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1. Introduction

Climate model emulators are simplified physical or statistical models that are computationally efficient. Climate 

model emulators played a central role in producing future global near-surface temperature projections for Working 

Group I (P. Forster et al., 2021; Lee et al., 2021) and Working Group III (Riahi et al., 2022) of the Sixth Assess-

ment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). The IPCC AR6 used climate model 

emulators to supplement simulations from coupled atmosphere-ocean general circulation models (AOGCMs) 

extending available simulations further into the future and projecting future climate scenarios not available from 

AOGCMs. It is important, therefore, that the simplifying assumptions used by emulators are rigorously tested so 

the robustness of their performance is understood.

Physically based climate model emulators, such as energy balance models (EBMs), use bulk physical relation-

ships to emulate the large-scale behavior of Earth's climate system. For example, EBMs were used by Colman 

and Soldatenko (2020) to investigate links between climate variability and climate sensitivity and, by Modak and 

Mauritsen (2021) to investigate the probability of occurrence of the 2000–2012 global warming hiatus.

Two-layer EBMs produce close emulations of idealized abrupt-4xCO2 and 1pctCO2 simulations from AOGCMs 

(e.g., “EBM-ε” in Geoffroy, Saint-martin, Bellon et al., 2013; “held-two-layer-uom” in Z. R. J. Nicholls et al., 2020). 

Differences between emulations and AOGCM projections are generally greatest at times of pronounced change in 

the rate of temperature increase. Such changes are associated with time-varying feedbacks (Armour et al., 2013; 

Abstract Climate model emulators are widely used to generate temperature projections for climate 

scenarios, including in the recent Intergovernmental Panel on Climate Change Sixth Assessment Report. Here 

we evaluate the performance of a two-layer energy balance model in emulating historical and future temperature 

projections from Coupled Model Intercomparison Project Phase 6 models. We find that emulation errors 

can be  large (>0.5°C for SSP2-4.5) and differ markedly between climate models, forcing scenarios and time 

periods. Errors arise in emulating the near-surface temperature response to both greenhouse gas and aerosol 

forcing; in some periods the errors due to these forcings oppose one another, giving the spurious impression of 

better emulator performance. Climate feedbacks are assumed constant in the emulator, introducing time-varying 

or state dependent feedbacks may reduce prediction errors. Close emulations can be produced for a given period 

but, crucially, this does not guarantee reliable emulations of other scenarios and periods. Therefore, rigorous 

out-of-sample evaluation is necessary to characterize emulator performance.

Plain Language Summary Complex climate models are state-of-the-art tools used to produce 

projections of future climate but they are expensive and take a long time to run. Climate model emulators are 

simple statistical or physically based models that can aim to reproduce the response of complex climate models 

to a prescribed climate change scenario at lower cost and more quickly. In this study, we use a climate model 

emulator to reproduce simulations of twentieth and twenty-first century temperatures for eight complex climate 

models. We show that close emulations can be produced for pre-defined climate scenarios and time periods. 

Close emulations are not guaranteed, however, when the emulator is used for other climate scenarios or other 

periods. This is important because climate model emulators are frequently used to produce projections that are 

not available from complex climate models. Evaluation of climate model emulators and characterization of their 

uncertainties, therefore, should use data not used in the calibration of the emulator.
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Dong et  al.,  2020,  2021; Dunne et  al.,  2020; M. Rugenstein et  al.,  2020; Senior & Mitchell,  2000; Winton 

et al., 2010) which are caused by evolving spatial pattern effects in surface temperature (Andrews et al., 2015; 

Dong et al., 2021; M. A. A. Rugenstein et al., 2016; Stevens et al., 2016) and non-linear state dependences in 

climate feedbacks (Bloch-Johnson et al., 2021; Good et al., 2015; Rohrschneider et al., 2019). EBMs have been 

enhanced to capture time-varying feedbacks: the Geoffroy, Saint-martin, Bellon .et al. (2013) EBM includes an 

efficacy parameter for deep ocean heat uptake and the “held-two-layer-uom” EBM also includes a state dependent 

feedback parameter (Rohrschneider et al., 2019; Z. R. J. Nicholls et al., 2020). These paradigms, however, do not 

precisely capture the feedback changes in AOGCMs and contribute to structural error which is irreducible unless 

the EBM structure is enhanced (e.g., extending a two-layer EBM to three or more layers (Cummins et al., 2020)).

