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Despite the success of multiscale modeling in science and engineering, embedding

molecular-level information into nonlinear reactor design and control optimization

problems remains challenging. In this work, we propose a computationally tractable

scale-bridging approach that incorporates information from multi-product microkinetic

(MK) models with thousands of rates and chemical species into nonlinear reactor design

optimization problems. We demonstrate reduced-order kinetic (ROK) modeling

approaches for catalytic oligomerization in shale gas processing. We assemble a

library of six candidate ROK models based on literature and MK model structure. We

find that three metrics—quality of fit (e.g., mean squared logarithmic error), thermodynamic

consistency (e.g., low conversion of exothermic reactions at high temperatures), and

model identifiability—are all necessary to train and select ROK models. The ROK models

that closely mimic the structure of the MK model offer the best compromise to emulate the

product distribution. Using the four best ROK models, we optimize the temperature

profiles in staged reactors to maximize conversions to heavier oligomerization products.

The optimal temperature starts at 630–900K and monotonically decreases to

approximately 560 K in the final stage, depending on the choice of ROK model. For all

models, staging increases heavier olefin production by 2.5% and there is minimal benefit to

more than four stages. The choice of ROK model, i.e., model-form uncertainty, results in a

22% difference in the objective function, which is twice the impact of parametric

uncertainty; we demonstrate sequential eigendecomposition of the Fisher information

matrix to identify and fix sloppy model parameters, which allows for more reliable

estimation of the covariance of the identifiable calibrated model parameters. First-order

uncertainty propagation determines this parametric uncertainty induces less than a 10%

variability in the reactor optimization objective function. This result highlights the

importance of quantifying model-form uncertainty, in addition to parametric uncertainty,

in multi-scale reactor and process design and optimization. Moreover, the fast dynamic

optimization solution times suggest the ROK strategy is suitable for incorporating

molecular information in sequential modular or equation-oriented process simulation

and optimization frameworks.
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GRAPHICAL ABSTRACT |

1 INTRODUCTION

Multiscale modeling bridges scientific domains and accelerates

innovation in diverse fields such as bioengineering (Mei et al.,
2015; Alber et al., 2019), pharmaceuticals (Rim et al., 2009; Li
et al., 2014; Clancy et al., 2016), material sciences (LLorca et al.,
2011; Talebi et al., 2014; Vassaux et al., 2020), and chemical
engineering (van der Hoef et al., 2006; Fermeglia and Pricl, 2009;
Eugene et al., 2019). Various time-bridging approaches (Vlachos,
2005; Horstemeyer, 2009; Salciccioli et al., 2011b; Tsay and
Baldea, 2019) enable tractable transfer of information across
length and time scales. For example, top-down approaches
(Fedder, 2000; Zhao et al., 2019) enable fast screening of
materials through process optimization and inform inverse

design of materials. Likewise, bottom-up approaches (Sinno,
2007; Boţan et al., 2015) can evaluate materials and devices in
the context of optimized process systems and infrastructures.

Multiscale modeling plays a critical role in modernizing the
energy economy including the responsible use of shale gas. In the
United States, a surplus of ethylene and propylene (Sieminski,
2016) has dampened the demand for conventional natural gas
liquids (NGL) and liquefied natural gas (LNG) processing
(Goellner, 2012). Additionally, the distributed, stranded
location of wells and their time-varying production rates (Tan
and Barton, 2015; Kim et al., 2016; Yang and You, 2018) make

traditional large-scale, capital-intensive processing facilities
economically unfavorable (Wilczewski, 2015). These factors
create opportunities for the development of modular (Tan and
Barton, 2015; Kim et al., 2016), catalytic processes (Cantrell et al.,
2016; He et al., 2018; Ridha et al., 2018) to transform shale gas
into high-value hydrocarbons such as fuel (e.g., gasoline, diesel,
jet) additives or other chemicals. Here, multiscale modeling is
critical to resolving complex, interdependent decisions across the
materials, unit operations, process, and infrastructure scales
(Eugene et al., 2019). For example, computational chemistry
(Breuil et al., 2015; Ko et al., 2020) and microkinetic (MK)

(Terrell et al., 2019; Vernuccio et al., 2019) models for

oligomerization reactions in catalytic upgrading of lighter
olefins like ethylene and propylene help evaluate novel catalyst
performance in silico in tandem with experiments. While these

models inform molecular and materials design decisions, they
have yet to be directly integrated with reactor and process models
to assess viable design configurations and product portfolios.

