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Abstract

Accurate State of Charge (SOC) and State of Health (SOH) estimation is crucial to ensure safe

and reliable operation of battery systems. Considering the intrinsic couplings between SOC and

SOH, a joint estimation framework is preferred in real-life applications where batteries degrade

over time. Yet, it faces a few challenges such as limited measurements of key parameters such as

strain and temperature distributions, difficult extraction of suitable features for modeling, and

uncertainties arising from both the measurements and models. To address these challenges, this

paper first uses Fiber Bragg Grating (FBG) sensors to obtain more process related signals by

attaching them to the cell surface to capture multi-point strain and temperature variation signals

due to battery charging/discharging operations. Then a hybrid machine learning framework for

joint estimation of SOC and capacity (a key indicator of SOH) is developed, which uses a con-

volutional neural network combined with the Gaussian Process Regression method to produce

both mean and variance information of the state estimates, and the joint estimation accuracy

is improved by automatic extraction of useful features from the enriched measurements assisted

with FBG sensors. The test results verify that the accuracy and reliability of the SOC estima-

tion can be significantly improved by updating the capacity estimation and utilizing the FBG

measurements, achieving up to 85.58% error reduction and 42.7% reduction of the estimation
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standard deviation.
Keywords: Battery capacity, State of charge, Lithium-ion batteries, Joint estimation, Fiber

optic sensor

1. Introduction

To facilitate low-carbon transition of the economy is now a priority in the development agenda

of many countries and regions worldwide to mitigate the climate change [1]. One of the key tech-

nologies to bridge a carbon neutral future is the battery technology which enables the integration

of more renewable energy in the power grid and reduces the greenhouse gas emissions from the

transportation sector. The lithium-ion batteries have the merits of long cycle life, high energy

density, low self-discharge rate, environmental resilience, and continual decrease of manufactur-

ing costs, which make them overwhelmingly attractive for electric vehicle (EV) and grid energy

storage applications [2]. Lithium-ion batteries have to be operated within a proper range in terms

of temperature, charging and discharging currents, etc, and violations of the operation conditions

will lead to performance degradation, thermal runaway and even explosion, hence strict require-

ments have been imposed on the safety standards and regulations of battery storage systems [3].

To ensure the operation safety and reliability, and enhance the durability of the battery, an ef-

fective and reliable battery management system (BMS) is required for internal states estimation,

charge/discharge control, and planned maintenance, etc [4][5].

The internal state estimation is still an challenging task in BMS, and the two key states, namely

state of charge (SOC) and state of health (SOH), have been extensively researched over the

years. SOC reflects the real-time remaining capacity of the battery, and has fast time-varying

dynamics. SOH reflects the aging or degradation level of the battery, and has slow time-varying

dynamics. Further, battery aging will degrade the SOC estimation accuracy, while the capacity

is one of the key and widely used indicators of the battery state of health (SOH) to quantitatively

assess the battery aging level. Therefore, it is vital for the BMS to accurately estimate the SOC

in real-time and calibrate the capacity regularly [3]. Numerous SOC and capacity estimation

methods have been proposed in the literature, which can be roughly categorized into model-

based methods and machine learning (ML)-based methods. The performance of the model-based

estimation methods is highly dependent on the model accuracy, thus an effective battery model
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that can well describe the system dynamics is a prerequisite. However, the complexity of batteries

internal physicochemical reactions and the uncertainty of external operation environment makes

it difficult to build accurate battery models. Therefore, ML techniques have been increasingly

employed to estimate the battery SOC and capacity due to their flexibility, reliability, strong

adaptability and generalizability.

The main benefit of the ML-based methods is that a priori knowledge of the battery dynamics

is no longer required. Besides, various real-world operating conditions can be considered during

the model training by adding additional inputs to the model, and this approach is therefore

suitable for all types of batteries [6][7]. Techniques such as deep neural networks (DNNs) [8],

recurrent neural networks (RNNs) [9], and Gaussian process regression (GPR) [10] can directly

map the measured signals (e.g. current, terminal voltage, and surface temperature) to the SOC.

