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ABSTRACT

We introduce a new family of central elements of the Yangian of the queer Lie superalgebra q1.
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I. INTRODUCTION

In this article, we work over the complex field C. The family of strange Lie superalgebras consists of the queer Lie superal-
gebras qN and periplectic Lie superalgebras pN , where N is any positive integer. Both qN and pN are fixed point subalgebras of
the general linear Lie superalgebra glN∣N relative to certain involutive automorphisms. For qN , this automorphism is denoted by π
(see Sec. III).

Take the twisted polynomial current Lie superalgebra

g ≙ {X(u) ∈ glN∣N∥u∥ : π(X(u)) ≙ X(−u)}. (1)

Then, the Yangian Y(qN) is a deformation of the universal enveloping algebra of g in the class of Hopf superalgebras.
The Yangian Y(qN) has been discovered by the present author by extending to qN the centralizer construction1 of the Yangian of the

general linear Lie algebra glN . The resulting definition of Y(qN) was published in Ref. 2 where the Yangian of the Lie superalgebra pN was
also defined. The Yangian Y(qN) from Ref. 2 was further studied in Ref. 3. Details of the original centralizer construction of Y(qN) involving
the invariant theory of Lie superalgebras were later published in Ref. 4. There is no alternative definition of the Yangian of pN , however, other
than that given in Ref. 2.

Due to the centralizer construction of Y(qN), it appears in the theory ofW-algebras. For any positive integerM, take the finiteW-algebra
of qMN defined by a non-regular nilpotent odd element with the Jordan blocks of sizeM each. ThisW-algebra5 is a quotient of Y(qN).

The definition of the Yangian Y(qN) is stated in Sec. V. It is based on a new solution of the quantum Yang–Baxter equation (9) given in

Ref. 2. This solution is a rational function (8) of two variables u, v with values in the supercommutant in (EndCN∣N)⊗2 of the image of qN .
Unlike all other rational solutions of Eq. (9) known before,2 it is not a function of only the difference u − v of the variables. In Sec. IV, we
prove that (8) satisfies (9). The proof was not published previously.

In Secs. VII and VIII, we study in more detail the Yangian Y(q1). Take the finiteW-algebra of qN defined by any regular nilpotent odd
element. ThisW-algebra6 is a quotient of Y(q1). Here, we introduce a new family of central elements of Y(q1). Its generating function C(u)
is a match to the generating function of central elements of the Yangian of gl 1∣1, called the quantum Berezinian.7 We relate C(u) to another
generating function of central elements of Y(q1). The latter is just the specialization to N ≙ 1 of the generating function Z(u) of central
elements of Y(qN) given in Ref. 2 and reviewed in our Sec. IV.
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II. GENERAL CONVENTIONS

We will use the following general conventions. Let A and B be any two associative Z2-graded algebras. Their tensor product A⊗ B is also
an associative Z2-graded algebra such that for any homogeneous elements X,X′ of A and Y ,Y′ of B, we have

(X ⊗ Y)(X′ ⊗ Y
′) ≙ XX′ ⊗ YY

′ (−1)degX
′ degY

,

deg(X ⊗ Y) ≙ degX + degY.

Furthermore, for any two Z2-graded modules U and V over A and B, respectively, the vector space U ⊗V is also a Z2-graded module over
A⊗ B such that for any homogeneous elements x ∈ U and y ∈ V ,

(X ⊗ Y)(x⊗ y) ≙ Xx⊗ Yy (−1)deg x degY
, (2)

deg(x⊗ y) ≙ deg x + deg y. (3)

As usual, a homomorphism α : A→ B is a linear map such that α(X X′) ≙ α(X)α(X′) for all X,X′ ∈ A. However, an antihomomorphism
β : A→ B is a linear map such that for all homogeneous elements X,X′ ∈ A,

β(XX′) ≙ β(X′) β(X) (−1)degX degX′
.

Let n be any positive integer. If the algebra A is unital, let ιp be its embedding into the tensor product A⊗n as the pth tensor factor,

ιp(X) ≙ 1
⊗(p−1) ⊗ X ⊗ 1

⊗(n−p)
for p ≙ 1, . . . ,n.

We will also employ various embeddings of A⊗m to A⊗n form ≙ 1, . . . ,n. For any choice of m pairwise distinct indices p1, . . . , pm ∈ {1, . . . ,n}

and of an elementW of A⊗m of the formW ≙ X(1) ⊗ ⋅ ⋅ ⋅ ⊗ X(m), we will denote

Wp1...pm ≙ ιp1(X
(1)) . . . ιpm(X

(m)) ∈ A⊗n. (4)

We will extend the notationWp1...pm to all elementsW of A⊗m by linearity.

III. THE QUEER LIE SUPERALGEBRA

Let the indices i, j run through ±1, . . . ,±N. We will write ı̄ ≙ 0 if i > 0 and ı̄ ≙ 1 if i < 0. Hence, ı̄ will take values in Z2. Consider the

Z2-graded vector space CN∣N . Let ei ∈ C
N∣N be an element of the standard basis. The Z2-grading on C

N∣N is defined by deg ei ≙ ı̄ .

Let Eij ∈ EndC
N∣N be the standard matrix unit. It is defined by setting Eijek ≙ δjkei. Then, the associative algebra EndC

N∣N isZ2-graded so

that degEij ≙ ı̄ + ̄ . Hence, CN∣N is a Z2-graded module over EndCN∣N . For any n, we can identify the tensor product (EndCN∣N)⊗n with the

algebra End ((CN∣N)⊗n) acting on the vector space (CN∣N)⊗n by using conventions (2) and (3). An involutive automorphism π of EndCN∣N

is defined by

π : Eij ↦ E −i,−j .

Consider the general linear Lie superalgebra glN∣N . To avoid confusion, denote by eij the element of glN∣N corresponding to Eij ∈ EndC
N∣N .

Then, deg eij ≙ ı̄ + ̄ ,
∥eij, ekl∥ ≙ δjk eil − δli ekj (−1)(ı̄ + ̄ )(k̄ + l̄ )

.

