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Abstract

In this paper, an aliasing noise restraint technique and a system identification-based surface

electromyography (sEMG)-force prediction model are proposed to realize a type of robust

sEMG and muscle force prediction. For signal denoising, a novel non-negative matrix factor-

ization screening empirical mode decomposition (NMFSEMD) and a fast orthogonal search

(FOS)-based muscle force prediction model are developed. First, the NMFSEMD model is

used to screen the empirical mode decomposition (EMD) results into the noisy intrinsic

mode functions (IMF). Then, the noise matrix is computed using IMF translation and super-

position, and the matrix is used as the input of NMF to obtain the denoised IMF. Further-

more, the reconstruction outcome of the NMFSEMD method can be used to estimate the

denoised sEMG. Finally, a new sEMG muscle force prediction model, which considers a

kind of candidate function in derivative form, is constructed, and a data-training-based linear

weighted model is obtained. Extensive experimental results validate the suggested meth-

od’s correction: after the NMFSEMD denoising of raw sEMG signal, the signal-noise ratio

(SNR) can be improved by about 15.0 dB, and the energy percentage (EP) can be greater

than 90.0%. Comparing with the muscle force prediction models using the traditional pre-

treatment and LSSVM, and the NMFSEMD plus LSSVM-based method, the mean square

error (MSE) of our approach can be reduced by at least 1.2%.

1 Introduction

When the astronauts work in the microgravity environment of space stations for an extended

period, they experience bone loss and muscle atrophy [1–3], resulting in a substantial loss of

muscle strength, which impacts the astronaut’s physical health and the ability to perform tasks,

such as handling equipment and opening cabin doors. After returning to Earth, astronauts

typically need a period of rehabilitation training to regain their physical health. Direct and

indirect measurement methods are commonly used to assess muscle strength. The former
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approach causes some harms to the human body and is not portable when astronauts are

active, so it has limited application. The latter method evaluates muscle force by analyzing the

surface electromyogram (sEMG) signals of an astronaut. Clearly, this technique is an efficient

and noninvasive technique with a broad application. Research on muscle force prediction is

useful for monitoring the muscle force status of astronauts in real-time and developing tar-

geted on-orbit rehabilitation training programs.

The muscle force prediction model, including the physiological and the phenomenal mod-

els, establishes a nonlinear relationship between the sEMG signals and muscle force. A typical

physiological model, the Hill model, is based on various physiological parameters during mus-

cle contraction [4]. Its simplified model has good adaptability and low computational amount

because it ignores muscle fatigue; however, its accuracy is poor and can only predict one mus-

cle. Researchers have committed to finding an optimal strategy with low complexity and high

accuracy by using sensitivity analysis [5, 6]. The phenomenal model includes polynomial fit-

ting, artificial neural networks, and system identification. When using polynomial fitting,

some authors predicted the joint torque of biceps brachii [7]; other authors found that muscle

force prediction was the best when the polynomial fitting order was more than three [8]. The

polynomial fitting has a simple structure and shorter training time; however, it has low accu-

racy. Thus, some researchers adopted a neural network to predict hand and palm-grip forces

during elbow motion [9, 10]. The accuracy of an artificial neural network depends on its struc-

ture and parameters, and the training typically takes a long time.

Another phenomenal model used for muscle-force prediction is the system identification

method. Popular methods are parallel cascade identification (PCI) and fast orthogonal search

(FOS). Some authors used PCI to build a relationship between the upper arm sEMG signals

and wrist induction force [11]. PCI considered the dynamic linear finite impulse response and

static nonlinear fitting, which realized the fusion of dynamic and static information. However,

it took a long training time. Conversely, the FOS method established prediction models by

minimizing the mean square error (MSE) between the estimated and true values of the system

output [12]. Some authors used FOS to predict the muscle force of upper arm and forearm

muscles during elbow flexion and extension [13]. Thus, FOS quickly achieved muscle force

prediction and resulted in high accuracy by building suitable candidate functions.

Surface EMG signals have non-linear and non-stationary characteristics, and are usually

processed by time-frequency analysis. However, traditional analysis is based on Fourier analy-

sis, which cannot express local frequency change with time. Empirical mode decomposition

(EMD) overcomes this limitation and is widely used in physiological signal analysis, fault diag-

nosis, and other fields. EMD has problems such as modal aliasing and end effect [14]. Scholars

have proposed improved EMD methods to suppress modal aliasing. For example, research on

improvement based on noise assistance, ensemble empirical mode decomposition (EEMD),

and noise assisted multivariate empirical mode decomposition (NAMEMD) were realized by

adding white noise to EMD decomposition [15–17]. Research on improvement based on

mathematics, including local fitting curve replaced cubic interpolation curve [18]. Research on

improvement based on EMD decomposition characteristics, independent component analysis

(ICA) was used to eliminate mode aliasing in EMD decomposition results [19].

In this study, we propose a non-negative matrix factorization screening empirical mode

(NMFSEMD) denoising approach for removing the aliasing noise in the sEMG signals by ana-

lyzing the noise distribution of sEMG at various time characteristic scales. Using the denoised

sEMG signal as the input of muscle force prediction model, the reliability and accuracy of the

model can be improved. Additionally, we apply the system identification model FOS to estab-

lish the prediction model. We preset several forms of candidate functions according to the

time-domain characteristics of sEMG signals, then employ an iterative optimization technique
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to select several basis functions, and use their weighted sums as the muscle force prediction

model.

The major contributions of this investigation are as follows: a novel NMFSEMD method

for denoising sEMG signals is proposed and a candidate function in the form of a derivative to

the FOS model to predict the muscle force is considered. This noise reduction technique has

three main advantages: (i) as an improved algorithm of EMD, NMFSEMD can better suppress

mode mixture and improve the data reliability of sEMG in muscle force prediction; (ii)

NMFSEMD can distinguish the noisy intrinsic mode functions (IMF) components and the

real intrinsic mode functions components (IMFs) from the EMD decomposition results by

using the designed IMFs screening process; (iii) NMFSEMD is a data fusion method essentially

and can extract several sequences that can best represent the state of muscle activation when

used in sEMG signals.

