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Abstract

Telomere dynamics are linked with both cellular and organismal senescence, and 
life history, individual quality and health. Telomere dynamics, particularly telomere 
length, have therefore garnered much research interest in evolutionary biology. To 
examine the evolution of telomere length, it is important to quantify its heritability, 
the proportion of total variation explained by additive genetic effects. Many studies 
have quantified telomere length heritability, but estimates are varied, and no general 
conclusion has been drawn. Additionally, it is unclear whether biological and method-

ological factors influence telomere length heritability estimates. We present the first 
meta- analysis of telomere length heritability, using 104 estimates from 43 studies 
over 18 vertebrate species. We calculated an overall mean heritability and examined 
how estimates varied by study, phylogeny, species- specific ecology, environmental 
setting, age at sampling, laboratory methods, statistical methods, sex and repeated 
measurements. Overall heritability was moderate (44.9%, 95% CI: 25.2– 64.7%), and 
there was considerable heterogeneity in heritability estimates, in particular among 
studies and estimates. Laboratory method influenced heritability estimates, with in- 
gel hybridization TRF yielding higher heritabilities than qPCR and Southern blot TRF. 
There was also an effect from statistical method, with twin- based and SNP- based es-

timates lower than correlation- based or pedigree- based estimates. Our results high-

light an overall heritable basis of telomere length, and we recommend future research 
on a wider range of taxa, and the use of variance- partitioning methods with related-

ness or SNP data over correlation methods to minimize heritability estimation bias.

K E Y W O R D S

heritability, meta- analysis, quantitative genetics, senescence, systematic review, telomere 
length
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1  |  INTRODUC TION

Telomeres are non- coding, repeating DNA sequences that cap the 
ends of chromosomes and serve important functions, including 
maintaining chromosome stability and protecting chromosomal DNA 
from erosion (Blackburn & Szostak, 1984; Campisi, 2005). Telomeres 
shorten over time due to the end replication problem, where the 
ends of DNA strands are not fully replicated during cell division (Levy 
et al., 1992), and also due to stressors, such as oxidative stress or UV 
light (Monaghan & Ozanne, 2018). Such shortening can be rescued 
by, among other mechanisms, the enzyme telomerase, which adds 
telomeric repeats to chromosome ends to counterbalance telomere 
loss, but telomerase is generally suppressed in adult cells (reviewed 
in Haussmann & Treidel, 2015). When telomeres reach a critical 
length, the cell either enters replicative arrest or undergoes cell 
death, linking telomere length with cellular senescence and other 
physiological deteriorations (Campisi, 2005; Monaghan et al., 2008). 
Short telomeres are also linked with increased mortality (Wilbourn 
et al., 2018), decreased lifespan (Bichet et al., 2020; Eastwood 
et al., 2019; Heidinger et al., 2012), decreased reproductive success 
(Bauch et al., 2020; Eastwood et al., 2019; Parolini et al., 2017) and 
increased age- related disease risk (Aviv & Shay, 2018; Cawthon 
et al., 2003; Zee et al., 2010). As such, telomere dynamics have been 
frequently used as biomarkers of senescence, individual quality and 
health, in evolutionary biology.

To understand the evolutionary response to selection on telo-

mere length, it is crucial to know whether telomere length is her-
itable. Although telomeres are directly inherited by offspring from 
their parents, telomere length at any one time is also influenced by 
the rate and amount of shortening, as well as of elongation, both of 
which could be influenced by multiple genes, and/or the environment 
(Dugdale & Richardson, 2018). Instead of identifying the genetic 
variants causally linked to telomere length, quantitative genetics 
offers a useful analytical framework to summarize the contribution 
of (additive) genetic effects to the observed phenotypic variation, 
relative to the contribution of environmental effects. This is done via 
the heritability metric, defined as the proportion of additive genetic 
variance to total phenotypic variance (Falconer & Mackay, 1996). A 
non- zero heritability would indicate the presence of a genetic basis 
of telomere length, and thus the potential to evolve under selection 
(Lynch & Walsh, 1998). Given the interest in telomere biology, the 
heritability of telomere length has been estimated in a wide range 
of taxa (reviewed in Atema et al., 2015; Bauch et al., 2021; Dugdale 
& Richardson, 2018). However, these heritability estimates ranged 
from 0% to 100%, and hence, no general conclusions regarding the 
evolutionary potential of telomere length could be drawn (Dugdale 
& Richardson, 2018).

Such large variation among telomere length heritability estimates 
is likely to reflect true biological variation between populations. First, 
as telomere length is coupled with fitness (Eastwood et al., 2019), it 
is expected that telomere length is under different selection pres-

sures depending on the environment, which would influence genetic 
variance, and consequently heritability, among species to different 

degrees (Mousseau & Roff, 1987; Walsh & Lynch, 2018). This would 
manifest as phylogenetic non- independence, where closely related, 
more recently diverged species would have more similar heritabil-
ity estimates than distant species. Second, as heritability measures 
the relative contribution of genes versus the environment, one can 
expect it to be space- , time-  and context- dependent. For example, 
provided that all individuals are sampled at the same age, heritability 
can be expected to be higher in a stable environment (e.g. in a labo-

ratory), than in a varied environment (e.g. in the wild), because in the 
former environmental variation is minimized, and observed among- 
individual telomere length differences must then come from genetic 
differences, resulting in heritability being closer to 100% (Dugdale 
& Richardson, 2018). In addition, the duration of environmental ex-

posure increases as individuals age. As telomere length is altered by 
extrinsic stressors (Monaghan & Ozanne, 2018), the relative contri-
bution of the environment to telomere length variation would in-

crease with age, even if the environment remains constant, leading 
to a predicted decrease in heritability estimates with sampling age 
(Dugdale & Richardson, 2018).