In general, the direct measurements are often used as the model inputs to calculate the SOC

as the model output. For example, in [11], the battery SOC was estimated using DNNs and the

experimental results confirm that the DNN with four hidden layers has the best generalization

capability across several drive cycles. In [12], the SOC was estimated using a RNN with gated re-

current unit, which can exploit information of the previous SOCs and measurements and achieve

better estimation results than traditional feed-forward neural networks. In [13], a GPR frame-

work was used for SOC estimation under three different ambient temperatures. Compared with

the aforementioned ML techniques which only provide the point estimation of SOC, the GPR

can not only estimate the SOC using measured quantities, but also quantify the uncertainty of

the SOC estimations. The uncertainty quantification can assess the reliability of the estimated

results, thus provides more useful information for the decision making in BMS. Besides, methods

such as support vector machine (SVM) [14], relevance vector machine (RVM) [15] , long short-

term memory (LSTM) [16], and convolutional neural network (CNN) [17], just to name a few,

have been successfully applied in battery capacity estimation. CNNs have the characteristics of

automatic feature extraction and low overfitting risk, and have demonstrated a great potential

in battery capacity estimation. In [18], the battery capacity was estimated using a CNN model

that combines the concepts of transfer learning and ensemble learning, and the resultant CNN

model can be applied to a relatively small dataset while the estimation accuracy and robustness

on unseen dataset are also improved. In [19], a CNN-based capacity estimation framework was
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incorporated with the concepts of transfer learning and network pruning, leading to improved

estimation accuracy on small dataset while the size and computational complexity of the model

are both greatly reduced.

Most of the existing researches including the aforementioned ones estimate the battery internal

states such as SOC and SOH using the traditional externally measured signals such as current,

voltage, and surface temperature of a particular location. These external measurements are lim-

ited and can hardly reflect the battery electro-chemical-thermal behavior and inhomogeneity of

key parameters such as battery thermal distribution profile, hence limiting the state estimation

accuracy and leading to over-conservative usage of the battery [20] or potential battery fail-

ure [21]. Fiber optic sensors (FOSs) [22], which, in summary, are immune to electromagnetic

interference (EMI), robust to corrosive environments, have multiplexing capability with small

dimensions, are attractive solutions for distributed battery sensing applications [23]. The lat-

est technology can make it possible to inscribe hundreds or thousands of Fiber Bragg Grating

(FBG) sensors into a single optic fiber [24], allowing simultaneous multiple point measurements

with much simpler wiring diagram. Moreover, optical fibers are much smaller and lighter than

electrical wires and, together with this multiplexing capability, a large number of FBG sensors

can be installed for large structures (such as large battery energy storage systems) with much

less cable mass and volume. These distinctive features of fiber optic sensors make it possible to

develop a very low-cost sensing mechanism for densely instrumenting very large structures, and

both the cost and wiring complexity of fiber optic sensing networks can be much lower than fully

distributed conventional sensors [25]. Further, the additional measurements allow extraction of

a richer set of features for more accurate battery internal state estimation, and are more reliable

under strong electromagnetic interference than electric signals. For example, during the charge

and discharge processes, the cell electrode volume changes due to Li-ions intercalation/ deinter-

calation processes in the electrode materials, which manifests as the changes in the strain on

the cell surface. The stability and safety of the battery can be affected by these induced strains,

particularly in harsh operation conditions, and it may become one of the main reasons leading

to potential material failure and other forms of performance degradation if the strains exceed

certain level of thresholds [26]. Besides, the cell temperature also changes during the charge and

discharge processes due to the electrochemical reactions, resistive heating, and enthalpy changes
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[21]. Temperature is often monitored to provide early warning of potential thermal hazards,

which generally manifest as the thermal runaway and may cause irreversible damage to battery

cells when it exceeds certain threshold. These parameters hence can help gain deeper insight into

the internal dynamics of the battery, and are regarded as complementary signals to the tradition

current and voltage measurements.

FBG sensors are sensitive to strain and temperature and thus their applications in BMS have at-

tracted increased attentions in recent years. To demonstrate the potentials of FBG sensors to aid

state estimation in BMS, Sommer et al. [27] attached a pair of FBG sensors externally to lithium-

ion pouch cells to monitor intercalation state transition points across various charge/discharge

rates. Sharp and repeatable features correlated with intercalation state transitions can be ob-

served which enable better state estimation. Nascimento et al. [28] presented a comparative study

of surface temperature monitoring performance between the thermocouples and fiber sensors, and

demonstrated that the FBG sensors were better choices for surface temperature monitoring un-

der normal and abuse operating conditions and failure detection. After exploring the relationship

between the external FBG sensing signals and diffusion processes [20], Raghavan et al. [23] em-

bedded the FBG sensors inside pouch cells to directly monitor the internal temperature and

electrode strain, the results have revealed that batteries with embedded FBG sensors are highly

comparable to those without FBG sensors in terms of seal integrity, capacity retention and pro-

jected cycle life. Peng et al. [29, 30] designed sensitivity-enhanced FBG sensors and mounted

them onto the cell surface, the relationship between the strain and SOC/depth of discharge was

investigated. Ganguli et al. [31] estimated the SOC and SOH using dynamic time warping and

Kalman filtering algorithms based on the internal strain signals obtained from these FBG sensors

at different temperature conditions. Similarly, Rente et al. [32] achieved accurate SOC estimation

results using dynamic time warping algorithm by correlating the cell surface strain data obtained

from FBG sensors with the SOC, the results indicated that installing FBG sensors on the cell

surface is a feasible, cost-effective and non-invasive approach for assisting SOC estimation.