Assessments of emulator performance are more trustworthy when projections are validated using data different 

from those used to calibrate the emulator parameters (out-of-sample validation). EBM parameters are frequently 

calibrated using idealized step-forcing experiments (e.g., abrupt-4xCO2) with the parameters estimated using 

analytical methods (Geoffroy, Saint-Martin, Olivié, et al., 2013) or statistical methods (e.g., Cummins et al., 2020). 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016) historical and future shared 

socio-economic pathway (SSP) projections for AOGCMs, therefore, are well suited for assessing EBM emulator 

performance. They can be used to produce out-of-sample assessments using realistic climate scenarios. Although 

climate model emulators have been evaluated (e.g., Z. Nicholls et al., 2021; Z. R. J. Nicholls et al., 2020), it is not 

known how well emulators perform for the latest CMIP6 AOGCMs using realistic, out-of-sample climate projec-

tions and latest assessments of effective radiative forcing (ERF). Furthermore, the contribution of irreducible 

structural errors to total prediction error remains poorly understood.

In this study, we evaluate the performance of a two-layer energy balance model (EBM2) (Geoffroy, Saint-martin, 

Bellon et al., 2013; Geoffroy, Saint-Martin, Olivié, et al., 2013; Held et al., 2010) for emulating CMIP6 historical 

and future temperature trends using different EBM calibrations. We calibrate the EBM2 parameters for specific 

periods and ERFs, and evaluate the temperature projections for subsequent periods and alternative ERF scenar-

ios. EBM2 is compared against an step-response emulator and a three-layer EBM.

2. Methods and Data

2.1. Step-Response Emulator

We use a step-response emulator (Good et al., 2011) to provide a comparator of EBM emulator performance for 

temperature projections. The step-response function for each AOGCM was derived by dividing the projected 

temperature changes from a single realization of a CMIP6 abrupt-4xCO2 simulation by the radiative forcing for 

4xCO2 (Smith et al., 2020). The step-response function was smoothed using cubic splines, and linear regression 

(years 121–150) was used for extrapolation beyond the 150 years of the abrupt-4xCO2 simulations. Temperature 

projections from the step-response emulator were produced by convolution of annual changes in ERF and the 

step-response functions.

2.2. Two-Layer EBM Emulator (EBM2)

In EBM2 (Geoffroy, Saint-Martin, Olivié, et al., 2013; Held et al., 2010) the upper layer represents the Earth's 

atmosphere, land surface and ocean mixed layer, and the lower layer represents the deep ocean. The rate of 

temperature change in each EBM2 layer is determined from:

𝐶𝐶1

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
= 𝐹𝐹 + 𝜆𝜆𝑑𝑑1 − 𝜀𝜀𝜀𝜀 (𝑑𝑑1 − 𝑑𝑑0) (1)

𝐶𝐶0

𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑
= 𝛾𝛾 (𝑑𝑑1 − 𝑑𝑑0) (2)

where C represents heat capacity, T temperature, F ERF, λ the climate feedback parameter and γ the heat trans-

fer coefficient between the upper layer (layer 1) and the lower layer (layer 0). We follow the formulation of 

Geoffroy, Saint-martin, Bellon et al. (2013) which includes an efficacy parameter for deep ocean heat uptake 

(ε) to account for the forced pattern effect in surface temperature (Stevens et  al., 2016). As is commonplace 

(Cummins et al., 2020; Geoffroy, Saint-martin, Bellon et al., 2013; Geoffroy, Saint-Martin, Olivié, et al., 2013; 
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Gregory et al., 2015), the EBM2 parameters were calibrated for each AOGCM using a single realization of a 

CMIP6 abrupt-4xCO2 simulation. Radiative forcing for 4xCO2 was taken from Smith et al. (2020). See Tables 

S1 and S2 in Supporting Information S1 for further details.