Perhaps more concerning is that heritability estimates can also 
be influenced by methodological factors. For example, different 
telomere measurement methods yield different technical telomere 
length repeatabilities. For example, measuring terminal restriction 
fragments (TRF) yield more repeatable telomere lengths than quan-

titative PCR (qPCR; Aviv et al., 2011; Montpetit et al., 2014) due to 
the amplification of errors (Nettle et al., 2019) and the inclusion of 
interstitial telomeric sequences (ITS) in the latter (Foote et al., 2013). 
Within TRF methods, in- gel hybridization does not include ITS, but 
Southern blotting does (Foote et al., 2013). A recent meta- analysis 
put the repeatability of TRF at 0.80 (95% CI = 0.34– 0.96) compared 
with 0.46 (95% CI = 0.04– 0.82) for qPCR (Karkkainen et al., 2021). 
Given TRF generally has higher technical repeatability, we would ex-

pect heritability estimates from TRF studies to be higher than those 
from qPCR studies. Perhaps more importantly, selection of statisti-
cal methods could influence heritability estimates. In many studies, 
heritability is measured using parent– offspring regression, where 
offspring trait values are regressed against the parental trait values 
(either of the mother, the father, or the average of both, termed ‘mid- 
parent’), and the slope indicates parent– offspring trait similarity and 
thus heritability (Falconer & Mackay, 1996). Alternatively, heritabil-
ity can be derived from phenotypic correlations between siblings 
as well in a similar manner (Falconer & Mackay, 1996). Both meth-

ods, however, do not account for any similarity arising from shared 
environments, which could be inseparable from genetic effects 
(Kruuk & Hadfield, 2007) and lead to overestimation of heritability. 
Quantitative genetic ‘animal’ models aim to offer a solution to these 
caveats, by using genetic or social pedigrees to partition pheno-

typic variance into genetic and various environmental components 
(Wilson et al., 2010). However, to separate additive genetic variance 
and permanent environmental variance, that is variance arising from 
the unique circumstances of each individual, multiple measurements 
per individual are required, without which heritability estimates 
would be inflated (Wilson et al., 2010). In addition, the accuracy of 
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heritability estimates from pedigree- based methods would also de-

pend on pedigree structure, accuracy and completeness, in addition 
to the explicit inclusion of other environmental variables (Kruuk & 
Hadfield, 2007). Recently, the development of sequencing tech-

niques and the accompanying increase in genome- wide association 
studies (GWAS) offers a third option to estimate heritability, based 
on the proportion of phenotypic variance explained by all single nu-

cleotide polymorphisms (SNPs), which is known as SNP- based heri-
tability (Yang et al., 2010). SNP- based heritability is potentially more 
accurate, as it is derived directly from the genomic architecture of in-

dividuals and is thus less likely affected by confounding environmen-

tal effects, or wrongly inferred genealogical relationships. However, 
SNP- based heritability could be limited by SNP array size and den-

sity, and depending on linkage disequilibrium, SNPs typed might not 
tag all loci causally linked to the trait, resulting in incomplete esti-
mation of genetic variance (Yang et al., 2017). Despite the increased 
popularity in GWAS, the use of SNP data in quantitative genetics is 
still limited, and little comparison has been made between pedigree- 
based and SNP- based heritability, estimates especially in wild popu-

lations (but see, e.g., Bérénos et al., 2014).
To date, the sources of heterogeneity among telomere length 

heritability estimates have not yet been formally examined, and the 
reliability of existing estimates remains uncertain. Here, we con-

ducted, to the best of our knowledge, the first meta- analysis of telo-

mere length heritability in vertebrate species. We aimed to calculate 
the mean telomere length heritability across vertebrate species, as 
well as to test whether telomere length heritability varies across: 
(1) phylogeny; (2) species; (3) study; (4) artificial and natural envi-
ronments; (5) early life and later life; (6) telomere extraction meth-

ods; (7) statistical methods; (8) whether individuals had repeated 
measurements to separate permanent environmental effects; and 
(9) sex. Furthermore, we also tested for publication bias in telomere 
length heritability estimates, to assess the validity of any general 
conclusions drawn from existing studies.

2  |  METHODS

2.1  |  Literature search

We conducted all data collection and analyses using R 4.1.2 (R 
Core Team, 2021). We performed a systematic literature search 
for publications up to October 2021 (last publication date = 17th 
September 2021), using and following the guidelines in litsearchr 

1.0.0, a package that aims to aid the generation of objective, repro-

ducible and time- efficient search strategies in systematic reviews, 
using automated text- mining and keyword co- occurrence net-
works (Grames et al., 2019). First, to obtain a list of highly relevant, 
‘golden standard’ articles, we conducted a stringent naïve search on 
the Web of Science and Scopus, using the Boolean search strings 
((TI = ((“telomere” AND [“heritab*” OR “additive genetic varia*”])) NOT 

TS = (“meta*”)) NOT DT = (Review)) and TITLE(“telomere” AND heritab* 

OR “additive genetic varia*”) AND NOT TITLE- ABS- KEY(“meta*”) AND 

NOT DOCTYPE(re) respectively. We also extracted a list of 33 rel-
evant references from Dugdale & Richardson, 2018. After combining 
the two literature lists and removing duplicates with litsearchr, we 
obtained 42 highly relevant articles as the ‘golden standards’.