Leveraging the latest developments in machine learning approaches and fiber optic sensing tech-

nologies in battery condition monitoring, this paper proposes a hybrid machine learning frame-

work for joint estimation of the battery SOC and capacity, the two key internal states for battery

management. The main contributions of this paper include: (1) The joint estimation framework
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takes into account of the intrinsic coupling relationship between SOC and SOH, by using the

regularly updated capacity information for SOC estimation, the SOC can be estimated more

accurately than siloed estimation methods. (2) The fiber optic sensors are adopted for strain and

surface temperature measurements for battery SOC estimation to further improve the accuracy

of SOC estimation. (3) GPR is used for battery SOC estimation, which not only provides point

estimate of the SOC, but also quantifies the uncertainty of the estimation. This allows up to

85.58% RMSE reduction in SOC estimation and 42.7% reduction in the estimation standard

deviation. To the best of our knowledge, this is one of the first attempts to use the GPR method

to extract information from FBG measurements for more accurate statistic estimation of the

SOC, enabling more trustful management of battery energy storage systems for safer and more

reliable battery operations.

The remainder of this paper is organized as follows. Section 2 details the proposed joint estima-

tion framework and introduces the GPR algorithm used for SOC estimation. Section 3 introduces

the experimental setup and the new signals measured by FBG sensors. Section 4 presents and

discusses the experimental results. Finally, Section 5 concludes the paper.

2. Methodology

In this section, the detailed battery SOC and capacity joint estimation framework is presented.

Firstly, the proposed joint estimation framework is introduced. Secondly, a brief overview of the

Gaussian Process Regression (GPR) theory is introduced and the implementation procedure of

GPR-based battery SOC estimation method is detailed. Further, the CNN-based battery capacity

estimation method, which was proposed in our earlier work [19], is briefly introduced.

2.1. The joint estimation framework

Figure 1 shows the flowchart of the proposed battery capacity and SOC joint estimation

framework. The main steps of this framework are introduced as follows: at each time instant,

battery current, voltage, and FBG signals are first sampled in real-time, then the current, voltage

and the charge capacity are normalized and transformed to a three-dimensional (3-D) image with

the size of 15× 15× 3 and inputted to the PCNN-TL (pruned convolution neural network with

transfer learning) model trained in [19] for online estimation of the battery capacity. Subsequently,
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the estimated capacity is used in the GPR model to correct the imprecise capacity estimation

value, and the updated capacity along with other normalized measurements are used to estimate

the SOC online. Finally, the charge capacity calculated by integrating the current with respect

to time is replaced by the charge capacity calculated using the estimated SOC, and the new 3-D

input generated with the updated charge capacity is fed into the PCNN-TL model to estimate

the capacity.

Figure 1: The flowchart of the proposed battery capacity and SOC joint estimation framework

The joint estimation framework is practically more attractive in industrial applications and it can
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provide more accurate estimates than the traditional state estimation methods since it utilizes

the coupling relationships between the capacity and SOC. By online updating the capacity value

in the SOC estimation, the impact of battery degradation is taken into account. Therefore the

performance of SOC estimation for aged batteries can be further improved.

2.2. SOC estimation

2.2.1. Gaussian process regression

Gaussian process regression (GPR), which is a probabilistic and non-parametric machine

learning method, is used for battery SOC estimation in this paper. The GPR method is capable

of quantifying the uncertainty of the estimation rather than just provide a point estimate of the

SOC, and hence providing more informative outputs than the Kalman Filter (KF) algorithm

and its variants. In essence, based on the GPR method, the estimation result of SOC is given

in the form of probability distribution, which consists of the mean of the estimation value and

confidence intervals.

Let D = {(xi,yi)}
N
i=1

denote a labelled training dataset with N samples, where xi ∈ ℜD is a D

- dimensional input vector, and yi ∈ ℜ is the corresponding output. Suppose that there exists a

latent function f(.), to map inputs xi to outputs yi:

yi = f(xi) + εi (1)

where εi ∼ N (0, σ2) is an independent and identically distributed noise contribution.