Therefore, π is also an involutive automorphism of glN∣N .
Now, the queer Lie superalgebra qN is the fixed point subalgebra of glN∣N relative to the automorphism π. This subalgebra is spanned by

the elements

fij ≙ eij + π(eij) ≙ eij + e−i,−j .
In the Lie superalgebra qN , we have f−i,−j ≙ fij and

∥ fij, fkl∥ ≙ δjk fil + δj,−k f−i,l − (δli fkj + δ−l,i fk,−j)(−1)(ı̄ + ̄ )(k̄ + l̄ )
.

Note that the elements fij with i > 0 form a basis of qN .
We will also work with the universal enveloping algebra U(qN). This is a Z2-graded associative algebra generated by the elements fij with

deg fij ≙ ı̄ + ̄ and the same relations as above, where the square brackets now stand for the supercommutator, however.
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Note that U(qN) is a Z2-graded Hopf algebra where the counit homomorphism U(qN)→ C, comultiplication homomorphism
U(qN)→ U(qN) ⊗U(qN) and antipodal antihomomorphism U(qN)→ U(qN) are defined by

fij ↦ δij , fij ↦ fij ⊗ 1 + 1⊗ fij and fij ↦ − fij .

Let us consider in more detail the Lie superalgebra q1. We will choose the basis of q1 consisting of two elements,

a ≙ f11 ≙ f−1,−1 ≙ e11 + e−1,−1 ,
b ≙ f1,−1 ≙ f−1,1 ≙ e1,−1 + e−1,1 .

By the above general relations, we get Lie brackets in q1,

∥a, a∥ ≙ ∥a, b∥ ≙ 0 and ∥b, b∥ ≙ 2 a. (5)

Hence, U(q1) is the Z2-graded associative algebra generated by the elements a and b, where deg a ≙ 0 and deg b ≙ 1. The defining relations
in U(q1) are the same (5) but with the square brackets now meaning the supercommutator. Hence, element a of U(q1) is central and b2 ≙ a.
Element a generates the center of the superalgebra U(q1); see Ref. 4 for the corresponding general result about U(qN).

IV. THE R -MATRIX

Take the element of the algebra (EndCN∣N)⊗2,
P ≙∑

i,j

Eij ⊗ Eji (−1) ̄ .

It acts on the vector space (CN∣N)⊗2 so that
ei ⊗ ej ↦ ej ⊗ ei (−1) ı̄ ̄ .

We identify the algebra (EndCN∣N)⊗2 with the algebra End ((CN∣N)⊗2) by using (2). Note that P2 ≙ 1 and

(π ⊗ π)(P) ≙ −P.
Furthermore, take the element of the algebra (EndCN∣N)⊗2,

Q ≙∑
i,j

E −i,−j ⊗ Eji (−1) ̄ .
Then, we have the equalities

Q ≙ (π ⊗ id)(P) ≙ (− id⊗ π)(P). (6)

Note that by the above definitions of P and Q, we have

PQ +QP ≙ 0 and Q
2 ≙ 1. (7)

Now consider a function of complex variables u, v with values in the algebra (EndCN∣N)⊗2,
R(u, v) ≙ 1 − P

u − v +
Q

u + v . (8)

By (6), we have

(π ⊗ 1)(R(u, v)) ≙ R(−u, v) ,
(1⊗ π)(R(u, v)) ≙ R(u,−v).

Furthermore, we have

R(u, v)R(−u,−v) ≙ 1 − 1

(u − v)2 −
1

(u + v)2 .
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Indeed, due to the relation P2 ≙ 1 and to (7),

(1 − P

u − v +
Q

u + v )(1 +
P

u − v −
Q

u + v ) ≙ 1 −
P2

(u − v)2 +
PQ +QP

(u − v)(u + v) −
Q2

(u + v)2 ≙ 1 −
1

(u − v)2 −
1

(u + v)2 .
Let us now verify that the function R(u, v) obeys the Yang–Baxter equation in (EndCN∣N)⊗3(u, v,w),

R12(u, v)R13(u,w)R23(v,w) ≙ R23(v,w)R13(u,w)R12(u, v). (9)

Using definition (8), the equality in (9) will follow from the following relations in the algebra (EndCN∣N)⊗3:
P12 P13 ≙ P23 P12 ≙ P13 P23 , (10)

P13 P12 ≙ P12 P23 ≙ P23 P13 , (11)

Q12 Q13 ≙ P23 Q12 ≙ Q13 P23 , (12)

Q13 Q12 ≙ Q12 P23 ≙ P23 Q13 , (13)

Q12 P13 ≙ Q23 Q12 ≙ − P13 Q23 , (14)

P13 Q12 ≙ Q12 Q23 ≙ −Q23 P13 , (15)

P12 Q13 ≙ Q23 P12 ≙ −Q13 Q23 , (16)

Q13 P12 ≙ P12 Q23 ≙ −Q23 Q13 , (17)

P12 P13 P23 ≙ P23 P13 P12 , (18)

P12 Q13 Q23 ≙ Q23 Q13 P12 , (19)

Q12 Q13 P23 ≙ P23 Q13 Q12 , (20)

Q12 P13 Q23 ≙ Q23 P13 Q12 , (21)

P12 P13 Q23 ≙ P23 Q13 P12 ≙ Q12 P13 P23 ≙ Q23 Q13 Q12 , (22)

Q23 P13 P12 ≙ P12 Q13 P23 ≙ P23 P13 Q12 ≙ Q12 Q13 Q23 . (23)

Relations (10) and (11) are used with the identity

1

u − v
1

u −w −
1

u − v
1

v −w +
1

u −w
1

v −w ≙ 0,
which is easy to verify. Relations (12) and (13) are used with the identity

1

u + v
1

u +w +
1

u + v
1

v −w −
1

u +w
1

v −w ≙ 0
obtained from the previous one by changing the sign of u. Relations (14) and (15) are used with the identity

1

u + v
1

u −w +
1

u + v
1

v +w −
1

u −w
1

v +w ≙ 0
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obtained from the previous one by changing the sign of w. Relations (16) and (17) are used with the identity

1

u − v
1

u +w −
1

u − v
1

v +w +
1

u +w
1

v +w ≙ 0
obtained from the previous one by changing the sign of u once again. Finally, relations (22) and (23) are used along with another identity,
which is easy to verify,

1

u − v
1

u −w
1

v +w −
1

u − v
1

u +w
1

v −w +
1

u + v
1

u −w
1

v −w −
1

u + v
1

u +w
1

v +w ≙ 0.
Let us verify relations (10)–(17). Relations (10) and (11) follow from the description of the action of P on the vector space (CN∣N)⊗2

given in the beginning of this section. In turn, relations (12)–(17) follow from (10) and (11) by using the observation below. Let

J ≙∑
i

Ei,−i (−1) ı̄ ∈ EndCN∣N
.