The remainder of this paper is organized as follows. First, we will introduce the principle of

proposed NMFSEMD. Second, we present the process of building a muscle force prediction

model using FOS. Finally, experimental findings and discussions will be presented.

2 Proposed sEMG-force-prediction method

In the muscle force prediction process, the sEMG signal preprocessing is first considered to

improve the reliability of modeling data. Conventional preprocessing methods are initially

used for sEMG signal, such as outlier detection. Then, the denoising and preprocessing of

sEMG signals are conducted by integrating the EMD with NMF, i.e., the proposed NMFSEMD

denoising method. Subsequently, the denoised sEMG signals are obtained and used as the

input of the muscle force prediction model. Then, basic functions of FOS are computed using

the denoised sEMG signals in the form of preseted candidate functions. Finally, the muscle

force prediction model represented by the linear combination of several basic functions is

obtained and can be calculated through FOS model training by comparing the measured and

predictive muscle forces in the model training process. The flowchart of sEMG-based muscle

force prediction is shown in Fig 1.

2.1 sEMG signal denoising using EMD and NMF

2.1.1 EMD method. While acquiring the sEMG signals, the power line interference, ambi-

ent noise, motion artifact interference [20–22], and other noises can be observed. The fre-

quency range of sEMG signals is 0.0 to 500.0 Hz [23], and the main frequency range of sEMG

signals is 50.0 to 150.0 Hz. The frequencies of motion artifact interference, ambient noise, and

Fig 1. Computational flowchart of NMFSEMD denoising and FOS-based muscle force prediction using the

denoised sEMG signals.

https://doi.org/10.1371/journal.pone.0272118.g001

PLOS ONE Muscle force prediction using EMS-NMF and FOS

PLOS ONE | https://doi.org/10.1371/journal.pone.0272118 August 3, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0272118.g001
https://doi.org/10.1371/journal.pone.0272118


power noise are from 0 to 20.0 Hz, 40.0 to 60.0 Hz, and 50.0 Hz, respectively. The traditional

noise reduction methods used for analyzing the sEMG signals are bandpass filtering, wavelet

filtering, EMD, or blind source separation (BSS) [21, 24–26]. However, the bandpass filtering

method cannot filter out the noise mixed in the main spectrum. Moreover, it is different to use

the wavelet filtering method to accurately evaluate the denoising results. The BSS method has

many strict restrictions and requirements. For example, the source signals obey Gaussian dis-

tribution and their intensities should be less than 1.0; each source signal is statistically indepen-

dent. According to its characteristic time scale, the EMD approach can adaptively decompose

the signal into a series of IMF with frequency values ranging from high to low. The characteris-

tic time scale denotes the signal change process that can be directly observed from the time-

domain and represent the local frequency features. Thus, the noise in sEMG signals can be

removed by processing intrinsic mode functions components (IMFs) which containing differ-

ent frequency information.

The theory of EMD is based on the idea that any real signals can be decomposed into a set

of simple IMFs, which are independent of each other [27]. EMD decomposes the fluctuations

of different scales in a signal step by step and produces a series of data sequences of different

scales. Each sequence is called an IMF. Each IMF should satisfy two conditions [28–30],

namely, the difference between the number of local extreme points and zero points is not

more than one; and at any time, the average value of upper envelope formed by the local maxi-

mum point and the lower envelope formed by the local minimum point is zero. The calcula-

tion process of EMD is as follows:

1. The upper and lower envelopes are obtained by cubic spline interpolation of the local max-

ima and local minima points of signal x(t), respectively.

2. The difference h(t) between x(t) and the average value m(t) of the upper and lower enve-

lopes is calculated.

3. If h(t) meets both the IMF conditions, it is the first IMF; otherwise, it is the new x(t). The

preceding steps are repeated until the difference after k times satisfies the IMF conditions

and is recorded c(t) = hk(t) as the first IMF.

4. The existing IMF c(t) from x(t) is removed to obtain the remaining component r(t), and r
(t) is considered as the new x(t). Then the preceding steps are repeated to get the remaining

(n– 1) IMFs.

5. When the residual rN(t) is a monotone function, the algorithm can be stopped. The expres-

sion of signal x(t) after EMD decomposition is shown in Eq (1).

xðtÞ ¼
XN

n¼1
cnðtÞ þ rNðtÞ ð1Þ

where cn(t) (n = 1, . . ., N) is the IMF and rN(t) is the residual error.

2.1.2 NMF method. Some noises in the sEMG signals can be filtered out by discarding

the corresponding IMFs after EMD decomposition [15]. However, the noises mixed in the

main spectra of signals still remain. Thus, the BSS method is used to filter out these noises

because it can recover “source signals” that cannot be directly observed from the “mixed sig-

nals” [31]. BSS methods include principal component analysis (PCA) [32], ICA [33], and

NMF [34]. PCA uses the linear transformation of matrix to reduce data dimensions and elimi-

nate redundant data. ICA and EMD decompose the matrix to find the basis vectors represent-

ing the local features of the observed matrix. ICA and EMD are more suitable than PCA for
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obtaining muscle activity feature from the sEMG signals. Additionally, ICA results must be

statistically independent, with at least one component obeys Gaussian distribution, and the

observed signal dimension should not be less than the decomposed dimension. However, the

distribution and quantity of NMF results have no specific requirements, and the non-negative

of the decomposed matrix makes the result more meaningful in physiological signal analysis.

Thus, NMF is more suitable for denoising the sEMG signals in this work.

For a given non-negative matrix V, the basic principle of NMF can be described in [34].

Herein, we find two non-negative matrices W and H, whose product approaches V, as shown

in Eq (2).

