled. Therefore, we
propose learning the mapping f : R3 → Rn from tristimulus col-
ors to their n spectra basis metameric representation. We optimize
the weights and biases of a fully-connected multilayer perceptron
(MLP), in which each layer following the first hidden one has con-
nections coming not only from the previous layer, but also from the
input and all previous layers (Cascade-Forward Neural Network -
CFNN); Fig. 3 reports a schematic representation of a CFNN with
2 hidden layers. In addition to modelling the non-linear relationship
between input and output, direct connections between layers allow
to better preserve linear relationships between them [WSSY18].

These characteristics allows to enforce properties such as:
f ([Xa,Ya,Za]) = [α∗

1 , . . . ,α
∗
n ]→ f (k · [Xa,Ya,Za]) = k · [α∗

1 , . . . ,α
∗
n ],

for k ≥ 0. The relevance of this property is highlighted in Fig. 4, in
which we compare the upsampling produced by the CFNN with the
one by a vanilla MLP, on the same input tristimulus values, derived
by a spectrum at 3 different intensities.

To create our training set, we make use of the illumination spec-
tra from the Lamp SPD Database † (LSPDD), which includes mea-
sured spectra of different kind of lamps, including compact fluores-
cent, halogen, high pressure sodium, incandescent, LED and metal
halide, as well as standard illuminants. Out of the 311 available
spectra, we select 144 by removing near-duplicate ones, and in-
clude 16 daylight spectra, for a total of 160 illuminants. Overall,
the dataset is balanced in terms of different illuminant types. For
each illuminant, we also compute the spectra reflected off the 1269

† https://lspdd.org/

Figure 3: Schematic representation of a CFNN with k inputs, m

outputs and two hidden layers (highlighted in grey). In black the

connections in common with a feed-forward network with fully con-

nected layers, in green the additional connections introduced in the

CFNN architecture.

Figure 4: Upsampling produced by the CFNN (on the left) and a

vanilla MLP (on the right) on the same inputs, given by the XYZ

values of a spectrum at 3 different levels of intensity. While both

architectures produce plausible results, the CFNN output leads to

spectra with very similar shapes. The output of the vanilla MLP

is less regular, as noticeable on the peaks at around 630nm. Both

networks share the same number of layers and neurons, and have

been trained in the same way.

matt Munsell color chips; the resulting 203,200 spectra are then
converted to their tristimulus representation. Finally, the dataset is
augmented by scaling spectra and corresponding weights by a set of
predefined constants. To estimate the set of weights α∗

k , we rely on
a modified version of the GA described in Sec. 3.2 (without initial-
ization). While the input to the genetic algorithm are still tristimu-
lus values, since in this case the ground truth spectra are known, we
augment the fitness function with the cosine similarity between the
ground truth and the reconstructed spectrum, in order to estimate
weights for our basis that preserve both the ground truth shape and
the corresponding tristimulus value as much as possible.

The architecture of our network consists of 3 hidden layers Hi,
with decreasing number of nodes as their depth increases (|H1| =
13, |H2| = 11, |H3| = 8) and hyperbolic tangent activation func-
tion. In our experiments, additional hidden layers did not lead to
better results, while using just two hidden layers affects the perfor-
mance, particularly in case of saturated input colors. The number
of neurons per layer reported in the above is the smallest possible
without causing a drop in the performance. As for the final layer,
with n = 6 nodes directly providing in output the activation weights
for the spectra in our basis, we use the ReLU function. The network
is trained using Bayesian regularization backpropagation [Mac92],
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which pushes unnecessary weights towards zero, thus “pruning”
the network. Along with the balanced dataset, the regularization
helps avoiding overfitting and ensuring the network is able to gen-
eralize well. The loss given by the mean squared error between
predicted and ground truth weights. At run-time, the CFNN can
upsample one color in 5.58×10−7s (unoptimized implementation
on 1 thread of CPU, on the same hardware as in Sec. 3.2).