Numerical tractability concerns (Mhadeshwar and Vlachos,
2005; Salciccioli et al., 2011a; Karst et al., 2015) limit the use of
MK models for detailed reactor modeling, optimization, and
design; engineers often use conversion or equilibrium models
(e.g., Gibbs free energy minimization) for process design and
optimization (Ridha et al., 2018; Yang and You, 2018). For
complex reaction networks including oligomerization in
natural gas upgrading, such simplified models may lead to

inaccurate conclusions by not considering chemical kinetics.
Instead, three computational approaches—MK model

reduction, machine learning surrogate models, and reduced-
order kinetic (ROK) models—are emerging to embed the
dominant kinetic information in macroscale calculations such
as computational fluid dynamics or dynamic optimization while
maintaining computational tractability (Jebahi et al., 2016). MK
model reduction strategies, in particular, have received
considerable attention; recent literature (Mhadeshwar and
Vlachos, 2005; Salciccioli et al., 2011a; Karst et al., 2015;
Partopour and Dixon, 2016; de Carvalho et al., 2018) has

demonstrated model size reductions of up to 50% for single-
product and small reaction networks with O(10) elementary
reaction steps without significant loss of kinetic information.
However, these strategies have yet to be demonstrated on
complex reaction networks such as oligomerization that
consider O(103) elementary reaction steps (Vernuccio et al.,
2019) and multiple products. Machine learning approaches
(Teske, 2014; Miriyala et al., 2016; Kotidis and Kontoravdi,
2020), on the other hand, use simulations or experimental
data libraries to train neural networks and similar surrogate
models to predict the reactor effluent. Although these

approaches are not restricted by the MK model size, they
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require large amounts of data to train and lack the ability to
emulate kinetic or thermodynamic behavior outside the range of
validation (Miriyala et al., 2016) which can be problematic for
reactor optimization. In contrast, ROKmodels (Jacob et al., 1976;

Oliveira et al., 2010) are developed by lumping the MK reactant
and product species into major products or product groups to
reduce complexity; simplified reaction mechanisms are used to
postulate rate laws using these pseudo-products. These models
are computationally tractable due to the reduced model size while
the kinetic form of the models enables considerably reliable
process-scale extrapolations. This makes ROK models
especially attractive for oligomerization reactor optimization. A
major challenge, which we address in this paper, is how to
postulate and select the rate laws used in ROK models.

In this paper, we propose a computationally tractable ROK

modeling framework to incorporate MK simulation data into
nonlinear reactor optimization for oligomerization in shale gas
upgrading. Specifically, we answer the following questions: 1)
what ROK model-form best emulates MK simulation data while
remaining computationally tractable for dynamic optimization?
and 2) what is the impact of ROK model-form and parametric
uncertainties on reactor design optimization results? To address
these questions, we postulate a library of ROK models based on
literature (Oliveira et al., 2010) and MK modeling strategies
(Vernuccio et al., 2019); using statistical quality of fit metrics,
identifiability analysis, and sensitivity analysis, we determine that

a previously proposed oligomerization kinetic model (Oliveira
et al., 2010) does not emulate MK model simulations trends. We
then demonstrate how the proposed ROK models enable
tractable optimization of temperature zones in a packed bed
reactor (PBR). Finally, we show that model-form uncertainty,
e.g., choice of ROK model, does not impact the optimal
temperature profile (decisions) but, dramatically impacts the
predicted conversion (optimization objective) and surpasses
the effect of parametric uncertainty propagation on the
optimization results. To our knowledge, this paper is the
first to build ROK models for multi-product

oligomerization based on MK simulations and demonstrate
tractable reactor design optimization.

The remainder of this paper is organized as follows. Section 3

reviews multiscale and lumped-rate kinetic modeling literature.
Section 4 describes the proposed modeling and computational
framework. Sections 5 and 6 present results for ROK model
identification and reactor optimization, respectively. Finally,
Section 7 discusses conclusions, limitations, and future work.