Then, Q ≙ P (J ⊗ J) by the definitions of P and Q. Note the equality J2 ≙ −1. Because deg J ≙ 1, in the algebra (EndCN∣N)⊗3 for any p ≠ q, we
also have the equality

Jp Jq ≙ − Jq Jp ,
where we use the notation (4) for n ≙ 3 andm ≙ 1. We omit the details of verifying (12)–(17) in this fashion.

Next, let us verify relations (18)–(23). It follows from the above-mentioned description of the action of P on (CN∣N)⊗2 that either side of
(18) is equal to P13. In turn, relations (19)–(23) follow from (18). Here, we again use our observation involving the element J. In particular,
either side of (21) is equal to −P13. Thus, the function (8) obeys Eq. (9).

V. THE YANGIAN

The Yangian of the Lie superalgebra qN is a complex associative unital algebra Y(qN) with a set of generators

T
(r)
ij where r ≙ 1, 2, . . . and i, j ≙ ±1, . . . ,±N .

The algebra Y(qN) is Z2-graded so that degT
(r)
ij ≙ ı̄ + ̄ for all indices r. To write down defining relations for these generators of Y(qN), we

will use the formal power series in u−1 with coefficients from Y(qN),
Tij(u) ≙ δij ⋅ 1 + T(1)ij u

−1 + T(2)ij u
−2 + ⋅ ⋅ ⋅ .

Let us combine all these series into a single element

T(u) ≙∑
i,j

Eij ⊗ Tij(u)

of the algebra (EndCN∣N) ⊗ Y(qN)∥∥u−1∥∥. Then, we will impose the relation

(π ⊗ id)(T(u)) ≙ T(−u).
In terms of the series Tij(u), it means that for all i and j,

T−i,−j(u) ≙ Tij(−u). (24)

In terms of the generators T
(r)
ij , it simply means that

T
(r)
−i,−j ≙ (−1)r T(r)ij . (25)

For any n and any p ≙ 1, . . . ,n, we will denote

Tp(u) ≙ (ιp ⊗ id)(T(u))
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in the algebra (EndCN∣N)⊗n ⊗ Y(qN) ∥∥u−1∥∥. By using this notation for n ≙ 2, the remaining defining relations of the algebra Y(qN)
can be written as the single equation

(R(u, v)⊗ 1)T1(u)T2(v) ≙ T2(v)T1(u) (R(u, v)⊗ 1). (26)

By using definition (8), expanding Eq. (26) in the basis of (EndCN∣N)⊗2 consisting of the vectors
Eij ⊗ Ekl (−1) ̄ k̄ + ̄ l̄ +k̄ l̄

with i, j, k, l ≙ ±1, . . . ,±N yields the relations

∥Tij(u),Tkl(v)∥ (−1) ı̄ k̄ + ı̄ l̄ + k̄ l̄ ≙
Tkj(u)Til(v) − Tkj(v)Til(u)

u − v − T−k,j(u)T−i,l(v) − Tk,−j(v)Ti,−l(u)
u + v (−1) k̄ + l̄

(27)

in Y(qN) ∥∥u−1, v−1∥∥. The square brackets above stand for the supercommutator. The first fraction in (27) belongs to Y(qN) ∥∥u−1, v−1∥∥
because its numerator vanishes at u − v ≙ 0. The second fraction in (27) belongs to Y(qN) ∥∥u−1, v−1∥∥ because its numerator vanishes at
u + v ≙ 0 by relations (24).

By comparing this definition of Y(qN) with the above relations in the algebra U(qN), it is direct to verify that a homomorphism
U(qN)→ Y(qN) can be defined by

fij ↦ −T(1)ji (−1) ı̄ . (28)

It is also straightforward to verify that a homomorphism Y(qN)→ U(qN) can be defined by

Tij(u)↦ δij − fji u
−1 (−1) ̄ . (29)

The homomorphism (29) is clearly surjective. Note that the composition of (28) with (29) is just the identity map U(qN)→ U(qN). This
implies that the homomorphism (28) is injective.

Furthermore, it follows from our definition of Y(qN) that an antiautomorphism of Y(qN) can be defined by mapping

Tij(u)↦ T̃ij(u) , (30)

where the series T̃ij(u) ∈ Y(qN)∥∥u−1∥∥ is defined by

T(u)−1 ≙∑
i,j

Eij ⊗ T̃ij(u). (31)

Indeed, by dividing (26) on the left and right by T2(u) and then by T1(u), we get the relation
(R(u, v)⊗ 1)T2(v)−1 T1(u)−1 ≙ T1(u)−1 T2(v)−1 (R(u, v)⊗ 1).

Comparing this with (26) verifies the antiautomorphism property of the map (30); see also the relation (24).
It also follows from (24) and (31) that for all i and j,

T̃ −i,−j(u) ≙ T̃ij(−u). (32)

There is a natural Hopf algebra structure on Y(qN). A coassociative comultiplication homomorphism,

Δ : Y(qN)→ Y(qN)⊗ Y(qN) ,
is defined by

Δ : Tij(u) ↦ ∑
k

Tik(u)⊗ Tkj(u) (−1)(ı̄ + k̄ )(̄ + k̄ )

where the tensor product is over the subalgebra C∥∥u−1∥∥ of Y(qN)∥∥u−1∥∥. Furthermore, the counit homomorphism Y(qN)→ C is
defined by mapping Tij(u)↦ δij. The antipodal map Y(qN)→ Y(qN) is the antiautomorphism (30). Justification of all these definitions is
standard.3
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The antipodal map of any Hopf algebra is a coalgebra antihomomorphism as well. Hence, for any indices i and j,

Δ : T̃ij(u) ↦ ∑
k

T̃kj(u) ⊗ T̃ik(u). (33)

Note that (28) is a homomorphism of Z2-graded Hopf algebras U(qN)→ Y(qN). However, (29) is a homomorphism of Z2-graded
associative algebras Y(qN)→ U(qN) only, not a homomorphism of Hopf algebras.