V �WH; fV 2 Rm�n;W 2 Rm�r;H 2 Rr�ng ð2Þ

where r is the target dimension, m is the dimension of input matrix row, and n is the dimen-

sion of input matrix column. The key of NMF is the construction of loss and optimization

functions. The loss function based on Euclidean distance and Kullback-Leibler divergence can

meet the requirements of matrix factorization in NMF [35]. First, we initialize W and H, and

then their iterative equations are computed by minimizing the optimization function. The

NMF algorithm converges in a finite number of iterations.

2.1.3 Proposed NMFSEMD algorithm. EMD can decompose the raw sEMG signals into

a series of IMFs with different time scales; however, not every IMF contains useful information

about the raw signal. To distinguish the IMFs with useful information and the IMFs with noisy

information, we design their respective processes to achieve noise reduction in this section,

i.e., an NMFSEMD denoising method is proposed. The implementation process of the

NMFSEMD method is shown in Fig 2.

The designs of NMFSEMD method are as follows:

First, a set of IMFs with decaying frequencies can be obtained using the EMD. The fre-

quency spectrum of each IMF is a part of the raw sEMG signal spectrum, whereas the total fre-

quency distribution of IMFs is the frequency distribution of signal. For a set of IMFs, the

higher the index of an IMF is, the higher its rank would be. The low-rank IMFs have a smaller

time scale and a wider frequency domain, whereas the high-rank IMFs have a larger time scale

and a narrow frequency domain. According to the spectrum analysis of sEMG noise presented

in Section 2.1.1, the IMFs distributed in the low frequency mainly represent the low-frequency

noise in the signal, and the noise can be eliminated directly by removing the corresponding

IMFs. However, low-rank IMFs with a wider frequency domain overlap the main spectrum of

sEMG. Thus, it is difficult to filter out these noises by removing IMFs. This unfavorable

Fig 2. Concept flowchart of the proposed NMFSEMD method for denoising.

https://doi.org/10.1371/journal.pone.0272118.g002
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phenomenon where the noise frequency overlaps with the main frequency of signal is called

the modal aliasing problem in EMD. That is, multiple time feature scales appear in one IMF,

or one-time feature scale appears in multiple IMFs [26]. Ideally, each IMF only contains one

time feature scale [27]. The proposed NMFSEMD method can address this modal aliasing

problem by screening the IMFs, filtering out the noise in them, and finally reconstructing the

denoised sEMG signal containing the main muscle activation information.

The specific steps of NMFSEMD are as follows:

1. The noisy sEMG signal is decomposed using the EMD method to obtain a set of IMFs with

different time scales: IMFs = {imf1, imf2, . . ., imfm}.

2. In the abovementioned qualitative analysis of IMFs, the IMFs indicating noise should be

removed, the IMFs with modal aliasing should be denoised, and the IMFs containing the

main information of signal should be directly used for signal reconstruction. To achieve

this goal in quantitative analysis, the concept of “correlation” is used to identify different

types of IMFs. The detailed steps are as follows:

• First, the Pearson correlation value between each IMF and raw sEMG signal is calculated, as

shown in Eq (3).

Rðx; imfiÞ ¼

XN

t¼1
½x � �x�½imfi � �imf i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1
½x � �x�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1
½imfi � �imf i�

2

q ð3Þ

where x is the raw sEMG signal, imfi is the i-th component of the IMF set, n is the number of

sampling points, �x is the mean value of x, and �imf i is the mean value of imfi. The value of R
is in the range [−1, 1]. The higher the value of R is, the stronger the correlation between x
and imfi would be.

• Second, imfadd, imfnmf, and imfp are searched according to the obtained correlation set:

CR ¼ fRðx; imf1Þ;Rðx; imf2Þ; . . .;Rðx; imfmÞg. The symbol imfadd is used to construct the

denoised signal and the input matrix of NMF. The symbol imfnmf involves the phenomenon

of model aliasing and should be denoised and then used to construct the denoised signal.

The symbol imfp contains the main information about the signal and is directly used to con-

struct the denoised signal. Clearly, the imfp does not exist in all IMF set. The selection strate-

gies of three IMFs are as follows: crth called the preseted correlation threshold, which is an

empirical boundary value that determines whether the IMF treated as noise is to be dis-

carded. The symbol cre is called the empirical maximum correlation, which is the maximum

correlation at the positions where the higher correlations often appear in set.

The selection strategy of IMFs.
/� Assumption �/

Set the lower and upper correlation limits for searching imfadd,
imfnmf, and imfp:

lower = MIN (crth, cre) and upper = MAX (crth, cre)
The set CR can be divided into three parts based on limited value,

the position index set of each part, and
IMFs set of the corresponding position indexes are as follows:

inda = INDEX {CR � lower}, indb = INDEX {lower < CR < upper},
and indc = INDEX {upper � CR}

imfsa = IMF {inda}, imfsb = IMF {indb}, and imfsc = IMF {indc}
/� Algorithm �/

if set inda and indb are not empty:
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if set indc is not empty, then imfp is the superposition of all
IMFs in set imfsc.

if set indb has more than 1 IMF component, then imfnmf is the IMF
with the smallest correlation in set imfsb,

imfadd is the superposition of other IMFs in the set
imfsb except imfnmf.

else imfnmf is the IMF with the largest correlation in set
imfsa, imfadd is the IMF in set imfsb.

if set inda and indc are not empty, set indb is empty:
if set indc has more than 2 IMF components, then imfp is the IMF

with the largest correlation in set imfsc,
imfnmf is the IMF with the smallest correla-

tion in set imfsc,
imfadd is the superposition of other IMFs in set imfsc except

imfp and imfnmf.
else imfp is the superposition of all IMFs in set imfsc,

imfnmf is the IMF with the largest correlation in set imfsa.
if set inda is not empty, set indb and indc are empty:

imfnmf is the IMF with the largest correlation in set imfsa,
imfadd is the superposition of other IMFs in set imfsa except

imfnmf.
end

• Then, the IMFs that are not selected to construct imfadd, imfnmf, and imfp are removed as

noises. Next, NMF is used to denoise the imfnmf.