4. Evaluation

We now evaluate our choice of basis and our approach against
measured ground truth spectra (Sec. 4.1), and show applications of
the method for spectral upsampling of existing HDR environments
for spectral lighting reproduction (Sec. 4.2 and Sec. 4.3). Sec. 4.4
demonstrates the quality of the metamers produced by our method,
by comparing the appearance of a color chart under the metameric
illumination with its appearance under ground truth illumination.
In Sec. 4.6 we compare our direct spectral upsampling approach
against the approach of [LYL∗16] which requires additional mea-
surements of reference colorcharts under target lighting. We ad-
ditionally compare to existing methods for RGB to spectral up-
sampling which focus on reflectance [MY19, JH19, TWF21] and
show that, as discussed in their work, the spectrum smoothness as-
sumption does not hold for many illuminants. While most of the
previous works are limited to sRGB upsampling, our method can
address colors well beyond the sRGB gamut and it is suitable for
wide-gamut color spaces. Since our method is not tied to a specific
basis, the actual gamut effectively covered depends on the selected
one. To demonstrate the method generalizes to other basis, we pro-
pose a theoretical Gaussian basis and that achieve higher accuracy
than LEDs. Therefore, we show the suitability of our method for
spectral upsampling and representation of illumination for spectral
rendering applications (Sec. 4.5).

4.1. Recovered spectra evaluation

We evaluate our method by comparing the results to measured spec-
tra and RGB color of both outdoor illuminants (HDR environment
map regions) and indoor illuminants (Philips Hue LEDs).

4.1.1. Outdoors illuminant

In the case of outdoor illumination, our ground-truth comes from
the BGU iCVL Hyperspectral Image Dataset [ABS16], containing
HDR and spectral captures of outdoor scenes.

For this evaluation we use the RGB color as input to our method
and the spectral measurements as ground-truth. For each environ-
ment, we determine our target reference color by averaging the
color of the dominant illuminant – usually a patch of sky or the
sun. For the BGU iCVL Hyperspectral Image Dataset, we average
the spectra of the pixels used to determine our target reference color
and use this average spectra as the ground truth SPD.

We show two examples of the results of our optimization on the
spectral database in Fig. 5. The SPD reconstructed by our optimiza-
tion closely approximates the shape of the spectral data, as well as
the reference RGB color. By using the estimated SPDs to illumi-
nate a color chart, we obtain an average ∆E94 difference of 1.3714
across the 6 evaluated RGB colors of outdoor illuminants.

4.1.2. Indoors illuminant

Further, we evaluate our methods on indoor lighting conditions as
they exhibit very different spectra compared to natural illumination.
To do so, we capture HDR images and measure spectra of different
colors of Philips Hue LED lamps in a dark room. Fig. 6 shows
results generated for different colors of the LED lamp. Similarly to
outdoor illuminants, our method matches well the ground-truth.

4.2. Multispectral lighting reproduction

We show benefit of our proposed spectral upsampling of RGB il-
lumination for lighting reproduction in Fig. 7. We show several
objects recorded under both indoor and outdoor environmental il-
lumination where we acquired the corresponding RGB light probe
with HDR imaging. We drive our multispectral LED sphere directly
with the recorded RGB illumination, as well as our proposed spec-
tral upsampling to drive all 6 LED types on the LED sphere for
spectral lighting reproduction. For the spectral lighting case, the
optimized weights of our LED basis are directly used to drive the
intensity of each LED type on the LED sphere. As can be seen, the
lighting reproduction achieved with our spectral upsampling step
is a better match to the input photograph of the objects compared
to RGB lighting. This is consistent with the findings of LeGen-
dre et al. [LYL∗16] (despite our method not requiring reference
color chart measurements), providing a qualitative validation of our
spectral upsampling method. Fig. 1 shows another example of our
method used for driving spectral lighting reproduction.

4.3. Spectral upsampling of environment maps

We also use our method for spectral upsampling of pre-recorded
RGB environment maps. Fig. 8 shows results generated for Grace
Cathedral environment map. Here, the RGB pixels of the origi-
nal environment map were processed using our method to obtain
weights of the 6 LED types in our basis which are shown as the
6 weight maps color coded with the color produced by the corre-
sponding LED type. Fig. 8 also shows the reconstructed RGB col-
ors produced by the weighted combination of the 6 LEDs which
is a very close match to the input RGB colors in the environment
map. The maximum error in the reconstructed environment illumi-
nations is in the Grace Cathedral example with ∆E94 = 0.9525. We
provide additional examples of such spectral upsampling of envi-
ronment maps in the Supplemental material.