We can naturally define two ascendingZ-filtrations on the algebra Y(qN). The firstZ-filtration is defined by setting to r the degree of T(r)ij

for every i and j. Consider the corresponding Z-graded algebra gr Y(qN). It is also Z2-graded. It follows from (27) that the algebra gr Y(qN)
is supercommutative. By Ref. 3 (Corollary 2.4), the elements corresponding to T

(r)
ij with i > 0 are free generators of this supercommutative

algebra. Their freeness will also follow from the argument at the end of this section.

The second Z-filtration on the algebra Y(qN) is defined by setting the degree of T
(r)
ij to r − 1. Let gr ′ Y(qN) be the corresponding

Z-graded algebra. It is Z2-graded too. Let t
(r)
ij be the element of gr ′Y(qN) defined by T

(r)
ij . Hence,

t
(r)
−i,−j ≙ (−1)r t(r)ij

by (25). For r, s ⩾ 1, by taking coefficients at u−rv−s in (27), we get the supercommutation relations in gr ′ Y(qN),
∥t(r)ij , t

(s)
kl
∥ (−1) ı̄ k̄ + ı̄ l̄ +k̄ l̄ ≙ δkj t

(r+s−1)
il

− t (r+s−1)
kj

δil + (δ−k,j t (r+s−1)−i,l
− t (r+s−1)

k,−j
δi,−l) (−1) k̄ + l̄ + r

.

These imply that for the Lie superalgebra (1), a surjective homomorphism U(g)→ gr ′ Y(qN) is defined by mapping

eij u
r−1 + e−i,−j (−u)r−1 ↦ − t (r)ji (−1) ı̄ . (34)

By Ref. 3 (Theorem 2.3), this homomorphism is injective too. The injectivity will also follow from the argument below.
Denote by γn the homomorphism Y(qN)→ U(qN)⊗n defined by using the comultiplication Y(qN)→ Y(qN)⊗n first and then applying

the homomorphism (29) to each tensor factor of Y(qN)⊗n. Let us prove that the kernels of all the homomorphisms γn with n ≙ 1, 2, . . . have
zero intersection. We will follow Ref. 8 where the Yangian of the general linear Lie superalgebra glM∣N was considered.

The algebra U(qN)⊗n is generated by the elements

ιp( fij) where p ≙ 1, . . . ,n and i, j ≙ ±1, . . . ,±N .

Here, we use the notation of Sec. II with A ≙ U(qN). Define an ascending Z-filtration on the algebra U(qN)⊗n in the standard way, that is, by
setting to 1 the degrees of all the above generators. Consider the corresponding Z-graded algebra grU(qN)⊗n. It is also Z2-graded and then

supercommutative. Let x
(p)
ij be the elements of this algebra, corresponding to the above displayed generators of U(qN)⊗n. Note that for any

indices i and j, we have

x
(p)
−i,−j ≙ x

(p)
ij . (35)

Because of the Poincaré–Birkhoff–Witt theorem for the Lie superalgebra qN , the elements x
(p)
ij with i > 0 are free generators of the

supercommutative algebra gr U(qN)⊗n.
By the definition of comultiplication on Y(qN), our γn maps the series Tij(u) to (−1) ı̄ ̄ +̄ times the sum over k1, . . . , kn−1 ≙ ±1, . . . ,±N

of the tensor products,

(δik1− f k1i u
−1(−1) ı̄ k̄ 1) ⊗

(δk1k2− f k2k1 u
−1(−1) k̄ 1 k̄ 2) ⊗

⋮
(δkn−2kn−1− f kn−1kn−2 u

−1(−1) k̄ n−2 k̄ n−1) ⊗
(δkn−1j− fjkn−1 u

−1(−1) k̄ n−1 ̄ ) ,
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where we also used the definition (29). Hence, T
(r)
ij with r ⩽ n obtained by γn to (−1) ı̄ ̄ +̄ +r times the sum over k1, . . . , kr−1 ≙ ±1, . . . ,±N

and 1 ⩽ p1 < ⋅ ⋅ ⋅ < pr ⩽ n of the products in U(qN)⊗n,
ιp1( f k1i) ιp2( f k2k1) . . . ιpr−1( f kr−1kr−2) ιpr( f jkr−1)(−1) ı̄ k̄ 1+ k̄ 1 k̄ 2+⋅⋅⋅+k̄ r−2 k̄ r−1+ k̄ r−1 ̄ .

If r > n, then T
(r)
ij is annihilated by γn. Note that γn is also a homomorphism of Z-filtered algebras relative to the first filtration on Y(qN).

The element of the algebra gr U(qN)⊗n corresponding to the last displayed product in U(qN)⊗n is by definition
x
(p1)

k1i
x
(p2)

k2k1
. . . x

(pr−1)

kr−1kr−2
x
(pr)

jkr−1
(−1) ı̄ k̄ 1+ k̄ 1 k̄ 2+⋅⋅⋅+k̄ r−2 k̄ r−1+ k̄ r−1 ̄ . (36)

Let y
(r)
ij be the sum over all k1, . . . , kr−1 ≙ ±1, . . . ,±N and all 1 ⩽ p1 < ⋅ ⋅ ⋅ < pr ⩽ n of the products (36) in the algebra gr U(qN)⊗n multiplied

by (−1) ı̄ ̄ +̄ . We have

y
(r)
−i,−j ≙ (−1)r y(r)ij .

We can also take the element of the Z-graded algebra gr Y(qN) corresponding to (−1)r T(r)ij . Its image relative to the homomorphism

gr Y(qN)→ gr U(qN)⊗n defined by γn coincides with y
(r)
ij . However, we do not need this fact.