In the GPR, the function f(x) is assumed to follow a multivariate Gaussian distribution, and

can be described as:

f(x) ∼ GP(m(x),K(x,x)) (2)

where GP denotes a Gaussian process. The mean function m(x) and covariance function K(x,x),

which can fully describe the function f(x), are denoted by:

m(x) = E(f(x)) (3)
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K(x,x) = E[(f(x)−m(x))(f(x′)−m(x′))]

=
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(4)

The mean function reflects the expected function value at input x, and the prior mean function is

often set to zero in order to avoid expensive posterior computations and hence only the covariance

function is inferred [33]. The covariance function K(x,x), also called the kernel of the Gaussian

process, reflects the dependence between the function values at different input points xi and

xj . All the assumptions on the properties of the function to be modelled, such as smoothness

and periodicity, are reflected in the covariance function. The squared exponential (SE) kernel is

common and it is defined as:

κ(xi,xi) = σ2

fexp

(

−
∥xi − xi∥

2

2λ2

)

(5)

where σ2

f denotes the signal variance that quantifies the variation of the latent function from

its mean, and λ is the characteristic length scale that determines the relative importance of the

input variables in estimating the target output.

Based on Equation (1) and (2), the joint distribution of the training output y can be expressed

as:

y ∼ N (0,K(x,x) + σ2I) (6)

where I is a N ×N unit matrix. Generally, the unknown hyperparameters Θ = (σ2, σ2

f , λ) of the

covariance function need to be optimized in the training process by maximizing the logarithm of

the marginal likelihood function of output y. The log marginal likelihood is given by:

logp(y|x,Θ) = −
1

2
yT [K(x,x) + σ2I]−1y −

1

2
log
∣

∣K(x,x) + σ2I
∣

∣−
N

2
log2π (7)

After obtaining the optimal hyperparameters using the gradient-based method, and given a

testing dataset D∗ = {(x∗i,y∗i)}
N∗

i=1
, the joint multivariate Gaussian distribution of the training
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output y and the testing output y∗ can be written as:







y

y∗
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
∼ N
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
0,







K(x,x) + σ2I K(x,x∗)

K(x∗,x) K(x∗,x∗)












(8)

where K(x,x∗) is the covariance matrix between the testing inputs and the training inputs and

K(x,x∗)
T = K(x∗,x), and K(x∗,x∗) is the covariance matrix of testing inputs x∗. Then the

predictive posterior distribution is derived for the estimation on the new/testing inputs x∗, which

can be completely specified by the mean and covariance:

y∗|x∗,x,y ∼ N (ȳ∗,K∗) (9)

where the mean ȳ∗ of the predictive distribution, which gives the point estimate of the testing

output, is given by:

ȳ∗ = K(x∗,x)
[

K(x,x) + σ2I
]−1

y (10)

and the covariance matrix K∗ provides a measure of uncertainty in the estimate of the test output

[34], and it is given by:

K∗ = K(x∗,x∗)−K(x∗,x)
[

K(x,x) + σ2I
]−1

K(x,x∗) (11)

2.2.2. GPR-based SOC estimation

In this paper, the GPR is used to estimate the battery SOC for given measurement inputs.

As shown in Figure 2, the input variables to the GPR model are current Ij(k), voltage Vj(k)

and wavelength data of the FBG sensors FBGj(k) at time k in the j-th cycle, and the capacity

information of the corresponding cycle is updated by the estimation output of the PCNN-TL

model (as trained in [19]) to improve the SOC estimation results. Here the wavelength data is

obtained from the fiber optic sensors, and two important parameters (i.e. battery surface strain

and temperature) can be decoded and extracted from the wavelength for the characterization of

the lithiation/delithiation process. The model output is the estimated SOC at time k, denoted
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by SOC(k).

Figure 2: GPR-based battery SOC estimation

The GPR-based SOC estimation method mainly consists of two parts, offline training of the

model and online estimation of SOC using the trained model. The steps for training a GPR

model and then performing SOC estimation are illustrated in Figure 3, where the blue part on

the left represents the offline training process, and the orange part on the right refers to the

testing process. The detailed steps can be described as follows:

Figure 3: Flowchart of the GPR-based battery SOC estimation
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Training process:

Step 1 - Determine and normalize the training dataset, D = {(xi,yi)}
N
i=1

, where x contains

current, voltage and wavelength measurements as well as the estimated capacity of the corre-

sponding cycle, and y is the reference value of SOC.

Step 2 - Select a kernel function that can well represent the underlying target function.

Step 3 - Set the initial values for the hyperparameters in the specified kernel function as well as

the noise variance.