4.4. Color checker validation

In Figs. 9, 10, 12 & 13, we compare the result of our method with
the ground truth spectra using color chart renderings. We illuminate
each color chart patch with the ground truth and the recovered spec-
tra, and visualize the two colors in the same image, where for each
patch the inner circle corresponds to the color produced with our or
competing methods and the outer frame represents the ground truth
color. The RGB values of each patch are generated by convolving
the illumination spectrum, the known X-Rite color chart patches
reflectances ‡ and the CIE 1931 2-degree CMFs, which is followed
by standard XYZ to RGB conversion. For error computation we use
the CIE Lab space, to which we convert XYZ values using standard

‡ https://www.babelcolor.com/colorchecker.htm
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Figure 5: Some results of our optimization (in dotted yellow is our initialization) for outdoor environment illumination from the iCVL

Hyperspectral Database Portal. The photographs are generated from the provided measured spectral data using CIE 1931 2-degree CMFs,

as only spectral data are available. In all cases we tested we find a close metamer and spectral match for both cloudy and clear day.
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Figure 6: We evaluate our approach on indoor illuminants (Philips Hue) we measured. For all results, our method very closely match the

target color (Ref.) and its spectrum. We show in dotted yellow the result of our initialization.

XYZ to CIE Lab conversion. We observe that our predicted spec-
trum is an excellent metamer for the target spectrum in almost all
of the cases we tested. This is particularly interesting for the case
of outdoor illumination, with a flatter spectrum compared to indoor
illumination. While our basis fits non-smooth indoor illumination
spectrum with higher accuracy, our optimized spectrum for outdoor
illumination is still an excellent metamer.

4.5. Basis evaluation

While we chose our basis to enable environment lighting reproduc-
tion in the LED-sphere that we have access to, other spectral bases
can also be used with our method. We evaluate our approach on
other 6-illuminants bases as previous works [LYL∗16, GGD∗20]
have shown it to lead to good spectral and colorimetric accuracy,
while keeping the basis compact with additional LEDs leading to
marginal improvements. We show results of our method using the
LED basis employed by LeGendre et al. [LYL∗16] and discuss a
theoretical basis based on narrow and broad Gaussians which can
be used for RGB-to-spectral illumination upsampling.

4.5.1. RGBCAW LED Basis

An alternate LED basis installed on USC ICT’s Lightstage X in-
cludes RGBW LEDs similar to our own basis, but contains only
one broad band white instead of our three types. Instead, this ba-
sis includes two additional narrow band illuminants covering the
amber and cyan spectrum (see Supplemental material).

We show in Fig. 9 a comparison of rendered patches of a color
chart under various illumination spectra recovered using our basis
(RGBW+) against the RGBCAW basis, as described in Sec. 4.4.
We find that our basis represents indoor illuminants slightly bet-
ter while the RGBCAW basis works slightly better for outdoor il-
luminants. When comparing the average ∆E94 error over all col-
orchecker patches across both outdoor and indoor evaluated illumi-
nant colors, both bases are relatively close with ∆E94 = 1.8658 for
ours and ∆E94 = 2.7350 for RGBCAW.

4.5.2. Gaussian basis

While our primary basis selection was based on practical reasons
such as using commonly available LEDs for lighting reproduction,
we also perform analysis on synthetically computed spectral bases

© 2022 The Author(s)
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Figure 8: Spectral upsampling of an RGB environment map. Top

row shows original and reconstructed RGB environment map as

well as ∆E94 error between the two images. Middle and bottom

rows show weight maps for each basis spectrum converted to RGB

using CIE 1931 CMFs.

consisting of a set of narrow and broad Gaussian functions. We
chose Gaussians for our analysis as they are compact in represen-
tation (requiring only 2 values), have shapes that are similar to
LED responses, and have been previously employed in realistic
rendering pipelines (e.g. the Gaussian Spectrum node for texture

(c) Green

Our basis (RGBW+) RGBACW Ours (RGBW+) RGBACW

(d) Cyan
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(a) Clear evening (b) Sunny day

Ours (RGBW+) RGBACW

O
u

td
o

o
rs

Ours	(RGBW+)

Figure 9: Color chart comparison –as described in Sec. 4.4– of our

RGBW+ basis vs. RGBCAW spectral basis for outdoor and indoor

illumination spectra. Both bases produce very comparable overall

results, with the RGBW+ basis producing slightly better results for

indoor illumination (c, d).