3. Because the dimension of input matrix V in NMF algorithm is greater than 1, and the

selected imfnmf is a vector. Thus, the method of “signal time sequence translation” is used to

construct the input matrix V in NMF. The details of this construction are as follows:

• First, this method cyclically shifts the sequence imfnmf to the left for p positions and splices

the left overflow part to the right end of the sequence. This translation operation is repeated

to obtain k different noise samples: s = {s1, s2, . . ., sk}.

• Second, this method superimposes imfp and imfadd as imfo: imfo(t) = imfp(t) + imfadd(t).

• Then, this method accumulates s and imfo (a row vector), respectively, to construct a noisy matrix

V, as shown in Eq (4), whose dimension is k × n, where n is the duration of the raw sEMG signal.

V ¼

imfoðtÞ þ s1ðtÞ

imfoðtÞ þ s2ðtÞ

. . .

imfoðtÞ þ skðtÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð4Þ

The signal-to-noise ratio (SNR) ofV is approximately equal to the raw sEMG signal. Thus, the

matrixV retains the effective components of raw signal, and this cyclic shift operation only alters

the noise shape of raw sEMG signal.

4. Next, the NMF method is used to decompose the matrix Vk × n into the weight matrix Wk × r

and the activation coefficient matrix Hr × n is defined according to Eq (2), where k is the

number of channels of signal and r is the number of activation modes of signal. The i-th col-

umn of W represents the contribution of each channel to the i-th activation mode. The i-th
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row of H describes the trend of the i-th activation mode status changing with time, which is

called the muscle activation curve. The steps that obtain the denoised imfnmf from matrix V
are as follows:

• The intensity of each activation mode can be measured by calculating the area surrounded

by the muscle activation curve and time axis. Because the sampling frequency of the sEMG

signal is high enough (i.e., 3000.0 Hz), the activation intensity can be calculated using Eq (5).

Intensity ¼
Xn

i¼1
HðiÞ; 0 < i � r ð5Þ

• After setting different r values, the corresponding number of muscle activation curves is

obtained. In Section 3.4.2, we compare the denoising effect under different values of r and

conclude that the denoising effect is best when r is equal to 2. Two muscle activation curves,

h1 and h2, can be obtained, and the denoised imfnmf can be expressed as: imf’nmf = (h1 + h2)/2.

5. Finally, our method adds imf’nmf and imfo: x’(t) = imf’nmf(t) + imfo(t), where x’(t) is the

denoised signal of raw sEMG signal after applying the NMFSEMD denoising method,

which is used in the subsequent muscle force prediction of FOS method.

2.2 sEMG-force modeling using FOS

The FOS method uses a series of linear or nonlinear basis functions and coefficients to estab-

lish a model whose output quickly approaches the real value of system to minimize the error

between the estimated and actual values [12]. In the algorithm, an implicit orthogonalization

method is used to transform the candidate functions into a set of orthogonal candidate func-

tions [36, 37] {pm}, and their corresponding coefficients are expressed by am, as shown in Eq

(6). The MSE of the system is defined in Eq (7).

yðtÞ ¼
XM

m¼0
ampmðtÞ þ eðtÞ ¼ ŷðtÞ þ eðtÞ ð6Þ

MSE ¼ e2ðtÞ ¼ ½yðtÞ � ŷðtÞ�2 ð7Þ

where ŷ is the estimated system output, y is the true value of system, e is the model error, and

{pm} is a set of orthogonal candidate functions to be selected.

All candidate functions are traversed by calculating the MSE reduction Qm of each candi-

date function, and selecting the function add to model and remove from function set, which is

corresponding to the largest Qm. We select a function from the remaining candidate functions

and repeat the above steps until the termination conditions of FOS algorithm are met. The

commonly used termination conditions include the following: the number of functions in the

model reaches a preseted value; the model error is small enough, or the remaining candidate

functions cannot considerably reduce the model error. When the search is stopped, the coeffi-

cients of each selected function can be calculated to complete the FOS algorithm modeling.

3 Experiments and results

A series of tests and evaluation experiments were performed to assess the validity and effective-

ness of the proposed models and methods. All the simulation programs were written in Python

(Pycharm2020) on our PC (32.0 GB RAM, 3.8 GHz Intel (R) Core (TM), and i7-10700K

CPU).
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3.1 Experimental data preparation

In this study, we investigated the preprocessing and modeling of muscle force prediction, and

used the experimental data from [38]. The details of data are as follows. In the simulated

weightlessness environment of bed rest, the sEMG signals of the biceps brachii, triceps, and

brachioradialis muscles and the force signal of handgrip were collected synchronously during

the push and pull processes. The maximum voluntary contraction was 100.0%; the signal

acquisition frequency was 3000.0 Hz.

3.2 Evaluation of sEMG denoising method

In this section, the proposed denoising algorithm NMFSEMD is experimentally verified. Based

on the detailed principle of NMFSEMD designed in Section 2.1.3, the key steps of this algorithm

are analyzed visually and quantitatively. The implementation process of NMFSEMD algorithm is

shown in Fig 2, every key steps in the process are verified in turn: the setting of correlation thresh-

olds cre and crth, the screening of IMF components based on threshold, the construction of noisy

matrix using the idea of signal time sequence translation, the decomposition of noisy matrix con-

sidering the NMF and activation mode parameters, and the reconstruction and fusion of signal.

Finally, the denoised sEMG signal can be obtained. Compared with the distribution of IMFs in

time-domain and frequency-domain before and after signal denoising, it is verified that

NMFSEMD algorithm can suppress the modal aliasing better than the traditional EMD.