Next, we extracted possible search terms from these ‘golden 
standards’, from the authors' keywords, and also from the titles 
and abstracts. For the latter, we used a Rapid Automatic Keyword 
Extraction (RAKE) algorithm (Rose et al., 2010). Specifically, we ex-

tracted potential terms consisting of at least one word (e.g. ‘herita-

bility’) that occurred at least twice across these articles. Using these 
potential search terms, we built a keyword co- occurrence network, 
where vertices represent the potential search terms, and edges rep-

resent an instance where two terms occurred in the same article. We 
then reduced this network based on node strength, which indicates 
how well a term is connected to other well- connected terms, and 
hence its importance (Grames et al., 2019). We retained terms which 
cumulatively captured 80% of the total strength of the network, and 
screened them manually to create the final Boolean search string, 
which was then passed into Web of Science, with additional mod-

ifiers to exclude reviews, conference abstracts, book chapters and 
retracted articles. The full search string was (((((TS = (((“telomere”) 

AND (“genet* varianc*” OR “genet* variat*” OR herit* OR inherit*)))) NOT 

DT = (Review)) NOT AB = (review)) NOT DT = (Meeting Abstract)) NOT 

DT = (Book Chapter)) NOT DT = (Retracted Publication). This full search 
returned 822 candidate articles, which included all but one of the 
‘golden standards'. We added this missed article (from Dugdale and 
Richardson (2018)), in addition to two more articles— one study from 
Bauch et al. (2021) (not yet registered on Web of Science), and one 
study referenced therein. In total, 825 articles were passed onto the 
screening process.

2.2  |  Article selection & data extraction

Of these 825 articles, two were inaccessible (Figure 1), and we con-

tacted the authors for the original manuscript. We did not obtain 
these missing articles and thus excluded them from further selection. 
We included remaining articles that (1) used a vertebrate species as 
the subject; (2) reported either the heritability of telomere length, or 
provided a means to calculate it (e.g. additive genetic variance and 
phenotypic variance estimates, parent- offspring regression slopes); 
(3) reported point heritability estimates as opposed to a range; and 
(4) reported an original estimate. We employed a double screening 
process to minimize error, where one author screened through all 
articles, and a second author independently screened through a ran-

dom subset of 10% as a control. No discrepancies arose (i.e. Cohen's 
kappa = 1.0). After screening, 58 articles were retained (Figure 1).

We then either extracted or calculated telomere length her-
itability estimates from the 58 retained articles. Where an article 
reported multiple heritability estimates, we extracted all estimates 
derived from different statistical methods, and the estimate from 
the fullest model if multiple estimates were derived from the same 
statistical method. We also included all sex- specific, time- specific, 
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subpopulation- specific or group- specific estimates to maximize the 
sample size for statistical analysis. For articles using mid- parent– 
offspring regression and/or sex- specific parent– offspring regres-

sion, heritability was taken as the slope, and two times the slope, 
respectively (Falconer & Mackay, 1996). For articles reporting only 
95% confidence intervals for heritability estimates, we calculated 
the missing standard error using the formula (upper interval limit– 
estimate)/1.96. We excluded estimates without a standard error or 
95% confidence interval. In total, 104 effect sizes from 43 studies 
and 18 species were used in our analysis (Figure 1).

Each heritability estimate was given a unique estimate ID. 
Furthermore, for each estimate, we recorded the study ID, species, 
sample size, environmental setting as a two- level factor (‘artificial’ 
for human and captive populations vs ‘natural’ for wild populations), 
age at measurement as a three- level factor (‘juvenile’, defined as age 
before sexual maturity, or ‘adult’ or ‘mixed’), laboratory method as 
a four- level factor (‘TRF (Southern blot)’ or ‘TRF (in- gel hybridiza-

tion)’ or ‘qPCR’ or ‘other’, with one study using a mix of qPCR and a 
Luminex- based assay, and one using a Telomere PNA kit/FITC), and 
whether there were repeated telomere length measurements for 
each individual (0/1). We also recorded the statistical methods used 
to derive heritability and categorized them into five main classes: 
(1) correlation- based, that is parent– offspring regression and sibling 
correlations; (2) pedigree- based ‘animal models’; (3) twin- based, that 
is structural equation modelling or biometric models using mono-

zygotic and dizygotic twin data; (4) SNP- based, that is genomic- 
relatedness- matrix restricted maximum likelihood models (GREML, 
Benjamin et al., 2012; Yang et al., 2010), and linkage- disequilibrium 
score regression (LDSC, Bulik- Sullivan et al., 2015); and (5) mixed 
models, that is models with family ID fitted as a random variable. To 