2 LITERATURE REVIEW

2.1 Multiscale Modeling in Reaction
Engineering
Multiscale modeling accelerates materials engineering and
discovery through in silico inverse design and optimization. At
the microscopic scale, thermodynamic and kinetic parameters
like enthalpy of formation, entropy, and activation energy of
single atoms or molecules are estimated via ab initio calculations
using density functional theory (DFT) (Parr, 1983) and molecular

dynamics (MD) coupled with statistical mechanics. Other semi-
empirical parameters such as pre-exponential factors are
calculated using transition state theory (TST) (Pechukas,
1981). These parameters are then embedded into ordinary

differential equations (ODEs) to represent elementary reaction
rates. Using domain knowledge orMonte Carlo (MC) techniques,
the ODEs are then combined to form MK models (Hansen et al.,
2007) that describe elementary, surface-level chemistries of
catalytic reactions (Prasad et al., 2010; Stamatakis and
Vlachos, 2012; Stamatakis, 2014). At the macroscopic scale,
tools such as continuum equations (Hadjiconstantinou and
Patera, 1997), computational fluid dynamics (CFD) (Dixon
and Nijemeisland, 2001), and mathematical reactor models
(Rawlings and Ekerdt, 2002) are used to evaluate scale-
appropriate mass and heat transfer correlations. Using these

tools, scientists and engineers set material design targets for
catalyst development and determine the value of additional
data to reduce uncertainty. Detailed reactor and process design
frameworks further enable advanced control (Murase et al., 1970;
Elnashaie et al., 1988; Gentric et al., 1999; Abel et al., 2000; Hagh,
2003), reactor arrangement and configuration optimization
(Hillestad, 2010; Rafiee and Hillestad, 2012, 2013; Manenti
et al., 2014; Fischer and Freund, 2021), and reactor network
optimization through superstructure optimization (Balakrishna
and Biegler, 1992; Kokossis and Floudas, 1994; Lakshmanan and
Biegler, 1996; Gong and You, 2018).

Several modeling frameworks have been proposed over the last
20 years for the multiscale development of catalytic processes.
Molecular-scale tools such as quantum mechanics, molecular
dynamics, and kinetic Monte Carlo (KMC) for property
estimation, coupled with data science tools including
parameter estimation and identifiability analysis form the basis
for a “multiscale simulation ladder” (Vlachos et al., 2006).
Raimondeau and Vlachos (2002) demonstrated the
computational feasibility of multiscale simulations by
generating data at the molecular level (MC simulations and
other surface simulators) to fit models for macroscopic reactor

modeling. Sutton et al. (2018) successfully established feedback
loops between first-principles kinetic Monte Carlo (KMC)
simulations and computational fluid dynamics (CFD) to
extract chemical insights for rate-determining steps at the
molecular-scale and optimal reactor operation mode at the
process-scale. Their framework accurately predicts reactor-
scale selectivity and conversion under unexplored conditions
for the catalytic oxidation of carbon monoxide. Partopour and
Dixon (2019) developed a multiscale approach for transient
simulation of fixed bed reactors using CFD to study the
overall transient behavior of the reactor as well as local effects

such as species distribution inside the particles under dynamic
conditions. Quiceno et al. (2006) incorporated the MK model for
catalytic partial oxidation of methane over platinum catalyst into
CFD models and were able to perfectly match experimental
results from literature while Maestri et al. (2008) proposed a
hierarchy of validated kinetic models for steam and dry reforming
of methane starting fromMKmodels to two-step reduced models
fit for implementation in reactor design. More recently, Karst
et al. (2015) and Partopour and Dixon (2016) used MK model
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reduction strategies to mitigate the computational demand
associated with the incorporation of MK models in process-
scale reactor design. These reduction strategies are reviewed in
detail below. While these frameworks enable some multiscale

design, they were demonstrated using relatively simple reaction
networks such as methane reforming and water gas shift reaction
that involve O(10) elementary steps; how to scale these
approaches to more complex reaction systems with multiple
products or O(103) steps remains an open question.
Moreover, in-depth knowledge of both micro- and macro-
scopic phenomena is required to successfully implement these
modeling frameworks.

We now review three categories of approaches—MK model
reduction, machine learning emulators, and ROK models—to
incorporate MK information in macroscale models (Solle et al.,

2017).

2.2 MK Model Reduction
The goal of MK model reduction is to create a simplified reaction
network that emulates the predominant model trends (e.g.,
conversion) by combining and removing elementary reactions
from the original (large) network. Sensitivity analysis followed by
principal component analysis (PCA) (Wold et al., 1987) is the
most widely-used strategy for MK model reduction in literature
(Mhadeshwar and Vlachos, 2005; Salciccioli et al., 2011a; Karst
et al., 2015; Partopour and Dixon, 2016; de Carvalho et al., 2018).