2.3. Calibration of EBM2 Using Linear Optimization

As an alternative to calibration using the abrupt-4xCO2 experiment, we use linear optimization (the L-BFGS-B 

algorithm in scipy.optimize.minimize v1.6.2) to optimize the λ and ε parameters by minimizing the root mean 

square error (RMSE) of the emulated temperatures compared to the AOGCM over a defined time period (e.g., 

historical) (Tables S3 and S4 in Supporting Information S1). Lower bounds of −0.5 W m −2 K −1 and 0.5 were 

imposed for λ and ε respectively, and upper bounds of −2.0 W m −2 K −1 and 2.0 respectively. These bounds are 

broadly based on the range of parameter values from the abrupt-4xCO2 calibration. The temperature projections 

are less sensitive to changes in the other EBM2 parameters (i.e., C0, C1, and γ), so these parameters are unchanged 

from their abrupt-4xCO2 calibrations. We also applied the linear optimization methodology to the abrupt-4xCO2 

simulations, which produced very similar parameter values to the Geoffroy, Saint-martin, Bellon, et al. (2013) 

methodology used in the abrupt-4xCO2 calibration.

2.4. Three-Layer EBM

We use a three-layer EBM (EBM3) (Cummins et al., 2020) as a second comparator for EBM2 performance. We 

follow the method of Cummins et al. (2020) to calibrate the EBM3 parameters (including ERF for 4xCO2) using 

a single realization of a CMIP6 abrupt-4xCO2 simulation.

2.5. Data

We use projections of global annual mean near-surface temperature and radiative fluxes at the top of atmosphere 

(TOA) from the CMIP6 archive. We emulate temperatures for eight AOGCMs selected because data was availa-

ble for the CMIP6 experiments of interest. For projections of recent and future climate change, the Historical and 

SSP experiments were used. Projections of temperature change attributed to specific sources of ERF are taken 

from the Detection and Attribution Model Intercomparison Project (DAMIP) experiments (Gillett et al., 2016). 

The emulations are driven by time series of total annual ERF; estimates of ERF are taken from the Radiative 

Forcing Model Intercomparison Project (RFMIP) experiments (Pincus et al., 2016; Smith et al., 2021). The ERF 

for GFDL-CM4 was used for GFDL-ESM4 (RFMIP ERF being unavailable for GFDL-ESM4). Following P. M. 

Forster et  al.  (2013), unforced drift is removed from the AOGCM projections using the preindustrial control 

experiment.

3. Results

3.1. Historical Period Using the Abrupt-4xCO2 Calibration

EBM2 captures the increasing temperature trend during the twentieth century and distinguishes between high and 

low climate sensitivity AOGCMs (Figure 1). In all EBM2 emulations, a proportion of the RMSE (∼0.07 K) arises 

from interannual variations in the AOGCM ensemble means that is not captured in the emulations (there are up 

to three members in each AOGCM historical ensemble). The performance of EBM2, however, varies substan-

tially between AOGCMs. The emulation errors are not strongly correlated with parameter values though there 

is a weak correlation between smaller RMSEs and large relative deep ocean heat capacity (i.e., Co/C1) (Figure 

S1 in Supporting Information  S1). The sensitivity of emulation errors to changes in λ and ε varies between 

AOGCMs (Figure S2 in Supporting Information S1). There are instances of both large and small RMSE emula-

tions for both high and low climate sensitivity AOGCMs. For AOGCMs where there are substantial differ-

ences between the emulations and the AOGCM projections, the differences occur over different time periods. 