Step 4 - Optimize the hyperparameters with the training data by maximizing Equation (7), the

log marginal likelihood function.

Testing process:

Step 5 - With the optimal hyperparameters, the GPR model is referred to as the ’trained’ model.

Then in the testing process, the normalized testing inputs are fed into the trained GPR model,

and the target SOC is outputted in the form of mean and covariance, which provides both the

SOC estimation results and the uncertainty measurements.

2.3. CNN-based capacity estimation

The battery aging during its utilization will lead to capacity degradation, which will impact

the accuracy of SOC estimation. Considering the importance of timely maintenance and replace-

ment of aged batteries, and the requirement for improved SOC estimation performance, it is

meaningful to update the actual capacity in real-time.

In this section, the PCNN-TL model described in our previous work [19] is used for the battery

capacity estimation. As shown in Figure 4, a CNN model that consists of 2 sets of convolutional

and max pooling layers, followed by two consecutive convolutional layers, then flattening, and

finally two fully-connected layers, was constructed first. Generally, such a model needs to be

trained with a large set of labeled training data to optimize its parameters, and will show poor

performance if trained on insufficient dataset. Therefore, transfer learning technique was applied

to CNN aiming at reducing the required size of datasets by leveraging the knowledge learned

from the source task with large dataset to a different but related task with much smaller dataset.

As illustrated in Figure 4, the CNN model was firstly pre-trained on a large source dataset col-

lected from lithium iron phosphate (LFP) cells, each of which was tested for approximately 1000
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charge/discharge cycles. Then the learned knowledge (model structure and trained parameters)

was transferred to our relatively small target dataset collected from cells that each tested for

30 reference cycles, and the last two convolutional layers and two fully-connected layers were

fine-tuned on the target dataset to guarantee model performance. Here the suitable number of

fine-tuning layers was determined by trial and error. Finally, a fast recursive algorithm-based

network pruning technique was used in the last two fully-connected layers to remove redun-

dant neurons, which can significantly reduce the model size and computational complexity, thus

makes it possible to implement the resultant model in the on-board BMS. The resultant model

is denoted as PCNN-TL and can achieve fast and accurate capacity estimation on small dataset.

More details of this model construction can be found in a previous publication [19].

Figure 4: PCNN-TL model construction

The input variables of the PCNN-TL model consists of current, voltage and charge capacity of

partial charging curves, which are converted into 3 dimensional images with the size of 15×15×3.

While the model output is the maximum available capacity of the discharge cycle which imme-

diately follows the charge cycle that generates the input sample. The capacity estimated by the

PCNN-TL model is then used as an input to the GPR model introduced in Section 2.2.2, along

with battery current, voltage and FBG wavelength data to update the SOC estimation.

3. Experimental Setup

In this work, 4 commercial cylindrical LFP cells with a nominal voltage of 3.2 V and a nom-

inal capacity of 1.6 Ah are used in the experiment. They are tested in parallel using a BTS 4000

battery test system made by NEWARE, and thermocouples with measurement error less than

0.1 ◦C are attached to measure the cell surface temperature. All cells are tested under a constant
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temperature of 25 ◦C, and the battery current, voltage and surface temperature are recorded

during the charging and discharging process. High charging current rates are used to accelerate

the aging speed of these cells, and a reference cycle is tested every 30 cycles with CC-CV charging

and CC discharging process. The CC charging and discharging current is 1 A, with the upper

and lower cutoff voltage of 3.6 V and 2.0 V, respectively. The cutoff current of the 3.6V CV

charging process is 75 mA. The sampling frequency for all the equipment used in this experiment

was set as 1Hz. Further, fiber-optic sensors, a promising new sensing technology for battery cell

monitoring, are used in this experiment to acquire more process related measurements to improve

the SOC estimation accuracy. As shown in Figure 5, three Fiber Bragg gratings (FBG)-based

fiber-optic sensors are directly attached to the surface of each cell without affecting its packaging

and integrity. This non-invasive installation approach does not cause potential safety issues and

the FBG sensors can be easily mounted on the battery cells.

Figure 5: Cells with FBG sensor integrated.

The FBG sensors are sensitive to strain and temperature variations. These two significant pa-
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rameters are directly related to the complex processes inside the cells, and the temperature

increase and mechanical stress will cause capacity loss and potential risk of batteries. When the

battery surface temperature or strain changes, the reflected wavelength changes from the base

wavelength λ to λs, thus the wavelength shift ∆λ is related to both strain and temperature

variations [23, 26]. As the three FBG sensors are co-located within a small footprint but have

a slightly different orientation, the radial strain signal can be decoupled from the temperature

measurement [32]. In this section, the wavelengths that contain both strain and temperature

information are directly used for SOC estimation.