account for any potential differences between maternal and pater-
nal inheritance, we recorded parental sex specificity as a three- level 
factor (‘Nonspecific’, ‘fathers only’ and ‘mothers only’). The distri-
butions of heritability estimates across these variables are summa-

rized in Figure 2. None of these estimates had any missing data in 
any moderators. To minimize error, data extraction was conducted 
by one author, and a second author checked 20% of the extracted 
estimates. Among the checked data, all heritability estimates were 
correctly extracted, and there were three discrepancies in the mod-

erators extracted, which were subsequently resolved.
To estimate phylogenetic heterogeneity, we further constructed 

a phylogenetic tree from the open Tree of Life using rotl 3.0.12 

(Michonneau et al., 2016), where branch lengths were computed 
based on Grafen (1989). From this tree, we constructed a phyloge-

netic correlation matrix using ape 5.6.1 (Paradis & Schliep, 2019).

2.3  |  Statistical analysis

We conducted our meta- analysis using metafor 3.0.2 

(Viechtbauer, 2010). To estimate the global mean telomere length 
heritability, we built a meta- analytic intercept- only model. We fit-
ted raw heritability estimates as the response variable and used 
the sampling variance, that is the squared standard error, as the 
weight for each heritability estimate. Following Nakagawa and 
Santos (2012), we fitted the following random variables into the 
model: study ID, to estimate study- specific effects (�2

u
); the phy-

logenetic correlation matrix, to test for phylogenetic variation (�2
a

) (Hadfield & Nakagawa, 2010); species, to account for ecologi-
cal, between- species variation unrelated to phylogeny (�2

s
); and 

F I G U R E  1  Modified preferred 
reporting items for systematic reviews 
and meta- analyses (PRISMA; Moher et 
al., 2009) flow chart showing the literature 
search and screening process
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estimate ID, to test for within- study, between- estimate variation 
(�2

e
). To test for the statistical support of these random effects, we 

conducted likelihood ratio tests between the full model and one 
without each of the random variables. We also conducted non-

parametric bootstrapping 10 000 times and calculated 95% confi-
dence intervals for all random effects using the percentile method 
as described in (Davison & Hinkley, 1997) and (Carpenter & 
Bithell, 2000), with the package boot 1.3.28 (Canty & Ripley, 2021). 
From the full model, we also calculated the ‘typical’ sampling- error 
variance (�2

m
), that is the within- study variation from sampling or 

measurement errors, separated from estimate- specific effects 
(Higgins & Thompson, 2002; Nakagawa & Santos, 2012). We cal-
culated the percentage variance explained by each of the random 
variables, by dividing the respective variance component by the 
total variance, that is �2

u
+ �

2
a
+ �

2
s
+ �

2
e
+ �

2
m

. We then calculated 
the total heterogeneity (I2) estimated from the model by

To investigate the effects of specific biological and methodologi-
cal factors, we expanded the above model into a meta- regression 
and included the following moderators as fixed effects: environ-

mental setting, age at measurement, laboratory method, statisti-
cal method and repeated measurements. As heritability estimates 
could differ between sexes depending on the models used, we 
added parental sex specificity as an interacting variable with sta-

tistical method. This interaction was not significant (Table S1) and 
was subsequently removed to aid interpretation of first- order 
effects.

In both models, we fitted raw heritability estimates as the re-

sponse variable, because the data were close to being normally 
distributed (Figure 3). Also, as these heritability estimates were 
derived from various statistical metrics, and spanned more than 
theory would allow (between 0 to 1 by definition; Figure 3), we 
decided to not perform any data transformation into common 
meta- analytic effect sizes, such as the Fisher's z transformation 
(e.g. in Dochtermann et al., 2019). We did not exclude estimates 
outside of the 0 to 1 boundary, as they are useful in examining 

I
2 =

�
2
u
+ �

2
a
+ �

2
s
+ �

2
e

�
2
u
+ �

2
a
+ �

2
s
+ �

2
e
+ �

2
m

(1)

F I G U R E  2  Bar plots showing the distribution of telomere length heritability estimates across (a) species, (b) environmental settings, (c) 
ages at measurement, (d) laboratory methods, (e) statistical methods, (f) sex specificity and (g) repeated measurements in the study dataset. 
Numbers above the bars represent sample sizes (N = 104).
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under-  or overestimation of heritability, and data trimming could 
introduce bias in the dataset. Nevertheless, to test for the effects 
of using untransformed heritability estimates, we conducted the 
following sensitivity analysis: first, we re- ran our meta- regression 
using Fisher's z- transformed heritability estimates and their corre-

sponding sampling variances following Dochtermann et al. (2019) 
(‘Transformed Model’). As estimates greater than one would re-

turn undefined values after transformation, we excluded these 
estimates, as well as those with missing sample sizes and thus 
sampling variance. In total, 13 estimates were removed. Second, 
because differences in model results can either be due to data 
transformation, or the trimming of out- of- bound estimates, we ran 
the meta- regression again using untransformed estimates from 
this trimmed dataset (‘Trimmed Model’).