In this method, the significance/importance of each elementary
reaction step in the MK model is quantified using sensitivity
matrices that record the change in MK model performance (e.g.,
conversion, product yield, selectivity) resulting from the one-at-
a-time removal of the elementary steps from the model. PCA is
then performed using the sensitivity matrix to eliminate the least
sensitive elementary steps based on eigenvalue analysis from the
network until a threshold is met. Recent successful applications of
PCA-based MK model reduction include analysis of the MK
model for water gas shift reaction on platinum catalyst consisting
of 46 elementary steps (Mhadeshwar and Vlachos, 2005) and on

nickel catalyst consisting of 19 reversible elementary steps (de
Carvalho et al., 2018), ethylene hydrogenation and ethane
hydrogenolysis MK model consisting of 32 reversible
elementary steps (Salciccioli et al., 2011a), and partial ethylene
oxidation MK model with 17 reversible steps (Partopour and
Dixon, 2016). Karst et al. (2015) used the PCA-based approach
followed by reaction pathway analysis to reduce the methane
chemistry model from Maestri et al. (2009) from 41 elementary
steps to 21 steps with an overall average error of 0.05% in
predictions. The reduced-order model was then used to
maximize the yield of hydrogen by optimizing the feed

composition and reactor temperature profile and the results
were validated to predict hydrogen production within 0.13% of
the predictions obtained by simulating the MK model at the
optimal conditions. Our work scales these approaches to multi-
product systems with two orders of magnitude more elementary
reaction steps.

Backward feature elimination (BFE) is another popular
approach for MK model reduction. To start, BFE creates a
library of candidate reduced MK models by sequentially

removing a single reaction from the model in each step and
recalibrating the reduced MK model using experimental data.
The reduced MK models with the largest prediction errors are
removed from the library and the process repeats until an

acceptance criterion such as minimum model size or
maximum prediction error is met. Often, simulated annealing
or other heuristic search algorithms are then used to
reparameterize the reduced MK models and minimize
prediction error compared to the original MK model. Avşar
(2017) used this approach to study carbon monoxide
conversion from the water gas shift reaction on platinum
consisting of 46 elementary steps. Although BFE yielded
better-predicting reduced models with 5.8% lower root mean
squared error (RMSE) compared to PCA in the study by Avşar
(2017), the BFE approach cannot guarantee optimal reduction of

MK models because it is a heuristic search.
Despite their potential advantages, PCA- and BFE-enabled

MK model reduction strategies, so far, have only been applied to
reaction networks consisting of 40–50 reaction rates, providing
up to 50% reduction in model size without losing considerable
model fidelity. In this work, we consider the HZSM-5-catalyzed
propylene oligomerization reaction model fully described by
Vernuccio et al. (2019), which contains 4,243 reactions, 2,345
net reaction rates, and 909 state variables (ODEs). These ODEs,
defined as the partial pressure of each species with respect to the
number of catalyst active sites along the reactor, were integrated

using the double precision differential/algebraic sensitivity
analysis code (DDASAC) solver (Warren, 1995) as an initial
value problem. EachMKmodel integration takes a fewminutes to
complete. Additionally, largeMKmodels are often sensitive to the
initial operating conditions (Becerra et al., 2021), i.e., small
perturbations in initial conditions can cause large changes in
the output. Therefore, we anticipate a MK model embedded in
process flowsheet with recycle loops would need to be integrated
tens to hundreds of times to converge the flowsheet in sequential
modular simulation environments (e.g., AspenPlus) which would
make process simulation or optimization cumbersome and

computationally intensive. Finally, the above-described MK
model reduction methods are intrusive by nature and require
nontrivial modifications to MK model/code to implement. For
this reason, practitioners often prefer using modeling strategies, if
possible, which require less software modifications and in-depth
MK modeling expertise.