The EMD method was used to decompose the sEMG signal x(t) and obtain the signal distri-

bution on different time scales. The decomposed signal was denoted as Q = {imf1, imf2, . . .,

imfm}. Fig 3(A) shows that the EMD decomposition result of biceps brachii signal has 1400.0

sampling points. Moreover, some IMFs, which are not periodic functions with a single time

scale, can be observed, that is, a phenomenon of model aliasing is produced by noise. To more

intuitively analyze noise in IMFs, the fast Fourier transform (FFT) is used to obtain the spec-

trum diagram of each IMF, as shown in Fig 3(B). The horizontal and the vertical axes denote

the frequency and amplitude, respectively.

In the spectrum, the raw sEMG signal x(t) has a wide frequency domain and a large low fre-

quency amplitude. An increase of the rank of IMFs makes the frequency distribution gradually

approach the low frequency. The frequencies of high-rank IMFs are distributed in the range of 0.0

to 50.0 Hz, and no overlap is recorded in the main frequency of sEMG signals. In addition to the

discussion in Section 2.1.3, imfadd, imfnmf, and imfp should be found to construct the denoised

sEMG signal for clarifying the various types of IMFs. Thus, the results obtained on calculating the

correlations between raw sEMG signal x(t) and its IMFs using Eq (3) are shown in Table 1.

The experimental analysis in this study is based on the sEMG signals of the biceps brachii.

Results shows that the correlations of imf7 and other IMFs located near the edge of IMFs set

are lower, while those of imf3 and other IMFs located near the middle of IMFs set are higher.

According to Section 2.1.3, the selection strategy is used to determine imfadd, imfnmf, and imfp.
The empirical maximum correlation cre as 0.7658 can be obtained, and the preseted correla-

tion threshold crth is set to be 0.35, according to Section 3.4.1. Thus, imfp is imf3, imfadd is imf5,

and imfnmf is imf4.

Then, the noise mixed in imfnmf should be filtered. First, the temporal shift of imfnmf is used

to obtain noise samples s. When the order of signal duration is 103 and the order of magnitude

of rows of s is about 10, the predicted result will have less error. Therefore, the dimension of s
is set to 14 × 1400. Study in [39] has shown that when the sEMG signal duration was from

100.0 to 120.0 ms, it could exhibit some characteristics of an sEMG signal, therefore, the shift

length of “signal time sequence translation” is set to 300 data points in this study. Then, by

adding s and imfnmf, the input matrix V of NMF whose dimension is 14 × 1400 can be
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obtained. Subsequently, the matrix V is decomposed into the time-invariant activation mode

matrix W and the time-varying activation coefficient matrix H using NMF. Further, it can be

discovered that the activation information from signal is more reliable when the ranks of W
and H are 2. The denoised imfnmf can be obtained by calculating the mean of all rows of H.

Therefore, the denoised signal x’(t) can be obtained by adding imfp, imfadd, and the denoised

imfnmf. The SNR and EP are used to evaluate the denoising effect, as shown in Eqs (8) and (9).

And the SNR and EP results of sEMG signals after using NMFSEMD are shown in Table 2.

EP ¼

Xn� 1

t¼0
jx0ðtÞj2

Xn� 1

t¼0
jxðtÞj2

ð8Þ

SNR ¼ 10lg
1

n

Xn� 1

t¼0
x2ðtÞ

1

n

Xn� 1

t¼0
½xðtÞ � x0ðtÞ�2

ð9Þ

Fig 3. (a) Raw sEMG signal and its time-domain distribution diagram of a series of IMFs after EMD decomposition.

(b) Frequency spectrum of raw sEMG signal and its series of IMFs’ frequency distribution diagrams obtained via

decomposition after FFT computation.

https://doi.org/10.1371/journal.pone.0272118.g003

Table 1. Pearson correlation between signals of the biceps brachii, triceps brachii, and brachioradialis muscles and their IMFs after EMD decomposition.

Coefficient imf1 imf2 imf3 imf4 imf5 imf6 imf7
Biceps brachii 0.1019 0.1348 0.7658 0.2974 0.4914 0.1029 0.1064

Triceps brachii 0.0998 0.1267 0.4058 0.5794 0.4338 0.3575 0.2624

Brachioradialis 0.0553 0.1403 0.2916 0.5816 0.5215 0.4274 0.3870

https://doi.org/10.1371/journal.pone.0272118.t001
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where x represents the raw sEMG signal, and x’(t) denotes the denoised signal. A high SNR
value implies that the signal has a good noise reduction effect, whereas a high value of EP
means the denoised signal can retain more characteristics of raw signal.

Based on the comparison of Figs 3 and 4, the frequency of denoised signal is mainly distrib-

uted in the middle frequency, and the low-frequency noise has been considerably reduced.

The complexity of the time characteristic scale in IMF is reduced after the NMFSEMD denois-

ing processing, and the spectrum curve of each IMF becomes smoother. Fig 5 shows that by

comparing the sEMG signals before and after using the NMFSEMD denoising method, a

smoother curve can be obtained after denoising with a better filtering effect.

3.3 Evaluation of the sEMG-force prediction model

The denoised sEMG signals obtained from the raw sEMG signals using the NMFSEMD

denoising method are used as the input of muscle force prediction models. In this study, the

FOS method is used to establish the muscle force prediction model. In this model, the candi-

date functions can be constructed using different function forms, as shown in Table 3. Because

Table 2. Parameters of SNR and EP used for evaluating the denoising effect of biceps brachii, triceps brachii, and brachioradialis sEMG signals.

Raw sEMG signal SNR/dB EP/%

Before denoising After denoising

Biceps brachii 0.00 13.55 92.12

Triceps brachii 0.00 17.37 99.23

Brachioradialis 0.00 16.46 94.87

https://doi.org/10.1371/journal.pone.0272118.t002

Fig 4. Results of denoising and signal processing. (a) Denoised biceps brachii signal x’(t) and its IMFs in the time-

domain. (b) Corresponding frequency distribution of x’(t) and the IMFs after applying FFT method.

https://doi.org/10.1371/journal.pone.0272118.g004
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the raw sEMG signal used in this paper is the integrated electromyography value, which is

added the candidate function in the form of a derivative. In Table 3, Ebi, Etr, and Ebr represent

the denoised biceps brachii, triceps brachii, and brachioradialis signals, respectively. The

expressions sigm and _x represent the sigmoid function and first-order derivation of signal x,

respectively.