We will prove that the supercommutative monomials in the elements y
(r)
ij with i > 0 and r ⩽ n are all linearly independent. Hence, the

kernels of the homomorphisms γn with n ≙ 1, 2, . . . will have zero intersection. Moreover, the freeness property of the supercommutative
algebra gr Y(qN) stated above will then follow too. Furthermore, the injectivity of homomorphism (34) follows from linear independence of
those monomials for every n.

Let i ≙ 1, . . . ,N and j ≙ ±1, . . . ,±N. Fix any total ordering of the triples (i, j, r) where r ≙ 1, . . . ,n. Using this ordering, form a matrix of
the left superderivatives,

∂ y
(r)
ij / ∂ x

(p)

kl
, (37)

where the triples (k, l, p) range over the same ordered set as the triples (i, j, r). Fix complex numbers x1, . . . , xn so that xr ± xp ≠ 0 for all r < p.
Due to freeness of the supercommutative algebra gr U(qN)⊗n, we can specialize

x
(p)

kl
≙ xp δkl (38)

in the matrix of superderivatives (37). It suffices to show that the determinant of the specialized matrix is not zero.
For r ⩾ 1, take the elementary symmetric polynomial

σr(x1, . . . , xn) ≙ ∑
p1<...<pr

xp1 . . . xpr .

We will assume that σ0(x1, . . . , xn) ≙ 1. If j > 0, then the specialization of superderivative (37) and (38) equals

σr−1(x1, . . . , xp−1, xp+1, . . . , xn) δil δkj .
If j < 0, then the specialization of (37) and (38) equals

− σr−1(x1, . . . , xp−1,− xp+1, . . . , −xn) δi,−l δk,−j .
Here, we used (35) and the condition that i, k > 0 in (37).

A detailed calculation from the proof of Theorem 1 of Ref. 8 shows that the determinant of the matrix formed by

σr−1(x1, . . . , xp−1, xp+1, . . . , xn) ,
with r, p ≙ 1, . . . ,n, is equal to the product

∏
r<p

(xr − xp).
Similarly, the determinant of the matrix formed by

σr−1(x1, . . . , xp−1,− xp+1, . . . , −xn), (39)
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with r, p ≙ 1, . . . ,n, is equal to the product

∏
r<p

(xr + xp).

One reduces the latter calculation by taking differences of adjacent columns of the matrix of (39). Both products are not zero due to our choice
of the numbers x1, . . . , xn. Hence, the determinant of the matrix of (37) is not zero.

VI. THE CENTER

There is a natural family of central elements of Y(qN). To define it, let us consider the antiautomorphism τ of the Z2-graded associative

algebra EndCN∣N defined by

τ : Eij ↦ Eji (−1) ı̄ ̄ + ı̄
.

Take the element of the algebra (EndCN∣N)⊗2,
K ≙∑

i,j

Eij ⊗ Eij (−1) ı̄ ̄ .

Then, we have the equalities

K ≙ (τ ⊗ id)(P) ≙ (id⊗ τ)(P). (40)

Note that the image of the action of K on the vector space (CN∣N)⊗2 is one dimensional. This image is spanned by

∑
i

ei ⊗ ei .

Here, we again identify the algebra (EndCN∣N)⊗2 with End ((CN∣N)⊗2) by using (2). Furthermore, take the element

L ≙∑
i,j

E −i,−j ⊗ Eij (−1) ı̄ ̄ .

Similar to (40), we have the equalities in (EndCN∣N)⊗2,
L ≙ (τ ⊗ id)(Q) ≙ (id⊗ τ)(Q). (41)

The image of the action of L on (CN∣N)⊗2 is again one dimensional and spanned by the vector

∑
i

ei ⊗ e−i (−1) ı̄ .

Now, consider a function of complex variables u, v with values in the algebra (EndCN∣N)⊗2,
S(u, v) ≙ 1 − K

u − v +
L

u + v .
Then, due to (8) and to (40) and (41), we have the equalities

S(u, v) ≙ (τ ⊗ id)(R(u, v)) ≙ (id⊗ τ)(R(u, v)).
Note that by the above definitions of K and L, we have

K L ≙ LK ≙ 0 and K
2 ≙ L2 ≙ 0.

These equalities imply that

S(u, v) S(−u,−v) ≙ 1. (42)
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We will use the notation

T
′(u) ≙ (τ ⊗ id)(T(u)−1 )).

Let us now divide (26) on the left and right by T2(u) and apply to the resulting relation in the algebra,

(EndCN∣N)⊗2 ⊗ Y(qN) ∥∥u−1, v−1∥∥ ,
the antiautomorphism τ relative to the second tensor factor EndCN∣N . We get the relation

(S(−u,−v)⊗ 1)T1(u)T ′2 (v) ≙ T ′2 (v)T1(u) (S(−u,−v)⊗ 1) (43)

where we also used equality (42). Next, let us multiply relation (43) by v − u and then set v ≙ u. We get

(K ⊗ 1)T1(u)T ′2 (u) ≙ T ′2 (u)T1(u) (K ⊗ 1). (44)

Because the image of the action of K on (CN∣N)⊗2 is one dimensional, either side of relation (44) equals K ⊗ Z(u) for some series
Z(u) ∈ Y(qN) ∥∥u−1∥∥. By using the definition of K and expanding (44), we get

∑
k

Tki(u) T̃jk(u) ≙ Z(u) δij ,
∑
k

T̃jk(u)Tki(u) ≙ Z(u) δij .
(45)

Relations (24) now imply that Z(u) ≙ Z(−u). Hence,

Z(u) ≙ 1 + Z2u
−2 + Z4u

−4 + ⋅ ⋅ ⋅
for some elements Z2,Z4, . . . ∈ Y(qN) of Z2-degree 0. By Proposition 3.1 of Ref. 3, all these elements are central in Y(qN). The centrality of
any X ∈ Y(qN) means that the supercommutator ∥X,Y∥ ≙ 0 for every Y ∈ Y(qN). By Proposition 3.5 of Ref. 3, for r ⩾ 1, the element of the
algebra gr ′Y(qN) corresponding to Z2r ∈ Y(qN) is (2r − 1) times

∑
i

t
(2r−1)
ii (−1) ı̄ . (46)

Through the isomorphism U(g)→ gr ′Y(qN) defined by (34), the element (46) corresponds to

− ∑
i

(eii + e−i,−i) u2r−2 ∈ g. (47)

By Proposition 3.6 of Ref. 3, the elements (47) with r ≙ 1, 2, . . . freely generate the center of U(g). Hence, the elements Z2,Z4, . . . freely
generate the center of Y(qN).