Differences are large for 1925–1950 (HadGEM3-GC31-LL), for 1950–1975 (NorESM2-LM) and for 2000–2015 

(HadGEM3-GC31-LL, IPSL-CM6A-LR, and GFDL-ESM4). For IPSL-CM6A-LR, temperatures are overesti-

mated by the emulators throughout 1915–2014. Close emulation of temperatures in abrupt-4xCO2 does not guar-

antee close emulation for the historical period (e.g., GFDL-ESM4, although using ERF from GFDL-CM4 likely 

introduces some emulation error for GFDL-ESM4). Similarly, a relatively poor emulation of abrupt-4xCO2 does 
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not prohibit close emulation for the historical period (e.g., CNRM-CM6-1) (Figure S3 in Supporting Informa-

tion S1). These results are important because they show that there is no a priori way to know if an AOGCM will 

be closely emulated.

The step-response emulator produces emulations with RMSEs broadly equivalent to or less than emulations 

from EBM2. The treatment of time-varying feedbacks in the step-response emulator (i.e., implicitly in the 

step-response function) differs from the treatment in EBM2 (i.e., based on ε) and may contribute to the good 

performance of the step-response emulator.

EBM3 performs better than EBM2 for abrupt-4xCO2, which is expected given the additional timescales resolved 

by the third layer which facilitates closer emulation of temperatures during years 10–40 of the abrupt-4xCO2 

experiment, a period when the rate of temperature increase weakens rapidly (Figure S3 in Supporting Informa-

tion S1). However, the improvement of EBM3 over EBM2 in the abrupt-4xCO2 experiment does not consistently 

translate to the historical experiment. Indeed there are three AOGCMs for which EBM2 has smaller RMSEs  than 

EBM3 (HadGEM3-GC31-LL, MIROC6 and IPSL-CM6A-LR). EBM3, similar to EBM2, overestimates temper-

atures for 2000–2014 in three of the eight AOGCMs and produces larger RMSEs than the step-response emulator 

for some AOGCMs.

Figure 1. Global mean temperature anomalies from a 1850–1900 baseline for Coupled Model Intercomparison Project Phase 

6 (CMIP6) atmosphere-ocean general circulation models. Changes in temperatures are forced by historical forcings during 

1850–2014 and are shown for the period 1915–2014. root mean square errors (RMSEs) are calculated over 1915–2014.
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3.2. Roles of Different Forcings for Near-Surface Temperature Change

We used EBM2 to emulate the responses to historical greenhouse gas (hist-GHG), anthropogenic aerosol (hist-aer) 

and natural (hist-nat) forcings only. EBM2 was calibrated using abrupt-4xCO2 simulations and the AOGCM 

projections are from DAMIP (Gillett et al., 2016) (Figure 2). We focus on two AOGCMs with relatively large 

errors in their emulations for the historical period (HadGEM3-GC31-LL and IPSL-CM6A-LR), one AOGCM 

with relatively small errors (CanESM5), and one AOGCM whose responses to GHG and aerosol forcings contrast 

with the other AOGCMs (NorESM2-LM).

Although EBM2 was calibrated using abrupt-4xCO2, errors predominantly arise from the emulation of the 

response to GHG forcing; in part because GHGs have the largest ERF. The EBM2 emulations overestimate the 

temperature increase due to GHGs for HadGEM3-GC31-LL and IPSL-CM6A-LR.

Emulation of the temperature response to aerosol forcing is the largest source of error in one climate model 

(NorESM2-LM). For HadGEM3-GC31-LL and IPSL-CM6A-LR, errors associated with aerosol forcing offset 

errors associated with GHG forcing. This cancellation of errors gives a spurious impression of better perfor-

mance for the historical simulations. As shown for the combined forcings (Figure 1), the step-response emulator 

produces closer emulations of temperature for GHG forcing. For anthropogenic aerosol forcing, the step-response 

emulator produces emulations of temperature very similar to EBM2.