The denoised signals are used to construct candidate functions. However, the sEMG signal

is weak, complex, and changeable, the waveform of candidate function varies considerably.

Therefore, the predicted force outcome usually has a large oscillation. To better observe the

prediction results, the direct predicted force is interpolated, and the average value of the upper

and lower envelopes is taken to resist the fluctuation. Fig 6 shows the comparison curve

between the real muscle forces and estimated results of FOS models.

Many experimental results verified the effect of applying the NMFSEMD method in the

muscle force prediction model and the prediction effect of FOS prediction model. Table 4

Fig 5. sEMG denoising results. The left side is the synchronous three channels raw sEMG signal, and the right side is

the corresponding denoised sEMG signal using the proposed NMFSEMD. Three channels represent (a) biceps brachii

signal, (b) triceps brachii signal, and (c) brachioradialis signal.

https://doi.org/10.1371/journal.pone.0272118.g005

Table 3. Set of candidate functions of FOS muscle force prediction model, which comprises the common, quadratic, square-root, sigmoid, and gradient function

sets.

Common function Square-root function Sigmoid function Gradient function Quadratic function

Ebi
ffiffiffiffiffiffi
Ebi
p

sigm(Ebi) _E_
bi

Ebi2

Etr
ffiffiffiffiffiffi
Etr
p

sigm(Etr) _E_
tr

Etr2

Ebr
ffiffiffiffiffiffi
Ebr
p

sigm(Ebr) _E_
br

Ebr2

Ebi × Etr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebi � Etr
p

sigm(Ebi) × sigm(Etr) _E_
bi �

_E_
tr

/

Ebi × Ebr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebi � Ebr
p

sigm(Ebi) × sigm(Ebr) _E_
bi �

_E_
br

/

Etr × Ebr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Etr � Ebr
p

sigm(Etr) × sigm(Ebr) _E_
tr �

_E_
br

/

https://doi.org/10.1371/journal.pone.0272118.t003
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shows when the FOS is used as the prediction model, the prediction results of input data that

are not processed using the NMFSEMD method are compared with the input data that are

processed using the NMFSEMD method. Additionally, Table 4 shows when the NMFSEMD

denoising method is used as the preprocessing method, the results of prediction model that

using the FOS method are compared with the model that using the LSSVM method. The pre-

diction result is evaluated using the MSE value, as shown in Eq (7).

Fig 6. Comparison curves of the real and predictive muscle forces. (a) is the prediction result of experiment data1 in

Table 4; (b) presents the results of experiment data2 in Table 4.

https://doi.org/10.1371/journal.pone.0272118.g006

Table 4. MSE and its statistical error (mean ± standard error) of prediction results under different prediction models and input data in various experiments.

Result of MSE Preprocessing method + prediction method

NMFSEMD + LSSVM Traditional + FOS NMFSEMD + FOS

Experiment data1 1 229.0534 505.3136 226.4261

2 228.7566 505.4572 226.2916

3 228.5156 505.7811 226.2176

4 229.2292 505.0264 226.3685

5 230.8061 505.2668 226.2794

6 229.1044 505.5893 226.1105

7 229.4713 505.0532 226.3775

8 228.8252 505.2647 226.5558

9 228.2853 505.0674 226.1972

10 229.1981 505.4374 226.3370

Statistical error 229.1245±1.1620 505.3257±0.4150 226.3161±0.2138

Experiment data2 1 101.1739 120.6927 96.4365

2 101.1811 120.1763 96.0172

3 101.1949 120.5391 95.7914

4 101.0158 120.1275 95.9908

5 101.6481 120.0410 96.6969

6 101.6621 120.5354 96.6614

7 101.0856 120.0486 96.2066

8 101.5261 120.5600 96.2366

9 101.4354 120.8170 95.9727

10 101.6277 120.8078 96.1094

Statistical error 101.2551±0.5277 120.4545±0.5196 96.2120±0.5091

https://doi.org/10.1371/journal.pone.0272118.t004
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3.4 Discussions

3.4.1 Discussion on the influence of EMS parameters. According to Section 2.1.3, before

screening the IMFs using NMFSEMD, the upper and lower bounds of the correlation should

be determined by comparing the preseted correlation threshold crth and the empirical maxi-

mum correlation cre. The crth represents the boundary between the IMFs that should be dis-

carded and the IMFs that should be denoised, and it has a small value which is usually less

than 0.5. The cre represents the boundary between the IMFs, which should be denoised, and

the IMFs, which can be directly used to construct the denoised sEMG signal, and it has a big

value which is usually bigger than 0.5. To determine the values of both these parameters, we

counted the correlation of 30 sets of IMFs, as shown in Figs 7 and 8.

After the EMD decomposition of raw sEMG signal, a set of IMFs with position indexes at

{1, 2, 3, . . .} can be obtained. The correlation distribution of each index in a set of IMFs is

shown in Fig 7. The correlation at the 1st index is less than 0.2 while those at the 2nd, 6th, 7th,

and 8th indexes are distributed in a range of 0.0 to 0.4. Moreover, the correlation at the 3rd,

4th, and 5th indexes are distributed at a higher value in a range of 0.3 to 0.7. Therefore, we set

the maximum of the correlation at indexes of 3rd, 4th, and 5th as the cre, which limited the

upper bound to a big value and ensured that the IMF whose correlation was greater than this

value had a high correlation with the raw signal and contained most of the useful information

about the raw signal. In the 30-group experiments, cre can be written as cre = 0.6125±0.0744.