Following Nakagawa et al. (2021), we further examined two 
types of publication bias: (1) outcome reporting bias, where small 
studies reporting small or non- significant effect sizes with low 

precision might not be published (Nakagawa et al., 2021) and (2) 
time- lag bias, where larger effect sizes are published more quickly 
than smaller or non- significant effect sizes, creating a decline in ef-
fect size magnitudes with time (Koricheva & Kulinskaya, 2019). We 
visually assessed outcome reporting bias using a funnel plot, which 
displays effects sizes (in our case telomere length heritability) on 
the x- axis, and precision (the inverse of the standard error) on the 
y- axis. The plot is expected to take the shape of an inverted funnel, 
and outcome reporting bias would manifest as funnel asymmetry. To 
construct the funnel plot, we used the residuals from the full meta- 
regression model, as using residuals essentially eliminates heteroge-

neity and effect size non- independence due to phylogeny, study, etc, 
which could also produce funnel asymmetry (Nakagawa et al., 2021). 
To statistically test for this asymmetry, we also ran a variation of 
Egger's regression (Egger et al., 1997; Fernández- Castilla et al., 2021; 

Nakagawa et al., 2021), which allows the incorporation of random 
effects to account for non- independence among estimates:

F I G U R E  3  Histogram displaying 
frequency distribution of telomere length 
heritability estimates from the dataset 
(n = 104). Blue dashed line indicates 
unadjusted mean telomere length 
heritability, red dashed line indicates the 
mean adjusted for study, phylogenetic, 
species and estimate effects.

TA B L E  1  Variance among studies, phylogeny, species and estimates from the meta- analytic intercept- only model of telomere length 
heritability in 18 vertebrate species, along with ‘typical’ sampling error (i.e. the within- study variation from sampling or measurement errors, 
separated from estimate- specific effects)

Variance component Estimate 95% CI No. of levels
Proportion 

explained Log- likelihood p- Value

Study ID 0.066 0.042– 0.094 43 0.650 −26.192 <0.001

Phylogeny 0.017 0.000– 0.114 18 0.172 −0.679 0.615

Species 0.012 0.000– 0.036 18 0.124 −0.706 0.579

Estimate ID 0.005 0.000– 0.019 104 0.046 −4.345 0.006

‘Typical’ sampling error 0.001 104 0.008

Note: 95% CIs were calculated from nonparametric bootstrapping (R = 10 000), using the percentile method. Log- likelihood and p- values were 
calculated from likelihood ratio tests by dropping each random effect individually and comparing it to the full model including all effects. Bold text 
indicates statistically significant results. Total heterogeneity (I2) estimated from the model = 0.992.
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 where yi is the ith heritability estimate, vi is the corresponding sampling 
variance following Nakagawa et al. (2021), uj is the between- study ef-
fect of the jth study, sk is the between- species of the kth species, and ei 
is the residual between- estimate effect. If �1 is statistically significant, 
there is evidence of publication bias (Fernández- Castilla et al., 2021). 
As previously suggested, the risk of outcome reporting bias could differ 
between laboratory methods (Wilbourn et al., 2018), and as such, in ad-

dition to the whole dataset, we also ran Egger's regressions separately 
on TRF and qPCR studies. To examine time- lag bias, we ran a second 
model by replacing sei with yearj, the publication year. All publication 
bias models were run in metafor, with sampling variance as weights.

3  |  RESULTS

The mean telomere length heritability in our raw dataset was 50.7% 
(SD: 34.3%, range: −15.6% to 138%). Human (Homo sapiens) was the 
most represented species, accounting for 62 of 96 heritability es-

timates (60%, Figure 2). After adjusting for phylogenetic, species, 
study and estimate effects, we found a moderate overall telomere 
length heritability of 44.9% (95% CI: 25.2– 64.7%). The I2 calculated 
from the model was 99.2%, indicating large heterogeneity across 
heritability estimates. Study ID explained most of this heterogene-

ity (Table 1), suggesting that telomere length heritability estimates 
could be influenced by methodological choices in addition to biol-
ogy. Additionally, we also found phylogenetic and species effects 
(Table 1, Figure 4), indicating that heritability differences across taxa 
could also be induced by evolutionary history and ecology. However, 
likelihood- ratio tests did not reveal statistically significant support 

for phylogenetic or species effects, and their 95% confidence inter-
vals bordered zero (Table 1), and hence, our results should be taken 
with caution.

Looking more closely into the biological and methodological 
sources of heterogeneity in telomere length heritability, we found 
that estimates did not differ between environmental settings, age 
at measurement and whether telomeres were measured multiple 
times within an individual (Table 2). However, estimates differed 
between laboratory methods, with TRF (in- gel hybridization) yield-

ing higher heritabilities than both TRF (Southern blot) and qPCR 
(Table 2). There were also differences among statistical methods. 
Compared with correlation- based methods, twin- based and SNP- 
based models yielded lower heritabilities, which was statistically sig-

nificant (Table 2). Re- running the model using SNP- based methods 
as the reference level confirmed that SNP- based heritabilities were 
lower than both correlation-  and pedigree- based estimates, but not 
twin- based estimates (difference in intercept with twin- based meth-

ods = 0.249, SE = 0.204, p- value = 0.222).
From our sensitivity analysis, the Transformed Model using 

Fisher's z- transformed heritability estimates returned results differ-
ent from those of our meta- regression. Specifically, we no longer 
detected a statistically significant difference between statistical 
methods, but we detected an environmental setting effect, where 
estimates from natural studies were lower than those from artificial 
settings. The laboratory methods effects were retained (Table S2). 
However, such discrepancies with the untransformed model likely 
stemmed from data trimming of the 13 out- of- bounds heritability es-

timates, as the Trimmed Model provided qualitatively similar results 
to the Transformed Model, with no statistical method effect but dif-
ferences between environmental settings and laboratory methods 
also observed (Table S3), suggesting that our main model is more 
sensitive to effect size exclusion than data transformation.