Our Z(u) is also comultiplicative for Y(qN), that is,
Δ : Z(u)↦ Z(u)⊗ Z(u). (48)

Indeed, by setting j ≙ i in (45) and then employing (33), the comultiplication maps Z(u) to
∑
h,k,l

(Tkl(u)⊗ Tli(u)) (T̃hk(u)⊗ T̃ih(u))(−1)(ı̄ + l̄ )(k̄ + l̄ ) ≙∑
h,k,l

(Tkl(u) T̃hk(u))⊗ (Tli(u)) T̃ih(u))(−1)(ı̄ + l̄ )(h̄ + l̄ )

≙∑
h,l

(Z(u) δhl)⊗ (Tli(u)) T̃ih(u)) (−1)(ı̄ + l̄ )(h̄ + l̄ )
,

which is equal to the right-hand side of (48) as we stated. Here, we used relations (45) again.
Note that Z(u)↦ 1 by the counit map Y(qN)→ C. Due to the axioms of a Hopf algebra, it now follows from (48) that Z(u)↦ Z(u)−1

under the antipodal map. The square of the antipodal map is always a homomorphism of associative algebras. By Proposition 3.2 of Ref. 3,
under this homomorphism of Y(qN), for any indices i and j,

Tij(u)↦ Z(u)−1 Tij(u).
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VII. THE CASE OF N = 1

Let us now consider in more detail the Yangian Y(q1). For short, we will denote
A(u) ≙ T11(u) and B(u) ≙ T1,−1(u).

The coefficients of the series A(u) and B(u) in Y(q1) are of Z2-degrees 0 and 1, respectively. It follows from (24) that the algebra Y(q1) is
generated by these coefficients.

By (27), the supercommutation relations below define the Yangian Y(q1) as an associative Z2-graded algebra,

∥A(u),A(v)∥ ≙ A(u)A(v) − A(v)A(u)
u − v − B(−u)B(−v) − B(v)B(u)

u + v , (49)

∥A(u),B(v)∥ ≙ A(u)B(v) − A(v)B(u)
u − v + B(−u)A(−v) − B(v)A(u)

u + v , (50)

∥B(u),A(v)∥ ≙ B(u)A(v) − B(v)A(u)
u − v − A(−u)B(−v) − A(v)B(u)

u + v , (51)

∥B(u),B(v)∥ ≙ B(u)B(v) − B(v)B(u)
u − v + A(−u)A(−v) − A(v)A(u)

u + v . (52)

By our definitions, the comultiplication on Y(q1)maps

A(u)↦ A(u)⊗ A(u) − B(u)⊗ B(−u) , (53)

B(u)↦ A(u)⊗ B(u) + B(u)⊗ A(−u). (54)

Furthermore, let us denote

Ã(u) ≙ T̃11(u) and B̃(u) ≙ T̃1,−1(u).
Hence, Ã(u) and B̃(u) are, respectively, the images of A(u) and B(u) by the antiautomorphism (30) of Y(q1). Due to (32) and (33), the
comultiplication on Y(q1)maps

Ã(u)↦ Ã(u)⊗ Ã(u) + B̃(−u)⊗ B̃(u) , (55)

B̃(u)↦ B̃(u)⊗ Ã(u) + Ã(−u)⊗ B̃(u). (56)

Consider the homomorphism Y(q1)→ U(q1) defined by (29). It maps

A(u)↦ u − a
u

and B(u)↦ b

u
. (57)

By definition (31), we have the following two equations:

A(u) Ã(u) − B(u) B̃(−u) ≙ 1, (58)

B(−u) Ã(u) + A(−u) B̃(−u) ≙ 0. (59)

These two equations determine Ã(u) and B̃(−u) uniquely by A(u),B(u) and A(−u),B(−u). Using these equations along with (57), the
homomorphism (29) for N ≙ 1 maps

Ã(u)↦ (u + a) u
u2 − a2 − a , (60)

B̃(−u)↦ b u

u2 − a2 − a . (61)

We also employ the centrality of a and the relation b2 ≙ a in U(q1) but omit the details of this direct calculation.
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For N ≙ 1, by setting i ≙ j ≙ 1 in (45), we obtain

Z(u) ≙ A(u) Ã(u) + B(−u) B̃(u).
By (57), (60), and (61), the homomorphism (29) maps Z(u) to

u − a
u

(u + a) u
u2 − a2 − a −

b

u

− b u
u2 − a2 − a ≙

u2 − a2
u2 − a2 − a +

b2

u2 − a2 − a ≙
u2 − a2 + a
u2 − a2 − a .

VIII. THE QUANTUM BEREZINIAN

In this section, we will introduce a family of generators of the center of Y(q1), different from the family provided for N ≙ 1 by the
coefficients of the series Z(u). Denote

C(u) ≙ A(u) Ã(−u) and D(u) ≙ B(u) B̃(u). (62)

The coefficients of these two series are of Z2-degree zero. The series C(u) will be called the quantum Berezinian for the Yangian Y(q1). To
justify this terminology, consider the Z-graded algebra gr Y(q1). Take the image of C(u) in the supercommutative algebra (gr Y(q1))∥∥u−1∥∥.
Relations (58) and (59) imply that the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

T11(u) −T1,−1(u)

T−1,1(u) T−1,−1(u)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≙

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A(u) −B(u)
B(−u) A(−u)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(63)

with entries from Y(q1)∥∥u
−1∥∥ has the inverse matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

T̃11(u) − T̃1,−1(u)

T̃−1,1(u) T̃−1,−1(u)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≙

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ã(u) −B̃(u)
B̃(−u) Ã(−u)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence, the image of C(u) is the Berezinian of the matrix with the entries from (gr Y(q1))∥∥u
−1∥∥ corresponding to the entries of (63). It

is also called the superdeterminant.
We will show that coefficients of each of series C(u) andD(u) generate the center of Y(q1). We will also link the two series to each other

and to Z(u) at N ≙ 1. We will use the fact that the comultiplication on Y(q1)maps