The average wavelength shift of the three FBG sensors and the voltage of a cell subject to the

CC-CV charging and CC discharging mode is presented in Figure 6. In Figure 6, step (1) corre-

sponds to the charging phase with a constant current of 1 A, and step (2) is the 3.6 V constant

voltage charging phase, while the final step (3) corresponds to the discharging phase with a con-

stant current of 1 A.

Figure 6: Wavelength shift of a CC-CV charging and CC discharging cycle

Since simple functions cannot describe the relationship between SOC and FBG sensor wavelength

shift appropriately, therefore, the Gaussian Process Regression algorithm is used to estimate the

SOC using this new set of signals.
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4. Estimation Results and Discussions

The performance of the proposed SOC and capacity joint estimation framework is verified on

the aforementioned dataset. The root mean-square error (RMSE) is used to evaluate the estima-

tion accuracy and the standard deviation is used to characterize the estimation uncertainty.

The battery capacity is first calculated using the well-trained PCNN-TL model, for which the

model inputs are current, voltage, and charge capacity calculated by integrating the current with

respect to time. Then the SOC of cell 1 over discharge profiles of reference cycle 10 are estimated

and the results are shown in Figure 7. It is evident that the estimated SOC with updated capacity

information (Figure 7(b)) are much closer to the reference SOC than without it (Figure 7(a)).

This is summarized on Figure 7(d), where the difference between the curves are highlighted. As

illustrated in Figure 7(c), though the errors shown in both figures converge to zero, the error of

SOC estimation with updated capacity is within 2%, while the error of SOC estimation without

updating the capacity is within 6%. Further, the RMSE of the SOC estimation with and without

the updated capacity value are 0.62% and 3.59%, respectively. This has clearly demonstrated

that accurate capacity estimation is important for SOC estimation. In addition, as shown in

Figures 7(a) and 7(b), the 95% confidence interval in both figures have similar width, and the

mean standard deviation of the estimates with and without updated capacity are the same, both

are 1.02%. Therefore, it is shown that whether or not the capacity information is updated does

not affect the estimation uncertainty.

While estimating the SOC, battery capacity is simultaneously estimated using the well-trained

PCNN-TL model, and the estimation results are shown in Figure 8. The blue and red solid

lines represent the reference and estimated capacity value of cycle 10, respectively. As shown in

Figure 8, the estimated capacity is close to the reference value, while its fluctuation is similar

to that of the SOC estimation error (red line in Figure 7(c)), when the error of SOC estimation

converges to zero, the estimated capacity also converges to the reference value. Finally, the last

225 consecutive points from the current, voltage and SOC curves of each reference cycle are used

to estimate the capacity, and the estimated results for these cycles are illustrated in Figure 9.

The blue line refers to the reference capacity, and the red line represents the capacity estimated

using the current, voltage, and charge capacity calculated by integrating the current with respect
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(a) (b)

(c) (d)

Figure 7: SOC estimation results of cell 1: (a) SOC estimation results without updated capacity information. (b)
SOC estimation results with updated capacity information. (c) SOC estimation error. (d) SOC estimation

results with/without updated capacity.

to time. The RMSE is 0.0126 Ah. While the yellow line refers to the capacity estimated using

current, voltage, and the charge capacity calculated from the estimated SOC, and the RMSE

is 0.0064 Ah. It is evident that using the estimated SOC information can in turn improve the

capacity estimation accuracy.

To investigate the effect of using FBG wavelength signals as model input for the SOC estima-

tion, the data collected from cell 1 was utilized for testing. Two different GPR models were built

for SOC estimation, one took current, voltage and capacity as the model input, and the other

used current, voltage, FBG wavelength signal, and capacity as the model input. The estimation

results on cycle 10 of cell 1 are shown in Figure 10, and from the enlarged view of Figure 10(a)

and 10(c), it is evident that the the shaded blue area is wider when the FBG signal is not fully
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Figure 8: The estimation results of battery capacity for reference cycle 10 of cell 1

Figure 9: Capacity estimation results at different reference cycles of cell1

utilized, which means the estimation uncertainty is higher. Further, Figures 10(b) and 10(d)

confirm that the SOC estimation is more accurate when the FBG signal is utilized as an input to

the estimation model. Quantitatively, when using the updated capacity information, the RMSE

of the SOC estimation with and without using the FBG signals as input are 0.62% and 1.48%,
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respectively, and the mean standard deviation of the estimation with and without FBG signals

are 1.02% and 1.78%, respectively.