reflectance and textured emission in Octane Render §). To find the
best Gaussian bases, we create different sets of narrow- and broad-
band spectra using Gaussian functions with specified width (stan-
dard deviation) and peak locations (mean). For the narrow band set
of Gaussians we place each peak at 25nm distance from each other
in the visible wavelength range (400-700nm) and use standard de-
viation of 15nm. For the broad band set we increase the standard

§ https://docs.otoy.com/Portal/Home.htm
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Figure 10: SPD optimization results for the Gaussian spectra with basis consisting of 3 broad and 3 narrow bands and color chart evalu-

ation –as described in Sec. 4.4–. The individual ∆E94 errors for Pink, Clear day, Cyan and Yellow examples are 1.81, 1.41, 1.55 and 1.58

respectively. The selected basis is the optimal basis producing the least LAB total error for the 12 tested illuminants. While similar to our

LED basis, the Gaussian basis allows to better reconstruct illuminants than the RGBW+ and RGBACW LED bases.

Figure 11: Comparison of full ground truth spectral rendering un-

der D65 illumination (middle row), with a RGB rendering using

for the illuminant the RGB values corresponding to D65 (top row),

and rendering with spectral upsampling of RGB using our opti-

mized Gaussian basis (bottom row). The result of our spectral up-

sampling is indistinguishable from the reference rendering, while

color differences in the RGB rendering are clearly visible.

deviation to 40nm. We ran our optimization on all possible com-

binations of this initial selection of Gaussians (see supplemental
materials), specifying the number of broad and narrow bands to in-
clude. Finally, for each distribution of broad and narrow bands, we
choose the set of Gaussians which produces the smallest total ∆E94
Lab error between the target and the reconstructed color across all
evaluated indoor and outdoor illuminants. The error can be slightly
improved by including more spectra, but with diminishing returns,
particularly towards the UV and IR edges of the visible spectrum
due to limitations of the human visual system.

We show in Fig. 10 the results of this search with 3 narrow band
spectra and 3 broad band spectra which provides a slight improve-
ment in matching of the target illumination spectrum compared to
our LED basis. Interestingly, we can see that the set of optimized
Gaussians bear a strong similarity to our employed RGBW+ LED
basis, with the three narrow bands corresponding to RGB color
primaries and the three broadbands being slightly shifted between
warmer and cooler spectra. The results discussed in the remainder
of this section are obtained using the GA described in Sec. 3.2.

Given the slightly higher accuracy of the optimized Gaussian ba-
sis compared to the LED bases, it can be a good choice for spectral
upsampling and representation of illumination for spectral render-
ing applications. Fig. 11 shows rendering comparisons of a scene
consisting of a banana on a ceramic bowl that is rendered with a
D65 illuminant with full spectral rendering (sampling at every 2nm
intervals, middle row) using Mitsuba2. The corresponding render-
ing with RGB illumination with RGB values set to (1, 1, 1) results
in noticeable difference (top row) compared to the reference spec-

© 2022 The Author(s)
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tral rendering, particularly on the white ceramic and color of the ba-
nana. Finally, our RGB-to-spectral upsampling using our optimized
Gaussian basis results in a rendering that is nearly indistinguishable
(bottom row) from the full spectral rendering. In the supplemental,
we report a rendering comparison for a narrowband illuminant.

Taking a cue from the RGBCAW LED basis, we additionally ex-
perimented with Gaussian bases containing 5 narrowband spectra
and 1 broadband spectra. However, the best average ∆E94 (1.8545)
was slightly worse than that with 3 narrowband and 3 broadband
spectra (∆E94 = 1.3970). In the supplemental we report a table with
the average ∆E94 for each basis on color checker illumination, as
described in Sec. 4.4. Both set of Gaussian bases result in ∆E94 < 2,
typically considered as a good match and significantly better than
the acceptability threshold in graphics art and display technology.
We found the analysis with Gaussian bases to be consistent with
the performance of the RGBW+ vs RGBCAW LED bases.