2.3 Machine Learning Emulators
Alternately, machine learning methods can be used to train
surrogates such as polynomial regression models (Wang et al.,
2018), artificial neural networks (ANNs) (Teske, 2014; Miriyala

et al., 2016; Kotidis and Kontoravdi, 2020), or distribution models
(Hutter et al., 2021) to emulate the behavior of MK models. For
example, Wang et al. (2018) correlated combustion reaction data
at different operating conditions using neural network surrogate
models. They introduced constraints based on the proximity of
model response to available data to avoid model extrapolation for
data selection, experimental design, and property estimation.
Miriyala et al. (2016) replaced the detailed kinetic model for
polymerization with neural networks in multi-objective reactor
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optimization problems which reduced the number of function
calls by up to 90% and, in turn, reduced the solution time.
Recently, Bradley and Boukouvala (2021) successfully
demonstrated up to 67% reduction in computation time

without loss of prediction accuracy using a two-step approach
for reaction kinetics parameter estimation. First, they trained
neural ordinary differential equations (NODEs) to represent state
derivative information and then used the NODEs for parameter
estimation. These and similar results highlight two key benefits of
surrogate models: they require limited knowledge of reaction
kinetics and have the potential to improve computation time.
However, model extrapolation using purely machine learning-
based (surrogate) models remains challenging due to the absence
of model physics (Von Stosch et al., 2014). Trust region methods
are one way to overcome this limitation (Eason and Biegler,

2016). For example, Franzoi et al. (2021) use a trust region based
adaptive sampling strategy to develop highly accurate multiple-
input single-output (MISO) surrogate models to replace
Arrhenius-form kinetics in the Williams-Otto optimization
problem (Williams and Otto, 1960). Using this approach, they
iteratively refined the surrogate model and performed
optimization, ultimately obtaining solutions within 0.016% of
the best known objective value.

Hybrid models are emerging to overcome the limitations of
both first-principles and purely data-driven models. The seminal
work of Psichogios and Ungar (1992) combines a first-principles

model and ANNs to model the operation of a fedbatch reactor;
the first-principles model emulated known reaction kinetics while
the black-box ANN was used to model dynamic behavior arising
from unknown interactions between living organisms. Since this
seminal work, neural networks have remained the preferred form
of surrogate that are coupled with some form of first-principles
model in hybrid modeling (Qi et al., 1999; Zahedi et al., 2005;
Mosavi et al., 2019; Bangi and Kwon, 2020). Von Stosch et al.
(2014) provide a review of recent advances in coupling non-
parametric surrogates and first-principles models. More recently,
Yang et al. (2020) used a hybrid approach to combine a first-

principles, rate-based model with neural network surrogate
models that emulates fluid catalytic cracking reactions and
improves prediction accuracy by 9% compared to stand-alone
neural network models. Tsopanoglou and del Val (2021)
combined mechanistic models for material balances and
kinetics with neural network surrogate models for in situ
bioprocess monitoring. De Jaegher et al. (2021) use neural
differential equations to model colloid-membrane collisions,
coupled with mechanistic models, to study fouling in
electrodialysis membranes. The neural differential equations
elucidate missing physics for ion-exchange membranes and

motivate the need for further research towards developing
fully-mechanistic models for membrane fouling. Foad et al.
(2022) trained hybrid models—reduced-order model derived
using PCA combined with a deep neural network (DNN)—to
emulate the transient behavior of a nuclear reactor and were able
to emulate the output power trajectory of the reactor with only
2% deviation. While hybrid models are promising, they are often
demonstrated using reaction networks with only tens of reactions
(Potočnik et al., 2003; Bhutani et al., 2006; Bayer et al., 2020).

2.4 ROK Model Development
ROK modeling strategies, a proven practice in literature (Jacob
et al., 1976; Coxson, 1995; de Andrade Lima and Hodouin, 2005;
Radmanesh et al., 2006; Oliveira et al., 2010), use a priori

knowledge of the reaction mechanism such as the rate form
(Laidler, 1984) to postulate and train first-principles based
lumped-rate models. These models, once validated, can be
extrapolated to make conversion and product distribution
predictions. For example, Zong et al. (2010) proposed an ROK
model for the heavy oil catalytic cracking and maximizing of iso-
paraffins (MIP) process and validated the model using industrial
data. In addition to predicting product distribution and product
quality with 7.5% error, the validated model was able to predict
expected kinetic behavior for the MIP process. Similarly, Ying
et al. (2015) proposed an ROK for the catalytic methanol-to-

olefins (MTO) process which, after calibration, predicted
conversion of major olefins within 5% of experiments. More
recently, Tsu et al. (2019) developed a library of candidate rate
equations and used Monte Carlo algorithms to sample from the
candidate equations to create kinetic models. Wang et al. (2021)
demonstrated the tractability of ROKmodels in reactor design by
embedding an ROK model for CaO-CO2 carbonation in a
bubbling bed reactor model; simulations indicated that the
ROK model successfully emulate temperature, concentration,
and particle size effects observed in laboratory experiments.