(2)yi
∼ �0 + �1vi + uj + sk + ei

F I G U R E  4  Phylogenetic tree (left) and forest plot (right) of the 18 vertebrate species included in our meta- analysis, showing the 
distribution of telomere length heritability estimates across branches. Species- specific estimates were obtained from a meta- regression of 
estimates of each species, accounting for study and estimate effects. In the forest plot, each dot represents the predicted telomere length 
heritability for each species, and horizontal lines around the dot represent its respective 95% CI. The dotted vertical line on the forest plot 
indicates zero, whereas the solid vertical line represents the global adjusted mean. In the phylogenetic tree, blue shading indicates predicted 
telomere length heritability, with a lighter shade representing higher heritability. The phylogenetic tree was visualized using the R package 
ggtree 3.2.1 (Yu et al., 2017).
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Visual examination of the funnel plot suggested truncated ef-
fect sizes on the left side, that is a lack of published studies with 
small sample sizes and/or low precisions reporting small, zero or 

out- of- bound (negative) heritability estimates (Figure 5). However, 
funnel asymmetry was not detected by weighted Egger's regres-

sion using sampling variance as a predictor (β1 = 0.544, SE = 0.498, 
p- value = 0.274, Table S4), indicating a lack of significant outcome 
reporting bias. There was also no outcome reporting bias in either 
qPCR or TRF separate datasets (Figure 5, Tables S5 and S6). Similarly, 
we did not detect a time- lag bias using publication year as a pre-

dictor in our full dataset (�1 =−0.013, SE = 0.010, p- value = 0.184, 
Table S7).

4  |  DISCUSSION

Telomere length was, on average, moderately heritable (44.9%) in 
vertebrates. Previously, Karkkainen et al. (2021) reported an individ-

ual repeatability of 55% (95% CI: 5– 95%) for telomere length in non- 
mammal vertebrates. As individual repeatability imposes an upper 
limit on heritability (Falconer & Mackay, 1996), our heritability esti-
mate was in line with these findings and suggests that in general, the 
majority of individual telomere length variation is explained by ge-

netic differences rather than permanent environmental variances, as 
corroborated in other studies (Froy et al., 2021; Sparks et al., 2020). 

TA B L E  2  Moderator estimates from a meta- regression model of telomere length heritability, with non- significant interaction of parental 
sex- specificity removed, and accounting for phylogenetic, species, study and estimate non- independence

Fixed effects

Estimate SE 95% CI z- Value p- Value

(intercept) 0.575 0.165 0.252 to 0.898 3.490 <0.001

Environmental setting (Artificial) −0.181 0.127 −0.431 to 0.069 −1.421 0.155

Age at measurement (Adult)

Mixed −0.092 0.093 −0.274 to 0.091 −0.982 0.326

Juvenile −0.094 0.134 −0.358 to 0.169 −0.702 0.483

Laboratory method (TRF Southern blot)

TRF (in- gel hybridization) 0.390 0.182 0.032 to 0.748 2.138 0.032

qPCR −0.047 0.109 −0.261 to 0.166 −0.433 0.665

Other 0.347 0.270 −0.180 to 0.887 1.292 0.196

Repeated measurement (Yes) 0.146 0.131 −0.110 to 0.403 1.001 0.264

Statistical method (correlation- based)

Pedigree- based −0.082 0.064 −0.206 to 0.043 −1.283 0.200

Mixed- model- based −0.050 0.242 −0.525 to 0.425 −0.208 0.835

SNP- based −0.508 0.180 −0.862 to −0.154 −2.816 0.005

Twin- based −0.259 0.128 −0.509 to −0.008 −2.026 0.043

Random effects

Estimate No. of levels

Study ID 0.055 43

Phylogeny 0.000 18

Species 0.000 18

Estimate ID 0.004 104

Note: Parentheses in the subheadings of factorial moderators indicate the reference level. Bold text indicates statistically significant results.

F I G U R E  5  Funnel plot displaying residual telomere length 
heritability estimates from the full meta- regression model, against 
estimate precision. Red dots represent studies using qPCR, and 
blue dots represent those using TRF methods. The grey area bound 
by dotted lines represents the 95% confidence interval. Visualized 
using metafor (Viechtbauer, 2010).
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Our global telomere length heritability estimate is higher than that of 
life- history traits (26%, Mousseau & Roff, 1987; 33%, Postma, 2014), 
suggesting that telomere length could be more distant from fit-
ness, and hence is under weaker selection, than other life- history 
traits, such as fecundity (Falconer & Mackay, 1996). Although tel-
omere length is correlated with lifespan both phenotypically (Bichet 
et al., 2020) and genetically (Vedder et al., 2021), it is still unclear 
how it genetically relates to other fitness components such as re-

productive output. Future studies should examine the genetic cor-
relation with these other fitness components, to better quantify the 
actual selection pressure on telomere length.