Figure 2. As Figure 1, except that temperature changes are forced by historical greenhouse gas (top row), anthropogenic aerosol (middle row), and natural (bottom 

row) forcings from Radiative Forcing Model Intercomparison Project. The atmosphere-ocean general circulation model projections are from Detection and Attribution 

Model Intercomparison Project.
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Emulation of the temperature response to natural forcings is a small source of error and the emulations are mostly 

within the spread of each AOGCM ensemble (Figure 2 and S4 in Supporting Information S1). Although larger 

ensembles and longer simulations are required to robustly assess the emulated response to volcanic forcing, ther-

mal inertia of the EBM2 layers and allowance for rapid cloud adjustments within RFMIP ERFs will likely have 

contributed to the close emulations for natural forcings (Gregory et al., 2016; Held et al., 2010).

3.3. Alternative Calibration of EBM2

To determine whether temperature emulations from EBM2 for the historical period can be improved by changes 

to the fitted parameters alone, we apply optimization (Section 2.3) to calibrate the λ and ε parameters (Figure 3 

and S5 in Supporting Information S1).

This improves the emulations for all climate models. The greatest improvement occurs during 1980–2014 and the 

emulation of temperature during this period is improved further if the optimization is amended to minimize the 

RMSE specifically over this period. The spread in emulated temperatures about the 1:1 line is mainly driven by 

the small AOGCM ensemble sizes and is, therefore, similar for both EBM2 calibrations. Interannual variability 

is particularly large for NorESM2-LM and the emulated temperatures have a low correlation with the AOGCM 

temperatures for years prior to the 1980s when the climate response to forcing is relatively weak.

The emulations of the net radiation at the TOA (N) (Figure 3) show that close emulations of near-surface temper-

ature can be produced despite poor emulations of N. There is a large spread in the emulations of N about the 1:1 

line for all climate models. The emulation of N during the late twentieth/early twenty-first century is poor for 

HadGEM3-GC31-LL and emulated N has a weak correlation with its AOGCM for NorESM2-LM. Optimization 

does not improve the emulation of N. There are small changes in emulated N for CanESM5 and NorESM2-LM. 

The improved temperature emulations from the optimization method for HadGEM3-GC31-LL come at the 

expense of poorer emulations of N. This result is important because it demonstrates that climate model emulators 

can produce reasonable simulations of near-surface temperature change, but the evolution of ocean heat uptake 

and TOA energy imbalance is incorrect demonstrating limitations to physical interpretation.

We also used optimization to calibrate the λ and ε parameters separately for GHG and aerosol forcing using the 

DAMIP experiments. The calibrated parameter values differ for the two types of forcing (Table S3 in Supporting 

Information S1) and also vary when RMSE is minimized over different periods.

Figure 3. Projected changes in global mean temperature (top row) and net radiation at the top of atmosphere (N) (bottom 

row). Each panel shows changes in the atmosphere-ocean general circulation model (AOGCM) (x-axis) against the two-layer 

energy balance model (EBM2) emulation (y-axis). Each point represents an annual mean during 1915–2014.
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3.4. Future Near-Surface Temperature Projections

We compare temperature emulations for the twenty-first century from EBM2 based on different methods for 

calibrating λ and ε (Figure 4). Results are shown for the AOGCMs where the most complete CMIP6 data are 

available. Results for other experiments are shown in Figure S6 and Table S1 in Supporting Information S1 

describes the calibrations.

The performance of the abrupt-4xCO2 calibration varies greatly between the AOGCMs (Figures  4a and  4b) 

and typically performs worse than the step-response emulator. The emulations of SSP2-4.5 deteriorate during 

the twenty-first century. The errors in the emulations are correlated with the magnitude of the forcing and peak 

Figure 4. Differences between two-layer energy balance model (EBM2) emulations and atmosphere-ocean general 

circulation model temperature projections. Rows show results for four calibrations of EBM2. Row B uses λ and ε parameter 

values which minimize the root mean square error (RMSE) for temperatures during 1850–2100. Row C uses parameter values 

which minimize the RMSE during 1850–2014. Row D shows EBM2 calibrated to minimize the RMSE during 1850–2100 

for SSP2-4.5 and this calibration is used to emulate SSP2-4.5-GHG and SSP2-4.5-AER. Annual means are smoothed using a 

21-year moving average.
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near  the end of the twenty-first century for total and GHG forcing and early in the twenty-first century for aerosol 

forcing.