C(u)↦ C(u)⊗ C(u) +D(u)⊗D(−u) , (64)

D(u)↦ C(u)⊗D(u) +D(u)⊗ C(−u). (65)

Indeed, by (53)–(56), the comultiplication on Y(q1)maps C(u) to the product in Y(q1)
⊗2∥∥u−1∥∥,

(A(u)⊗ A(u) − B(u)⊗ B(−u)) (Ã(−u)⊗ Ã(−u) + B̃(u)⊗ B̃(−u))
≙ (A(u) Ã(−u))⊗ (A(u) Ã(−u)) + (B(u) B̃(u))⊗ (B(−u) B̃(−u)) + (A(u) B̃(u))⊗ (A(u) B̃(−u))
− (B(u) Ã(−u))⊗ (B(−u) Ã(−u)).

The last two displayed tensor products cancel each other due to relation (59) and the relation

A(u) B̃(−u) + B(−u) Ã(−u) ≙ 0 (66)

obtained by setting i ≙ 1 and j ≙ 2 in (45) whenN ≙ 1. The sum of the preceding two tensor products is the right-hand side of (64) by definition.
Similarly, the comultiplication maps D(u) to

(A(u)⊗ B(u) + B(u)⊗ A(−u)) (B̃(u)⊗ Ã(u) + Ã(−u)⊗ B̃(u))

≙ (B(u) Ã(−u))⊗ (A(−u) B̃(u)) − (A(u) B̃(u))⊗ (B(u) Ã(u)) + (A(u) Ã(−u))⊗ (B(u) B̃(u))
+ (B(u) B̃(u))⊗ (A(−u) Ã(u)).
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The first two tensor products at the right-hand side of the last display cancel each other by the relations (59) and (66). The sum of
the next two tensor products is the right-hand side of (65). Hence, we have (64) and (65).

Now, consider the matrix with entries from Y(q1)∥∥u−1∥∥,
⎡⎢⎢⎢⎢⎢⎣
C(u) D(u)
D(−u) C(−u)

⎤⎥⎥⎥⎥⎥⎦
. (67)

The two assignments (64) and (65) imply that applying the comultiplication on Y(q1) to this matrix amounts to multiplying (67) by itself as
a matrix while taking tensor products of entries instead of usual multiplication. This means that the matrix (67) is comultiplicative for Y(q1).

Due to (62), the antiautomorphism (30) of Y(q1)maps

C(u)↦ (Z(−u)−1A(−u)) Ã(u) ≙ Z(u)−1C(−u) ,
D(u)↦ − (Z(u)−1B(u)) B̃(u) ≙ −Z(u)−1D(u).

Here, we used the relation Z(−u) ≙ Z(u). We also used the description of the square of the antiautomorphism (30) of Y(q1); see the very end
of Sec. IV. Hence, the antiautomorphism (30) of Y(q1)maps the matrix (67) to

Z(u)−1
⎡⎢⎢⎢⎢⎢⎣
C(−u) −D(u)
−D(−u) C(u)

⎤⎥⎥⎥⎥⎥⎦
.

On the other hand, by the axioms of the anipodal, map the comultiplicativity of the matrix (67) for Y(q1) implies that (30) inverts this
matrix. By equating to the identity matrix the product of (67) with the last displayed matrix, we obtain the relations C(u)D(u) ≙ D(u)C(u)
and

C(u)C(−u) −D(u)D(−u) ≙ Z(u). (68)

Thus, Z(u) is equal to the determinant of the matrix (67). This yields explicit expressions for the coefficients of the series Z(u) in terms of
those of the series C(u) and D(u). Pairwise commutativity of all entries of the matrix (67) will follow from centrality of their coefficients in
Y(q1).

Due to (57), (60), and (61), the homomorphism (29) maps

C(u)↦ u − a
u

(u − a) u
u2 − a2 − a ≙

(u − a)2
u2 − a2 − a ,

D(u)↦ b

u

− b u
u2 − a2 − a ≙

− a
u2 − a2 − a .

Hence, the matrix (67) gets mapped by (29) to the matrix

1

u2 − a2 − a
⎡⎢⎢⎢⎢⎢⎣
(u − a)2 − a
− a (u + a)2

⎤⎥⎥⎥⎥⎥⎦
.

According to general conventions of Sec. II for each p ≙ 1, . . . ,n, denote ap ≙ ιp(a) in the algebra U(q1)⊗n. Then, deg ap ≙ 0 relative to
the Z2-grading on U(q1)⊗n. Hence, the elements a1, . . . , an commute with each other.

Consider the homomorphism γn : Y(q1)→ U(q1)⊗n defined as in Sec. V but for N ≙ 1. The arguments above prove that γn maps the
matrix (67) to the product over p ≙ 1, . . . ,n of the matrices

1

u2 − a2p − ap
⎡⎢⎢⎢⎢⎢⎣
(u − ap)2 − ap
− ap (u + ap)2

⎤⎥⎥⎥⎥⎥⎦
. (69)

The matrices (69) commute, so the ordering of the factors in the product does not matter. Moreover, the entries of the product of all these n
matrices are rational functions of u with values in the ring symmetric of polynomials in a1, . . . , an with complex coefficients.

Note that conjugating each matrix (69) by the matrix ⎡⎢⎢⎢⎢⎢⎣
0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
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amounts to changing the sign of u in it. Thus, the product of the nmatrices (69) can be written as the matrix

⎡⎢⎢⎢⎢⎢⎣
φn(u) ψn(u)
ψn(−u) φn(−u)

⎤⎥⎥⎥⎥⎥⎦
for certain φn(u) and ψn(u). Here, ψn(−u) ≙ ψn(u) as all nmatrices (69) are symmetric and pairwise commute. Moreover, it is easy to verify
by induction on n that

φn(u) − φn(−u) ≙ 4 uψn(u).
Indeed, for n ≙ 1, this relation is obvious. If n > 1 and this relation holds for n − 1 instead of n, then we have

(u2 − a2p − ap) (φn(u) − φn(−u)) ≙ (u − ap)2 φn−1(u) − ap ψn(u) − (u + ap)2 φn−1(−u) + ap ψn(−u)
≙ (u2 + a2p) (φn−1(u) − φn−1(−u)) − 2 u ap (φn−1(u) + φn−1(−u))
≙ (u + ap)2 (φn−1(u) − φn−1(−u)) − 2 u ap (φn−1(u) − φn−1(−u)) − 2 u ap (φn−1(u) + φn−1(−u))
≙ 4 u (u + ap)2 ψn−1(u) − 4 u ap φn−1(u)
≙ 4 u (u2 − a2p − ap)ψn(u).