We found substantial heterogeneity in telomere length heritabil-
ity estimates, in particular among studies and estimates. There were 
potentially phylogenetic and species differences, suggesting effects 
of shared evolutionary history, such that species more closely re-

lated to each other display more similar heritability estimates; or 
species- specific ecological effects, such as climate, habitat quality 
(Angelier et al., 2013; Simide et al., 2016) and/or behaviour (Lewin 
et al., 2015; Quque et al., 2021). However, our phylogenetic and spe-

cies results should be interpreted with caution, as both effects were 
not significant. Only 18 vertebrate species currently have telomere 
length heritability estimates available, and estimates are heavily 
skewed. Mammals, in particular humans, and birds were the most re-

searched, whereas other taxa such as non- avian reptiles, amphibians 
and fish are severely under- represented (Figure 2). Therefore, the 
phylogenetic and species heterogeneity detected could be a result 
of taxa bias. To reliably determine phylogenetic patterns in telomere 
length heritability, and thus the evolutionary history of telomere 
length, further research in these little- examined taxa is needed.

We also examined the effects of study-  and estimate- level 
factors on telomere length heritability. We found that heritability 
estimates differed by laboratory methods, and TRF with in- gel hy-

bridization resulted in higher heritability estimates than both TRF 
with Southern blotting and qPCR. This again agreed with Karkkainen 
et al. (2021), who found that telomere extraction technique in-

fluenced individual repeatability in telomere length. Compared 
with TRF, which measures absolute telomere length (Montpetit 
et al., 2014), qPCR measures telomere length relative to a single- 
copy reference gene (Cawthon, 2002; Montpetit et al., 2014) and 
thus has higher measurement errors and lower inter- assay consis-

tencies (Aviv et al., 2011; Nettle et al., 2019). In addition, both qPCR 
and TRF with Southern blotting, which involves the denaturation of 
DNA, measure also interstitial telomeric sequences (ITS), and the 
telomeric repeats not located at the end of chromosomes (Foote 
et al., 2013). On the contrary, TRF with in- gel hybridization does not 
involve DNA denaturation and hence excludes ITS in telomere mea-

surement (Atema et al., 2015). As ITS could vary substantially among 
individuals (Foote et al., 2013), inclusion of ITS measurements can 
result in inflated total phenotypic variation and thus lower herita-

bility estimates.
More interestingly, we found that heritability estimates sig-

nificantly differed by statistical method, with correlation- based 
methods resulting in the highest mean heritability estimates, and 

twin-  and SNP- based methods being significantly lower. In our 
dataset, correlation- based methods include both parent– offspring 
regressions and sibling correlations. Both methods are based on 
estimating genetic correlation between pairs of related individuals, 
and calculating the heritability as the proportion of the observed re-

gression or correlation coefficient to the expected coefficient if the 
trait is completely inherited (Falconer & Mackay, 1996; Fernandez 
& Miller, 1985). Although correlation- based methods are straight-
forward and less data- hungry, they are also prone to errors. First, 
they assume all phenotypic resemblance between genetically 
correlated individuals is the sole result of inheritance (Falconer & 
Mackay, 1996). In truth, however, phenotypic resemblance can 
also result from the shared environment. For example, families 
living under the same level of pollution experience similar stress- 
induced telomere shortening (Bijnens et al., 2015). Unless shared 
environmental effects are accounted for either statistically (Kruuk 
& Hadfield, 2007), or by randomizing parent and offspring environ-

ment (Fernandez & Miller, 1985), for example by cross- fostering, 
they would be confounded with genetic effects, leading to overesti-
mation of heritability. Second, a problem perhaps unique to telomere 
length parent– offspring regression, is the paradoxical phenomenon 
that older parents with shorter telomeres were sometimes found 
to produce offspring with longer telomeres (Bhaumik et al., 2017; 

Brown et al., 2021; Stindl, 2016), likely due to differential telomere 
lengths in the germline and somatic cells. This could lead to a nega-

tive slope between parent and offspring telomere length, and subse-

quently negative telomere length heritability, which is, by definition, 
impossible. One way to correct for this is to account for parental 
age at conception in the parent– offspring regression model (Dugdale 
& Richardson, 2018), but this was not always done in our dataset 
where negative parent– offspring regression slopes were reported.

Alternatively, statistical methods based on variance– 
covariance partitioning using related individuals could limit these 
errors. In our dataset, such methods are represented by the ‘an-

imal model’, which estimates heritability by partitioning phe-

notypic variance into its components, and then estimating and 
comparing phenotypic covariance between all related pairs in the 
population using pedigree information (Kruuk & Hadfield, 2007; 

Lynch & Walsh, 1998; Wilson et al., 2010); as well as structural 
equation modelling using monozygotic and dizygotic twin data. 
This method partitions phenotypic covariance within monozygotic 
and dizygotic twin pairs into additive genetic, dominance, shared 
environmental and non- shared environmental components, by ex-

ploiting the fact that monozygotic twins share 100% of their genes, 
whereas dizygotic twins share only 50% (Bischoff et al., 2005; 