Calibration by optimization of the λ and ε parameters over 1850–2100 (Figures 4c and 4d) yielded close emula-

tions for all of the AOGCMs and across all experiments. Similarly close emulations were also achieved by mini-

mizing the RMSE over 2015–2100 (not shown). Minimizing the RMSE for the later years of the projection, when 

the temperature anomalies are largest, is key.

Emulations of temperature to 2100 based on optimizing the λ and ε parameters using the 1850–2014 period 

yields close emulations of temperature to 2014 but errors increase after the calibration period (Figures 4e and 4f). 

Extending the calibration period from 1850 to 2014 to 1850–2040 (not shown) improves the emulation to 2040 

but not always after 2040. Importantly, it does not mitigate the risk of large emulation errors outside the cali-

bration period and its impact varies greatly between AOGCMs and between different experiments for the same 

AOGCM.

To investigate the impact of using a calibration from one experiment for a different experiment, the 

“Hist-SSP245_1850–2100” calibration (which uses SSP2-4.5 all forcings) was applied to the GHG only 

(SSP2-4.5-GHG) and the anthropogenic aerosol only (SSP2-4.5-AER) experiments from DAMIP (Figures 4g 

and 4h). For both SSP2-4.5-GHG and SSP2-4.5-AER, the error for the “Hist-SSP245_1850–2100” calibration is 

greater than for the Hist-SSP245-GHG_1850–2100 and Hist-SSP245-AER_1850–2100 calibrations respectively. 

The impact also varies between climate models and experiments in terms of the size of the impact and its tempo-

ral behavior. Similar results were also found for the high mitigation scenario SSP1-1.9 (Figure S7 in Supporting 

Information S1). Bespoke parameter calibrations for different ERF scenarios are necessary, therefore, to achieve 

close emulations throughout 1850–2100. This result is important because it demonstrates that emulator perfor-

mance can be poor for out-of-sample predictions, yet there is no clear a priori way to know if this will be the case. 

This poses a problem since some of the value of emulators lies in their use for creating out-of-sample scenarios 

where AOGCM simulations do not exist and cannot be readily performed.

The average of the emulations for individual climate models (Figure 4 “Ensemble mean”) has relatively small 

RMSEs (except for the SSP2-4.5 1850–2014 calibration in Figure 4e). This is due, in part, to averaging of inter-

annual variability across the ensemble of emulations. Further, the ensemble mean generally has smaller RMSEs 

than an emulation in which the ensemble mean ERF is used to emulate the ensemble temperature projection 

(Figure 4 “Ensemble emulation”).

Finally, while the optimization method yields unique parameter solutions there is a near linear trade-off between 

the λ and ε parameters when minimizing the RMSE (demonstrated for historical/SSP2-4.5 in Figure S2 in 

Supporting Information S1 and for the first 150 years of abrupt-4xCO2 in Figure S8 in Supporting Informa-

tion S1). In EBM2, changes in the climate feedback parameter (λ) are compensated for by changes in the efficacy 

of deep ocean heat uptake (ε) and the transient temperature response is largely unchanged. This shows that opti-

mized values for the λ and ε parameters may not be robust estimates of climate feedback or the AOGCM pattern 

effect and the physical interpretation of parameter value changes when optimizing the calibration is hindered by 

the linear trade-off between the λ and ε parameters.

4. Discussion and Conclusions

Our results show prediction errors in EBM2 for future global temperature projections vary greatly between 

AOGCMs, forcings, time periods and methods of emulator calibration.

The EBM2 calibration using the abrupt-4xCO2 experiment does not produce reliable projections of historical 

warming for several AOGCMs. Although calibration of the λ and ε parameters using optimization substantially 

reduces emulation errors for periods where an AOGCM simulation is available, optimization of these parameters 

does not guarantee reliable out-of-sample projections. Without an AOGCM projection for a given AOGCM and 

scenario, it is not knowable if the EBM2 future projection will be reliable.