The kernels of homomorphisms γn with n ≙ 1, 2, . . . have zero intersection in Y(q1), see the end of Sec. V. Hence we get the relations
D(−u) ≙ D(u) and

C(u) − C(−u) ≙ 4 uD(u) (70)

in Y(q1)∥∥u−1∥∥. Moreover, because for any n the images of the coefficients of the series C(u) and D(u) relative to the homomerphism γn
belong to the centre of U(q1)⊗n, the coefficients themselves belong to the centre of Y(q1).

Just by the definitions (62) we have the expansions

C(u) ≙ 1 + C1u
−1 + C2u

−2 + ⋅ ⋅ ⋅
for certain central elements C1,C2, . . . ∈ Y(q1) and

D(u) ≙ D2u
−2 +D4u

−4 + ⋅ ⋅ ⋅
for another central elements D2,D4, . . . ∈ Y(q1). Here, we also used the relation D(−u) ≙ D(u). By (70), we get

C1 ≙ 2D2 , C3 ≙ 2D4 , . . . .

Now consider theZ-graded algebra gr ′Y(q1) defined as in Sec. V but forN ≙ 1. Take the twisted current Lie superalgebra (1) withN ≙ 1.
For r ⩾ 1, consider the element of gr ′Y(q1) corresponding to C2r−1 ∈ Y(q1). Through the isomorphism U(g)→ gr ′Y(q1) defined by (34),
this element of gr ′Y(q1) corresponds to

− 2 (e11 + e−1,−1) u 2r−2 ≙ − 2 a u 2r−2 ∈ g.

Due to Proposition 3.6 of Ref. 3, the latter elements of g with r ≙ 1, 2, . . . freely generate the center of U(g). Therefore, C1,C3, . . . freely
generate the center of Y(q1). They get degrees 0, 2, . . . by the Z-filtration defining gr ′Y(q1).

By Theorem 3.4 of Ref. 3, the coefficients Z2,Z4, . . . of Z(u) for N ≙ 1 also freely generate the center of Y(q1). They have degrees 0, 2, . . .
by the same Z-filtration on Y(q1). The left-hand side of (68) involves both C1,C3, . . . and C2,C4, . . . . To express Z2,Z4, . . . in C1,C3, . . . only,
we will use the homomorphisms γn : Y(q1)→ U(q1)⊗n.

By our argument using the matrix (67), the image of the series C(u) by γn equals φn(u). Consider φn(u) as a formal power series in u−1

with coefficients being some polynomials in a1, . . . , an. By taking only the top degree components of these coefficients, we obtain from φn(u),
∏
p

(u − ap)2
u2 − a2p ≙ ∏p

u − ap
u + ap ≙ exp(−∑r⩾1

2a2r−11 + ⋅ ⋅ ⋅ + 2a2r−1n(2r − 1) u2r−1 ).

The latter equality is obtained by taking the logarithm of the product and then exponentiating. The coefficients of the above series
at u−1,u−3, . . . ,u1−2n are algebraically independent. Consequently, the coefficients of φn(u) at u−1,u−3, . . . ,u1−2n are also algebraically
independent. This provides another proof of algebraic independence of the central elements C1,C3, . . . of the Yangian Y(q1).

J. Math. Phys. 63, 081702 (2022); doi: 10.1063/5.0102653 63, 081702-14

© Author(s) 2022



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

Now denote by ωn(u) the image of the series Z(u) by the homomorphism γn. Due to (48), our ωn(u) equals
∏
p

u2 − a2p + ap
u2 − a2p − ap ≙ ∏p (1 +

2ap

u2 − a2p − ap ) ≙∏p (1 + ∑r⩾1
2ap(a2p + ap) r−1

u2r
)

where again p ≙ 1, . . . ,n. Also see the end of Sec. VII. Consider ωn(u) as a formal power series in u−1 with the coefficients being polynomials
in a1, . . . , an. For r ⩾ 1 the top degree component of the coefficient at u−2r is

2a
2r−1
1 + ⋅ ⋅ ⋅ + 2a2r−1n .

Therefore, the coefficients of ωn(u) at u−2,u−4, . . . ,u−2n are algebraically independent polynomials in a1, . . . , an. Without relying on Ref. 3,
the latter fact implies the freeness of the generators Z2,Z4, . . . of the center of Y(q1).

We can uniquely express the coefficients of ωn(u) and φn(u) at u−2n in the coefficients of the same series φn(u) at u−1,u−3, . . . ,u1−2n.
Hence, we express Z2n and C2n in C1,C3, . . . ,C2n−1. We used the fact that C2n is of degree 2n − 2 relative to the second Z-filtration on Y(q1).

We can also uniquely express the coefficients of φn(u) at u1−2n and u−2n in the coefficients of the series ωn(u) at u−2,u−4, . . . ,u−2n. Thus,
we express C2n−1 and C2n in Z2,Z4, . . . ,Z2n.

It would be interesting to deduce relation (70) and the centrality of the coefficients of C(u) directly from the defining relations of the
algebra Y(q1), without invoking its representation theory. It would be also interesting to relate the coefficients of C(u) to the central elements
of Y(q1), which were recently introduced in Ref. 9.

Toward the end of our Introduction, we mentioned the quantum Berezinian for the Yangian of gl 1∣1. This is the specialization to
M ≙ N ≙ 1 of the quantum Berezinian7 for the Yangian of any general linear Lie superalgebra glM∣N . It would be fascinating to extend the
definition of the series C(u) to the Yangian Y(qN) for any N > 1.
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