Fig 8 shows that the correlation distribution of IMFs in each experiment is more evenly dis-

tributed between 0.0 and 0.8. Therefore, in this study, the crth, which can distinguish between

the IMFs with small correlation (IMFs that need discarding) and the IMFs with medium corre-

lation (IMFs that need denoising), is set in the range of 0.3 to 0.4.

Fig 7. Results of the correlation between sets of IMFs and raw sEMG signals. The horizontal and vertical axes

present the index of each IMF in a set of IMFs and the correlation value, respectively.

https://doi.org/10.1371/journal.pone.0272118.g007
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3.4.2 Discussion on the influence of NMF parameters

In the abovementioned discussion, before using NMF to separate noise from sEMG signal, the

rank r of matrix W and H should be preseted; where r also represents the number of muscle

activation modes in a sEMG signal. Therefore, the performance of NMF method with different

numbers of r can be discussed; and it also can be evaluated through the reconstruction rate

(RSR) parameter, which is proposed in [40] and can be calculated using Eq (10). The larger the

RSR value is, the more reasonable the setting of the number of activation modes and the more

reliable the activation information obtained from H would be.

RSR ¼ 1 �
kV � WHk2

kVk2
ð10Þ

where, Vk × n is the input matrix of NMF, and Wk × r and Hr × n are the output matrices of

NMF.

When setting different numbers of activation modes, different matrices of W and H are

obtained. Table 5 shows the RSR results of 6 groups of sEMG data with different numbers of r.
Let us take Data 1 as an example. When r is 2, the RSR of V is 94.37%, which is large enough to

represent muscle activity. When r is increased to 3, the RSR is 94.53%, which is an increase

of< 0.5%. Therefore, continuing to increase the rank of matrix will not only bring more useful

information but increase the noise-related information and subsequent amount of calculation,

as shown in other groups of data in Table 5. Therefore, setting the number of muscle activation

modes (r) to 2 in this study is suitable for sEMG signal.

4 Conclusions

In this study, an NMFSEMD algorithm is proposed to denoise the sEMG signals by analyzing

the characteristics of non-stationarity and non-linearity of sEMG signals. First, the sEMG sig-

nal is decomposed into a set of IMFs, each of which contains different time scale

Fig 8. Result of the correlation between the sets of IMFs and raw sEMG signals. The horizontal and vertical axes present the serial number of

experiment and the correlation value, respectively.

https://doi.org/10.1371/journal.pone.0272118.g008
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characteristics. Then, the role of each IMF is distinguished in the denoised sEMG signal using

the correlation between each IMF and the raw sEMG signal. Consequently, the screen opera-

tion of IMFs is performed to remove or reduce noise in each IMF. Finally, the denoised sEMG

signal is obtained using the rule of reconstruction. By analyzing the results of the SNR and EP

and the comparison of intuitive curves, it can be concluded that NMFSEMD can effectively fil-

ter out the noise of sEMG signals. For the muscle force prediction based on sEMG signals, the

FOS algorithm in system identification is used to establish prediction model. The key point in

establishing the model lies in setting of the form of candidate functions. The commonly used

forms in sEMG applications are square, square-root, sigmoid activation functions, etc. Consid-

ering the input sEMG signal is the integral electromyogram value, a candidate function in the

form of a derivative is added in this paper. In the experiment, when the input is the signal

denoised using the NMFSEMD, the MSE value of FOS prediction model will be less than that

of the LSSVM method. When the prediction model is FOS and the input data are the sEMG

signals (with traditional preprocessing) and the sEMG signal denoised using the NMFSEMD,

the MSE value of the latter will considerably be lower than that of the former. Comparing the

predicted muscle force curve with the measured muscle strength curve, it can be concluded

that the FOS prediction model uses the NMFSEMD-based denoised sEMG signal can achieve

a better prediction result.
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ings for force estimation—a tutorial and review. J Electromyogr Kinesiol. 2010; 20(3):375–87. https://

doi.org/10.1016/j.jelekin.2009.08.005 PMID: 19758823

23. Papagiannis GI, Triantafyllou AI, Roumpelakis IM, Zampeli F, Garyfallia Eleni P, Koulouvaris P, et al.

Methodology of surface electromyography in gait analysis: review of the literature. J Med Eng Technol.

2019; 43(1):59–65. https://doi.org/10.1080/03091902.2019.1609610 PMID: 31074312.

24. Xu L, Rabotti C, Mischi M. Novel vibration-exercise instrument with dedicated adaptive filtering for

electromyographic investigation of neuromuscular activation. IEEE Trans Neural Syst Rehabil Eng.

2013; 21(2):275–82. https://doi.org/10.1109/TNSRE.2012.2219555 PMID: 23033335

25. Zhang X, Zhou P. Filtering of surface EMG using ensemble empirical mode decomposition. Med Eng

Phys. 2013; 35(4):537–42. https://doi.org/10.1016/j.medengphy.2012.10.009 PMID: 23245684

26. Mak JN, Yong H, Luk KD. An automated ECG-artifact removal method for trunk muscle surface EMG

recordings. Med Eng Phys. 2010; 32(8):840–8. https://doi.org/10.1016/j.medengphy.2010.05.007

PMID: 20561810

27. Rodrigues J, Andrade A. Causal inference in neuronal time-series using adaptive decomposition. J

Neurosci Methods. 2015; 245:73–90. https://doi.org/10.1016/j.jneumeth.2015.02.013 PMID: 25721270

28. Quinn AJ, Lopes-Dos-Santos V, Dupret D, Nobre AC, Woolrich MW. EMD: Empirical mode decomposi-

tion and Hilbert-Huang spectral analyses in python. J Open Source Softw. 2021; 6(59):2977. https://

doi.org/10.21105/joss.02977 PMID: 33855259

29. Huang NE, Zheng S, Long SR. A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev

Fluid Mech. 1999; 31(1):417–57. https://doi.org/10.1146/annurev.fluid.31.1.417

30. Shafqat K, Pal SK, Kumari S, Kyriacou PA. Empirical mode decomposition (EMD) analysis of HRV data

from locally anesthetized patients. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:2244–7. https://

doi.org/10.1109/IEMBS.2009.5335000 PMID: 19965157

31. Jutten C, Herault J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic

architecture. Signal Process. 1991; 24(1):1–10. https://doi.org/10.1016/0165-1684(91)90079-x

32. Yang J, Zhang D, Yang JY. Constructing PCA baseline algorithms to reevaluate ICA-based face-recog-

nition performance. IEEE Trans Syst Man Cybern B Cybern. 2007; 37(4):1015–21. https://doi.org/10.