Neale & Maes, 1992). Variance partitioning frameworks allow for 
environmental effects to be explicitly modelled as random vari-
ables, and thus their separation from genetic effects. As such, 
they are generally expected to have higher accuracy than simple 
parent– offspring regression (De Araujo & Coulman, 2004; Kruuk 
& Hadfield, 2007). This could be the reason why we detected sig-

nificantly lower estimates with twin- based analysis. Nevertheless, 
we did not detect a difference between correlation- based and 
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pedigree- based estimates as expected. This is likely because the 
accuracy of pedigree- based heritability heavily depends on ped-

igree structure and quality, sample size, and whether environ-

mental effects were explicitly modelled (Bérénos et al., 2014; De 

Villemereuil et al., 2013; Kruuk & Hadfield, 2007). Links in the 
pedigree could be incorrectly assigned, for example if parentage 
is inferred from behaviour instead of from genetic markers, thus 
failing to correct for extra- pair paternity, which could be common 
(Griffith et al., 2002). Furthermore, previous studies showed that 
the ability of the ‘animal’ model to remove bias was dependent 
on pedigree depth (Kruuk & Hadfield, 2007). In our dataset, with 
a heavy skew towards human studies, most pedigree- based esti-
mates were derived using two to three generations, hence possi-
bly resulting in more biased and inflated estimates. Future work 
should further assess the effects of pedigree quality to better in-

form data collection.
On the contrary, SNP- based heritability estimates were also 

lower than correlation- based estimates. In our dataset, SNP- 
heritability estimates were calculated using two methods— the 
GREML method is a linear mixed modelling approach, where the 
additive effects of all typed SNPs on the phenotype is summa-

rized in a genomic- relatedness matrix to calculate additive ge-

netic variance (Yang et al., 2010, 2017) and the LDSC method 
which regresses summary test statistics from typed SNPs 
against their LD scores, indicating their ability to tag other local 
variants. The higher the LD score, the higher the probability of a 
variant tagging causal variants of the trait, and thus, the higher 
its test statistic would be. The heritability is then derived from 
the slope of this regression (Bulik- Sullivan et al., 2015; Yang 
et al., 2017; Zheng et al., 2017). SNP- based heritability could 
potentially be more accurate than that derived from other meth-

ods due to several reasons. First, as SNP- based heritability is 
calculated directly from genomic data, it encompasses only true 
additive genetic effects, as opposed to including also domi-
nance and epistasis effects that are rarely separated in other 
relatedness- based models, in addition to common environmen-

tal effects. This would reduce heritability inflation (Bérénos 
et al., 2014). Second, when applied to related individuals, SNP- 
based heritability is based on realized genetic relatedness, 
as opposed to expected genetic relatedness in for example 
pedigree- based models, and hence is under fewer assumptions, 
including all non- genetic effects that could not be modelled 
(Visscher et al., 2006). Third, SNP- based heritability is also free 
from errors due to imprecisely inferred genetic relationships in 
pedigrees (Faul et al., 2016), or less well- connected pedigrees. 
However, as a caveat, SNP- based methods rely upon the size 
and the density of the SNP array as well as linkage disequilib-

rium, as these will determine whether causal loci are tagged 
by genotyped markers (Manolio et al., 2009; Yang et al., 2017). 
This would lead to the incomplete capture of variation explained 
by genetic variants and hence underestimation of heritabil-
ity. Although some existing studies successfully estimated the 

heritability of traits using SNP data in a variety of species (e.g. 
Bérénos et al., 2014; Santure et al., 2013; Visscher et al., 2006), 
quantitative genetics research using SNP data is still limited, es-

pecially in wild animal systems, and more studies will be needed 
to comprehensively assess and validate its accuracy.

We did not detect any other methodological effects on telo-

mere length heritability estimates. However, it should be noted 
that the lack of differences between these methodological fac-

tors could be due to limited sample sizes and unbalanced data 
(Figure 2). For example, studies with multiple individual measure-

ments are lacking.
We did not detect any outcome reporting or time- lag bias from 

Egger's regression models, despite contrasting conclusions drawn 
from the funnel plot. This discrepancy is likely a result of the general 
difficulty in detecting bias from visual methods (Terrin et al., 2005). 
Furthermore, contrary to the findings by Wilbourn et al. (2018), we 
did not find a publication bias if we separated TRF and qPCR stud-

ies, suggesting that despite differences in accuracy and resource 
requirements, null results from both methods could be regarded as 
equally readily publishable by researchers.

In conclusion, we conducted, to our knowledge, the first meta- 
analysis on telomere length heritability in vertebrates. We found 
that telomere length is overall moderately heritable, and there is 
considerable heterogeneity among heritability estimates, providing 
grounds for further testing of selection and ecological pressures 
on telomere length across more diverse study systems. Our find-

ings highlight the importance of the choice of laboratory and sta-

tistical method in calculating heritability, and we urge that future 
studies be mindful of the assumptions and limitations of various 
methods of estimating heritability. We also recommend that future 
research should systematically assess the precision and sources of 
bias of different heritability estimation methods, using both em-

pirical and simulation data, especially in wild, non- human systems. 
Furthermore, we noticed an underrepresentation of taxa outside of 
humans and birds. As literature bias could compromise the validity 
of meta- analytical results (Nakagawa et al., 2021; Vevea et al., 2019), 
we therefore encourage further investigation into more taxa, labora-

tory and statistical methods, to minimize the possibility of incorrect 
conclusions that would drive future research.
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