ROK models are especially useful for modeling multi-product

reaction networks. Jacob et al. (1976) first presented the idea of
developing ROK models for complex reaction networks such as
fluid catalytic cracking (FCC) to obtain a more “fundamental
basis” to relate feed composition and process variable effects to
product distribution. Similarly, Tabak et al. (1986) proposed the
use of ROK models to model and study catalytic oligomerization.
Based on the simplified mechanism proposed by Tabak et al.
(1986), Borges et al. (2007) and Oliveira et al. (2010) developed
ROK models using rate expressions lumped by the carbon
number of the species that are capable of emulating low
conversion product distributions for ethylene, propylene, and
butene oligomerization. Owing to their practical applicability

towards modeling complex, multi-component chemical
reaction systems, ROK models continue to be the preferred
modeling strategy for systems such as catalytic cracking
(Ebrahimi et al., 2018; Sani et al., 2018; Sun et al., 2018; John
et al., 2019) and pyrolysis (Yan et al., 2019; Schubert et al., 2020;
Zhang and Sarathy, 2021). Beyond modeling complex
petrochemical processes, ROK models have also been
developed for a variety of chemical processes including gold
ore cyanidation (de Andrade Lima and Hodouin, 2005),
biomass pyrolysis (Radmanesh et al., 2006), and solid fuel
combustion (Moríñigo and Hermida-Quesada, 2016).

3 METHODS

In this work, we propose the multiscale framework in Figure 1 to
incorporate MK information into detailed oligomerization
reactor design optimization calculations. Based on the size of
the propylene oligomerization MK model (2,345 reaction rates
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and 909 species) developed by Vernuccio et al. (2019) and the
limitations of existing model reduction strategies, we focus on
ROK models. We start with the ROK model for propylene
oligomerization from Oliveira et al. (2010). We then postulate
a library of ROKmodels by progressively altering the model form
to reflect MK model structure. We use weighted least-squares
parameter estimation, sensitivity analysis, and identifiability
analysis to determine which ROK models best emulate MK

model behavior. Using the calibrated models, we solve
temperature-staged reactor optimization problems and
quantify the effects of parametric (i.e., aleatoric) and model-
form (i.e., epistemic) uncertainties.

3.1 MK Model Simulation Data
We focus on the HZSM-5 catalyzed propylene oligomerization
MK model developed by Vernuccio et al. (2019). The elementary
steps in this model involve physisorption of a gas-phase olefin
into the pores of the zeolite followed by protonation by a
Brønsted acid site to form a reaction intermediate (carbenium

ion or covalent alkoxide). The addition of a physisorbed olefin to
a protonated intermediate results in the formation of a higher
carbon number intermediate which finally deprotonates to form a
heavier product olefin (Vernuccio et al., 2019). Following the
formation of oligomers resulting from dimerization and
subsequent oligomerization of the olefin monomer reactant
(Sarazen et al., 2016), skeletal isomerization and cracking via
β-scission occur, resulting in a mixture of olefins from ethylene to
nonene. The reaction network for this model is developed using
an automated network generator, NetGen (Broadbelt et al., 1994).
The automated generation process for an oligomerization

network is in principle infinite because of the nature of the
oligomerization steps which lead to the formation of heavier
species. However, the experimental data collected in Vernuccio
et al. (2019) for model validation showed a negligible amount of
C>9 species in the low pressure regime. For this reason, the
reaction network was limited to molecular species and
reaction intermediates with carbon number lower or equal to
9. Vernuccio et al. (2019) track 909 species through 4,243
reactions and 2,345 net rates to model the formation of

species with two to nine carbon atoms with a pure propylene
feed (75% propylene and 25% inert). The kinetic parameters for
each elementary step were estimated using transition state theory,
Evans–Polanyi relationships, and thermodynamic data.
Originally developed for low-pressure and low-conversions
operations, the MK model assumes the rate of hydride transfer
to be negligible and does not track conversions to aromatics and
paraffins. This assumption is justified when the reaction system

primarily includes small olefins with only few abstractable
hydrogens. This prevents hydride transfer steps from
occurring which in turn limits the production of paraffins. In
order to verify the applicability of the MK model to higher
pressure operations, we developed an extended version of the
model which includes hydride transfer steps between molecular
species and carbenium ions/alkoxides as well as cyclization steps
which lead to the formation of C5 and C6 ring structures. This

FIGURE 1 | Proposed multiscale modeling framework for oligomerization reactor modeling and design optimization.