1109/tsmcb.2007.891541 PMID: 17702297

33. Liu Y, Smirnov K, Lucio M, Gougeon RD, Alexandre H, Schmitt-Kopplin P. MetICA: independent com-

ponent analysis for high-resolution mass-spectrometry based non-targeted metabolomics. BMC Bioin-

formatics. 2016; 17:114. https://doi.org/10.1186/s12859-016-0970-4 PMID: 26936354

34. Ye C, Toyoda K, Ohtsuki T. Blind source separation on non-contact heartbeat detection by non-nega-

tive matrix factorization algorithms. IEEE Trans Biomed Eng. 2020; 67(2):482–94. https://doi.org/10.

1109/TBME.2019.2915762 PMID: 31071015

35. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999;

401(6755):788–91. https://doi.org/10.1038/44565 PMID: 10548103

36. Korenberg MJ, Paarmann LD. Applications of fast orthogonal search: time-series analysis and resolu-

tion of signals in noise. Ann Biomed Eng. 1989; 17(3):219–31. https://doi.org/10.1007/BF02368043

PMID: 2735581

37. Chon KH. Accurate identification of periodic oscillations buried in white or colored noise using fast

orthogonal search. IEEE Trans Biomed Eng. 2001; 48(6):622–9. https://doi.org/10.1109/10.923780

PMID: 11396592

38. Fu A, Wang C, Qi H, Li F, Wang Z, He F, et al. Electromyography-based analysis of human upper limbs

during 45-day head-down bed-rest. Acta Astronaut. 2016; 120:260–9. https://doi.org/10.1016/j.

actaastro.2015.12.007

39. Farrell TR, Weir RF. The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst

Rehabil Eng. 2007; 15(1):111–8. https://doi.org/10.1109/TNSRE.2007.891391 PMID: 17436883

PLOS ONE Muscle force prediction using EMS-NMF and FOS

PLOS ONE | https://doi.org/10.1371/journal.pone.0272118 August 3, 2022 18 / 19

https://doi.org/10.1142/S0219691312500312
https://doi.org/10.6038/cjg20150326
https://doi.org/10.1007/BF02344216
http://www.ncbi.nlm.nih.gov/pubmed/12195981
https://doi.org/10.1016/j.jbiomech.2010.01.027
https://doi.org/10.1016/j.jbiomech.2010.01.027
http://www.ncbi.nlm.nih.gov/pubmed/20206934
https://doi.org/10.1016/j.jelekin.2009.08.005
https://doi.org/10.1016/j.jelekin.2009.08.005
http://www.ncbi.nlm.nih.gov/pubmed/19758823
https://doi.org/10.1080/03091902.2019.1609610
http://www.ncbi.nlm.nih.gov/pubmed/31074312
https://doi.org/10.1109/TNSRE.2012.2219555
http://www.ncbi.nlm.nih.gov/pubmed/23033335
https://doi.org/10.1016/j.medengphy.2012.10.009
http://www.ncbi.nlm.nih.gov/pubmed/23245684
https://doi.org/10.1016/j.medengphy.2010.05.007
http://www.ncbi.nlm.nih.gov/pubmed/20561810
https://doi.org/10.1016/j.jneumeth.2015.02.013
http://www.ncbi.nlm.nih.gov/pubmed/25721270
https://doi.org/10.21105/joss.02977
https://doi.org/10.21105/joss.02977
http://www.ncbi.nlm.nih.gov/pubmed/33855259
https://doi.org/10.1146/annurev.fluid.31.1.417
https://doi.org/10.1109/IEMBS.2009.5335000
https://doi.org/10.1109/IEMBS.2009.5335000
http://www.ncbi.nlm.nih.gov/pubmed/19965157
https://doi.org/10.1016/0165-1684(91)90079-x
https://doi.org/10.1109/tsmcb.2007.891541
https://doi.org/10.1109/tsmcb.2007.891541
http://www.ncbi.nlm.nih.gov/pubmed/17702297
https://doi.org/10.1186/s12859-016-0970-4
http://www.ncbi.nlm.nih.gov/pubmed/26936354
https://doi.org/10.1109/TBME.2019.2915762
https://doi.org/10.1109/TBME.2019.2915762
http://www.ncbi.nlm.nih.gov/pubmed/31071015
https://doi.org/10.1038/44565
http://www.ncbi.nlm.nih.gov/pubmed/10548103
https://doi.org/10.1007/BF02368043
http://www.ncbi.nlm.nih.gov/pubmed/2735581
https://doi.org/10.1109/10.923780
http://www.ncbi.nlm.nih.gov/pubmed/11396592
https://doi.org/10.1016/j.actaastro.2015.12.007
https://doi.org/10.1016/j.actaastro.2015.12.007
https://doi.org/10.1109/TNSRE.2007.891391
http://www.ncbi.nlm.nih.gov/pubmed/17436883
https://doi.org/10.1371/journal.pone.0272118


40. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts

reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol.

2010; 103(2):844–57. https://doi.org/10.1152/jn.00825.2009 PMID: 20007501

PLOS ONE Muscle force prediction using EMS-NMF and FOS

PLOS ONE | https://doi.org/10.1371/journal.pone.0272118 August 3, 2022 19 / 19

https://doi.org/10.1152/jn.00825.2009
http://www.ncbi.nlm.nih.gov/pubmed/20007501
https://doi.org/10.1371/journal.pone.0272118