Close emulation of the historical period is not sufficient to guarantee reliable emulation of future temperature 

changes (Figure 4; Z. Nicholls et  al.,  2021). Opposing errors in the emulation of GHG and aerosol forcings 

give a misleading impression of emulator performance. Many climate model emulators do not reliably emulate 
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AOGCM projections for high emissions scenarios (Z. Nicholls et al., 2021); our results suggest that strong miti-

gation scenarios may not be reliably emulated.

How could the EBM2 emulator be changed to improve the out-of-sample emulations? First, an efficacy factor 

could be introduced to account for asymmetry in AOGCM responses to GHG and aerosol forcings. Second, 

EBM2 could be developed to incorporate variations in climate feedbacks and the evolution of AOGCM pattern 

effects. Late twentieth-century warming has been suppressed by changes in the observed sea surface temper-

ature (SST) patterns and associated cloud feedbacks (Andrews et al., 2018; Dong et al., 2021; Fueglistaler & 

Silvers, 2021). Future warming could be affected by changes in the pattern effect (Zhou et al., 2021). Climate 

model simulations show that climate feedbacks weaken through time in response to step-forcings and changes in 

feedbacks are associated with changes in SST patterns (e.g., Dong et al., 2020; Dunne et al., 2020). Incorporating 

time-varying feedbacks in EBM2, however, requires further research to distinguish forced changes in feedbacks 

from unforced climate noise and to explicitly link global feedback changes to variations in SST patterns (e.g., 

using SST anomalies for regions of tropical deep convection (Fueglistaler & Silvers, 2021).

EBM2 out-of-sample emulations could potentially be improved without changes to the emulator. First, when 

available, larger AOGCM ensembles could be used to reduce the contribution to emulation errors from chance. 

Second, more physically plausible parameter tunings could be achieved by using optimization to jointly minimize 

RMSEs for temperature and ocean heat flux (Dorheim et al., 2020). Our initial investigations minimizing RMSE 

for temperature and N, however, showed that the emulation of historical temperatures was substantially worse 

than when minimizing RMSE for temperature alone.

Emulations could also be improved through advances in the separation of forcing and climate feedbacks in 

AOGCMs. We used the latest estimates of ERF derived from fixed-SST simulations but substantial uncertainty 

in ERF remains (Dong et al., 2021; P. M. Forster et al., 2016). Correcting for land warming in abrupt-4xCO2 

fixed-SST experiments increases the ERF (Andrews et al., 2021) and leads to a weaker temperature response per 

unit forcing in EBM2. If the abrupt-4xCO2 ERF without corrections happens to be more underestimated than 

the historical ERF, the historical EBM2 responses will be overestimated. Forcing estimates remain dependent 

on the method used (Fredriksen et al., 2021; Larson & Portmann, 2016; P. M. Forster et al., 2013; Sherwood 

et al., 2015).

Our findings are relevant to observationally constrained climate model emulators aiming to simulate real-world 

changes (e.g., P. Forster et al., 2021). Emulator structural errors and uncertainties in inputs (e.g., ERF) are as 

relevant to real-world emulations as to emulations of AOGCMs. Indeed, there are additional challenges. There 

is only one realization of past climate and future climate is unknown. Observational large ensembles (McKinnon 

et al., 2017) could be used to help characterize uncertainty in emulating past climate.

Data Availability Statement

The CMIP6 data were downloaded from the publicly available Earth System Grid Federation archive at https://

esgf-node.llnl.gov/projects/cmip6/. The R package for the three-layer model (Cummins et  al.,  2020) was 

downloaded on 29 July 2021 from https://github.com/donaldcummins/EBM and is available from https://doi.

org/10.5281/zenodo.5217603. Processed data produced for this paper are available on Zenodo at https://doi.

org/10.5281/zenodo.6646804.
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