FIGURE 2 | Product selectivity for butene and heavier olefins using MK

(Vernuccio et al., 2019) and extended MK models at 10 bar feed pressure.
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extended MK model, including 4,212 species and 23,086
reactions, is substantially larger and less manageable than the
MK model adopted in this work and was used for verification
purposes only. While the MKmodel from Vernuccio et al. (2019)

takes a few minutes to integrate, the extended MK model takes
almost 6 hours to integrate. However, Figure 2 shows that the
selectivity for butene and heavier olefins is comparable between
the 2 MK models. Therefore, to reduce computation costs, we
consider the MK model from Vernuccio et al. (2019) as the
“ground truth” model in this work.

In this work, we use data generated by simulating the MK
model (Vernuccio et al., 2019) in a PBR at high conversion range
to reparametrize the ROK models. We divide data from 73 MK
simulations into two groups: 1) 64 low pressure simulations at
pressure 2.18 atm, temperatures 483–522 K, and space velocities

62 to 740 mol − feedmol −H+−1min−1 previously published in
Ganesh et al. (2020) and 2) nine high pressure simulations at
pressures of 10–30 atm, temperatures of 523–573 K, and space
velocity of 1123 mol − feedmol −H+−1min−1.

3.2 Library of ROK Models
We postulate a library of six candidate ROKmodels. ModelM0 is
a simple kinetic model with Arrhenius-form rate expressions.
Model M1 is an ROK model adopted from literature (Oliveira
et al., 2010). Model M2 updates the adsorption enthalpy chain
length dependence and adsorption isotherm model from M1.

Model M3 adds temperature dependence to the frequency factor
from modelM2. ModelsM4 andM5 add activation energy chain
length dependence to models M2 and M3, respectively. The
sequential structural changes introduced in the ROK models
from M0 to M5 are intended to ultimately match the MK
model structure presented by Vernuccio et al. (2019). In this
paper, we use the phrase “functional form” to refer to the
dependence of kinetic parameters on reaction conditions,
including temperature and adsorption phenomena, and
reactant characteristics, including chain length and chain
symmetry.

3.2.1 Sets and Indices
First, we define the sets and indices necessary to describe the
general reduced-order oligomerization reaction network:

Reaction type: i ∈ I � {1, 2}
Number of carbon atoms: j, n, or m ∈ C � {2, 3, 4, . . . , N}

where N denotes the number of carbon atoms in the largest
olefin species considered in the reaction network. The two
reaction types considered in the network are oligomerization
(i = 1) and cracking (i = 2) leading to the transformation of
olefins ranging from C2H4 to CNH2N. Whereas olefin isomers

are accounted for as separate species in the MK model, in this
work we have lumped all isomeric species together by carbon
number.

3.2.2 Reactions
Let Xn (Xm or Xn+m) represent olefins with n (m or n +m) carbon
atoms. In the forward oligomerization reaction, with rate
constant ki�1,n,m′ , light olefins combine to form heavier olefins.

In the reverse cracking reaction, with rate constant ki�2,n,m′ ,
heavier olefins break into lighter olefins.

[XnZ] + Xm#
ki�1,n,m′

ki�2,n,m′

[Xn+mZ]

In the above reaction, Z refers to the catalyst active sites where
the olefins are adsorbed before reacting with other gas-phase
olefins. XnZ represents the olefin attached to the catalyst active
site Z and Xm represents the gas-phase olefin which combine to
form Xn+mZ.

3.2.3 Rate Equation
We define the overall rate equation using rn,m (mol min−1g−1)
where n and m represent the number of carbon atoms in the
reacting species.

−rn,m � ki�1,n,m′ · pm · pn − ki�2,n,m′ · pn+m ∀ n +m≤N (1)

The partial pressure of each species is denoted by pj (or pn,
pm, and pn+m) where j (or n, m, and n + m) denotes the number
of carbon atoms in the species molecule. The concentration of
the adsorbed species is substituted with the partial pressure of

the corresponding gas-phase species using adsorption
isotherm relations (discussed later) contained in the rate
constants ki,n,m′ .

3.2.4 Rate Constants
We first defined a simple Arrhenius-form ROK model with the
rate constant:

ki,n,m′ � αi,n+me
−Ei,n+m/RT, i ∈ I (2)

where αi,n+m is the pre-exponential frequency factor and Ei,n+m is
the aggregated activation energy for reaction type i involving
olefins with carbon numbers n, m, and n + m.