(a) (b)

(c) (d)

Figure 10: SOC estimation results of cell 1: (a) SOC estimation results using FBG signals. (b) Error of SOC
estimation using FBG signals. (c) SOC estimation results without FBG signals. (d) Error of SOC estimation

without FBG signals

The RMSE and standard deviation of SOC estimation under different input conditions are sum-

marized in Table 1. Two observations can be concluded from Table 1. Firstly, the use of updated

capacity can greatly improve the SOC estimation accuracy (reduces the RMSE from 4.3% to

1.48%, or from 3.59% to 0.62%, achieving 65.58% and 82.73% reductions, respectively), but

do not affect the estimation uncertainty. Secondly, using FBG signals as input to estimate the

SOC can not only reduce the estimation RMSE (the RMSE decrease from 4.3% to 3.59% and

from 1.48% to 0.62% achieved 16.51% and 58.11% reductions, respectively), but also reduce the

estimation uncertainty (achieving 42.7% reduction on the estimation standard deviation from
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1.78% to 1.02%). In summary, using the updated capacity and FBG measurements can reduce

the estimation RMSE by up to 85.58% (from 4.3% to 0.62%) and reduce the estimation standard

deviation by 42.7%.

Table 1: SOC estimation results with/without updated capacity and with/without FBG measurements.

Without FBG signals With FBG signals

Assess Without
updated Q

With
updated Q

Without
updated Q

With
updated Q

RMSE 4.3% 1.48% 3.59% 0.62%
Mean Standard Deviation 1.77% 1.78% 1.02% 1.02%

To validate the generalization ability of the proposed method, the model trained on cell 1 is

directly applied to estimate the SOC of cell 2, and satisfactory SOC estimation results are also

achieved. Taking reference cycle 10 of cell 2 as an example, as shown in Figure 11, the estimation

results can still well track the reference values, though the max error is around 5%, it converges

to zero at the end of the cycle. A similar trend can be observed from the capacity estimation

results shown in Figure 12, when the SOC estimation error is large, the capacity estimation error

is large, while the estimated SOC converged to the reference SOC, the estimated capacity also

converged to the reference value. Further, the RMSEs for the discharge profiles of the first ten

reference cycles of cell 2 are summarized in Figure 13. As shown in Figure 13, the RMSE of

SOC estimation is always lower when the capacity is estimated and updated in SOC estimation,

which is less than 2% for these ten reference cycles, while the RMSE of the model prediction

without using the updated capacity is within 5%, the results again confirm that the proposed

joint estimation framework can estimate the SOC more accurately by updating the capacity

value.

Finally, the proposed method is also tested on a CC discharge cycle of cell 1 with 1C dis-

charging rate. As shown in Figure 14, the estimated SOC can track the reference values with

the RMSE of 3.48%, and the maximum error around 6%. Table 2 summarizes the RMSE and

standard deviation of SOC estimated under different input conditions, the results again confirm

that the use of updated capacity can improve the SOC estimation accuracy (reduces the RMSE

from 10.42% to 4.89%, or from 7.74% to 3.48%, respectively), and the use of FBG signals not only

improves the estimation accuracy (reduces the RMSE from 10.42% to 7.74% and from 4.89%

to 3.48%, respectively), but also reduces the estimation uncertainty (achieving up to 45.96%
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(a) (b)

Figure 11: SOC estimation results of cell 2 using model trained on cell 1: (a) SOC estimation results with
updated capacity information. (b) SOC estimation error.

(a) (b)

Figure 12: Capacity estimation results of cell 2 (a)Capacity estimation results using online estimated SOC. (b)
The relative error between estimated and reference capacity.
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Figure 13: Bar chart of the SOC estimation RMSE for the discharge profiles of ten reference cycles. The
performance of the model trained on cell 1 is evaluated on the data recorded from cell 2.

reduction on the estimation standard deviation from 4.33% to 2.34%). Moreover, the capacity

estimation results of 30 discharging cycles with 1C current are illustrated in Figure 15. It is

clear that the yellow line is closer to the reference capacity, which indicates that the capacity

estimated using the charge capacity calculated by SOC is more accurate than using the charge

capacity calculated by current integration, which once again confirms that the estimated SOC

can in turn improve the capacity estimation results.

(a) (b)

Figure 14: SOC estimation results on a discharge cycle with 1C current (a) SOC estimation results with updated
capacity information. (b) SOC estimation error.
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Table 2: SOC estimation results on a 1C discharge cycle with/without updated capacity and with/without FBG
measurements.