4.6. Comparisons

4.6.1. Colorchart-based optimization

We compare our spectral upsampling technique to reference
colorchart-based optimization similar to that employed by LeG-
endre et al. [LYL∗16] for spectral lighting reproduction. Instead
of solving for an entire environment map using five oriented col-
orcharts as done in [LYL∗16], we perform a simpler comparison
using a single reference colorchart illuminated with mostly frontal
illumination emitted from a Philips Hue LED bulb. The colorchart-
based optimization then searches for weights of the six colorchart
responses due to the RGBW+ LEDs in the multispectral lightstage
whose linear combination then minimizes the ∆E94 color differ-
ences over the set of 24 colors measured on the reference colorchart
under a target illumination. The six optimized LED weights using
the reference colorchart construct a predicted spectrum for the illu-
mination through their linear combination. We repeat this for four
different types of hues emitted by the LED bulb (see Fig. 12). We
measure the target ground truth spectrum for each illumination con-
dition using a spectrometer. Finally, we also predict the spectra for
each of the illumination conditions using our proposed method di-
rectly from the RGB values of the illumination recorded on a mir-
ror ball. As can be seen in Fig. 12, our spectral upsampling method
predicts spectra of very comparable (or in some cases even better)
quality than [LYL∗16], without requiring measurements of a ref-
erence colorchart. Thus, our method removes the requirement of
specialized measurement of oriented colorcharts for environmental
illumination, thereby enabling direct spectral upsampling of legacy
RGB light probes for spectral lighting reproduction.

4.6.2. Reflectance spectrum upsampling

We compare to recent RGB-to-spectral upsampling techniques of
Mallett & Yuksel [MY19] and Jakob & Hanika [JH19] which are
designed for smooth reflectance spectrum. In Fig. 13 we show com-
parisons to our method on illuminants (White and Green). For each
spectrum, we show the target and the resulting spectra recovered
with each method, as well as a color chart comparison –as de-
scribed in Sec. 4.4. This comparison illustrates the limitations of
the smoothness assumption when recovering illuminants, as de-
scribed in previous work [JH19, MY19]. Additionally, we show

that, while not its primary purpose, our method is also capable of
recovering reasonable metamer spectra for reflectance (included in
Supplemental). This confirms that our method can upsample entire
RGB environment maps, which typically not only consist of illu-
minants, but also background pixels which represent reflectances
convolved with illuminants. Fig. 13 also includes comparison to an
unconstrained variant of the recently proposed method of Tódová
et al. [TWF21]. Note that their constrained method is designed to
be used with user provided bases, but is limited to the sRGB gamut
which does not apply for illumination spectrum. The results of the
unconstrained variant of [TWF21] are similar to that of [JH19].

4.7. Limitations

Our method shares some inherent limitations with previous work:
in the absence of additional information, other than an RGB color,
to guide the basis optimization, the solution can at best converge to
a metamer of the target of illumination. In some cases we tested, we
found the LED basis we employed did not converge to a spectrum
that provides a perfect RGB color match (see Fig. 14), although this
is alleviated to a great extent with our Gaussian basis. Due to the
shapes of the chosen bases (LEDs or Gaussians), the method also
does not perfectly match target flat spectra typical of natural out-
door illumination, particularly near the two extremes of the visible
spectrum. However, our method still produces very good metamers
for such outdoor illumination spectra.

5. Conclusion

We introduced two practical methods for high fidelity spectral up-
sampling of recorded RGB illumination using a chosen set of il-
lumination bases and optimizing their convex combination to best
match an input RGB color. Our method does not require any ad-
ditional information such as reference color chart measurements,
making it suitable for directly applying it for upsampling of legacy
RGB lighting environments for improved spectral rendering as well
as lighting reproduction. We demonstrate good qualitative matches
to ground truth spectra for a range of measured outdoor and in-
door illumination and also demonstrate the benefit of the approach
over existing spectral upsampling techniques designed for smooth
reflectance spectra.
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Figure 13: We compare our method to Mallett & Yuksel [MY19] and Jakob & Hanika [JH19] for spectral upsampling of illuminants (White

and Green). More examples for an outdoor illuminant (Clear evening) and a reflectance (Tiles) are included in the Supplemental. For each

spectrum, we show the target and the resulting spectra recovered with each method, as well as color chart evaluations –as described in

Sec. 4.4. We show that, as described in their papers, the spectrum smoothness assumption they use for reflectance spectra does not hold for

illuminants. We also compare to unconstrained variant of the recent method of [TWF21] which is very similar to [JH19].
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