Without FBG signals With FBG signals

Assess Without
updated Q

With
updated Q

Without
updated Q

With
updated Q

RMSE 10.42% 4.89% 7.74% 3.48%
Mean Standard Deviation 4.33% 3.54% 2.34% 2.31%

Figure 15: Capacity estimation results of 30 discharging cycles with 1C current

In summary, the proposed joint estimation framework has shown to significantly improve

the SOC estimation accuracy by updating the imprecise battery capacity in time, and accurate

SOC estimation can in turn improve the accuracy of capacity estimation, while traditional SOC

estimation methods without capacity calibration cannot eliminate the influence of the erroneous

capacity value. Furthermore, the FBG measurements can provide more information on the bat-

tery dynamics, therefore, using FBG measurements to assist SOC estimation, the estimation

uncertainty can be decreased and estimation accuracy can be improved.

5. Conclusions

This paper has proposed a hybrid machine learning framework to achieve jointly estimation

of the battery SOC and capacity, assisted with the instrumentation of FBG sensors to acquire
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multi-point strain and temperature variation signals due to battery charging/discharging opera-

tions. The framework updates the capacity using a well-trained CNN model, and simultaneously

estimates the SOC and quantifies the estimation uncertainty using a GPR model. Some conclu-

sions can be drawn below:

• Firstly, the effect of battery aging on SOC estimation is considered, by updating the capac-

ity regularly, the SOC can be estimated more accurately, achieving up to 82.73% reduction

on the RMSE. In turn the accurate SOC estimation can further improve the accuracy of

the capacity estimation.

• Secondly, a new sensing technology for battery condition monitoring is utilized to enrich

the measurements from traditional sensing technologies for batteries. The new sensing

technology offers a number of distinctive features, such as multiplexing, lower costs, less

complex wiring, and immunity to EMI. The experimental results confirm that the FBG

sensing measurements can further improve the SOC estimation accuracy and lower the

estimation uncertainty, with up to 58.11% reduction on the RMSE and 42.7% reduction

on the estimation standard deviation.

• Thirdly, the GPR algorithm offers a unified framework to incorporate different sensor

measurements for simultaneous estimation of the SOC and quantification of the estimation

uncertainty, hence the influence of the updated capacity and FBG measurements on the

SOC estimation can be assessed systematically.

The experimental results have undeniably verified the performance of the proposed joint es-

timation framework and that the use of FBG signals is beneficial to SOC estimation. These

results confirm that the capacity estimation is vital for accurate SOC estimation, and the newly

introduced FBG signals can further improve the SOC estimation accuracy and reduce the esti-

mation uncertainty. With the mass roll-out of electric vehicles for transport decarbonization and

battery storage systems for accepting a large portion of renewable energy into the power grid,

continuous, accurate and reliable battery SOC and SOH estimation are not only important in

real-life applications for safe, reliable and effective operation and control, it also offers valuable

information for whole life-cycle management of batteries, enabling future technological and busi-

ness innovations to maximize the value chain of batteries. This paper has demonstrated that a
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holistic approach to integrate novel estimation framework with new sensing technologies such

as the FBG sensors can address a number of issues arising from existing siloed approaches in

real-life applications, bringing a number of potential tangible benefits which otherwise can not

be achieved by conventional approaches. Our future work will investigate more sophisticated dy-

namic charging and discharging scenarios under different operation conditions, and explore other

application and benefit potentials of the novel sensing technologies when they are combined with

battery management schemes and algorithms.

Finally, we would like to emphasize that Fiber Optic Sensors (FOSs) have been chosen as

the most suitable means to allow additional practical measurements to be taken. They have

been chosen (in addition to conventional, typically electrically-based sensors) due to the inher-

ent advantages that they have for applications such as this battery state monitoring and state

estimation. The specific benefits of the use of such FOSs have been discussed by some of the

authors in detail in other publications [22] but in summary, FOSs are particularly well suited to

these situations, such as when electrical monitoring is unsafe as there is a risk of sparking, or

short circuits possible in all electrical systems in harsh environment, thereby offering a significant

safety advantage, a key consideration in the design and operation of electric vehicles and battery

storage for power grids. Further, FOSs methods such as are used here work well when electrical

means of monitoring fail, for example where there is a large amount of electromagnetic noise,

and data being read from conventional sensors can be corrupted. In addition, when there are a

large number of sensors to be placed (and if it is necessary to place a lot of sensors for a complete

monitoring profile of battery systems), FOSs are easy to install and lightweight: the use of an

optical network minimizes the weight of cables needed and thus simplifies the set up. Finally,

the use of FOS networks can offer a competitive costing option, especially when safety is to the

fore in the measurement.
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