Next, we considered an ROKmodel from Oliveira et al. (2010)

originally developed to model olefin transformations at low
conversion. The rate constants are given as:

ki,n,m′ � ωk0i,n,m · e
−Ei,n,m′ /RT

, i ∈ I (3)

The pre-exponential frequency factor, k0i,n,m is given by:

k0i,n,m � αi · e
Ei,n,m′ βi , i ∈ I (4)

Thus, Eq. 3 is re-written as:

ki,n,m′ � ωαi′e
Ei,n,m′ βi−1/RT( ), i ∈ I (5)

In Eqs 4, 5, αi′ is the frequency factor and βi is the
compensation factor to relate k0i,n,m and the activation energy
Ei,n,m′ . In this work, the compensation factors are assumed to be
constant (not fitted parameters). The rate constant in Vernuccio
et al. (2019) does not consist of the compensation factor βi and

can be written using frequency factor α′′i as:

ki,n,m′ � ωαi″e
−Ei,n,m″ /RT

, i ∈ I (6)
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Next, we add temperature-dependence to the pre-exponential
frequency factor in Eqs 5, 6 following Vernuccio et al. (2019)
which gives Eqs 7, 8, respectively:

ki,n,m′ � ωα′′′

i

T

Tref

eEi,n,m′ βi−1/RT( ), i ∈ I (7)

ki,n,m′ � ωα
′′′′

i

T

Tref

e
−Ei,n,m″ /RT

, i ∈ I (8)

In the above equations, ω is the adsorption isotherm constant
used to relate the concentration of adsorbed species to the
corresponding gas-phase partial pressures and Tref = 298.15 K.

3.2.5 Activation Energies
We consider two functional forms to represent the carbon chain-
length dependence of activation energies. The literature model
(Oliveira et al., 2010) considers the following formula:

Ei,n,m′ �
E′i

tanh γi ·m( ), i � 1 (9)

Ei,n,m′ �
E′i · 1 + ϕi · |n −m|( )
tanh γi · n +m( )( ) , i � 2 (10)

where γi models the influence of chain length in reaction i and
takes a different functional form for each reaction type. ϕ2models
the influence of structure symmetry in activation energy
calculation for cracking reactions (i = 2).

Vernuccio et al. (2019) use a linear relationship, Eq. 11, to
calculate activation energies from heat of reactions ΔHRi,n,m.

Ei,n,m″ �
E0 + κi · ΔHRi,n,m, ifΔHRi,n,m≤ 0
E0 + 1 − κi( ) · ΔHRi,n,m, otherwise

{ (11)

where E0 is the intrinsic energy barrier and κi is the transfer
coefficient for reaction type i; more exothermic reactions have κi
values closer to 0 and more endothermic reactions have κi values

closer to 1. The heats of reaction ΔHRi,n,m are calculated from
heats of formation ΔHFj of reactant and product species
following Eq. 12.

ΔHRi,n,m � ∑
j∈products

ΔHFj − ∑
j∈reactants

ΔHFj (12)

In this work, the heats of formation ΔHFj are approximated
using a linear combination of parameters δ, γ′, and species chain
length j as shown in Eq. 13.

ΔHFj � δ + j · γ′ (13)

3.2.6 Adsorption Isotherm Model
Oliveira et al. (2010) use a Langmuir isotherm to model
adsorption:

ω �
K0e

−ΔH/RTCZ

1 +K0e−ΔH/RTPinlet

(14)

here, K0 is the adsorption equilibrium pre-exponential constant,
CZ is the total concentration of active sites in fresh catalyst, ΔH is
the adsorption enthalpy, and Pinlet is the inlet reactor pressure.

Vernuccio et al. (2019) consider a linear adsorption isotherm
model where the adsorption and desorption rates are written in
the Arrhenius form and the activation energy for adsorption is
assumed to be zero:

kads, forward � AF (15)

kads, backward � ABe
−ΔH′/RT (16)

here, kads, forward is the rate constant of adsorption, AF is the
adsorption frequency factor, kads, backward is the rate constant of
desorption, AB is the desorption frequency factor, and ΔH′ is the
heat of desorption which is set equal to the heat of adsorption
steps. Assuming equilibrium between the adsorption and
desorption process:

Kads �
kads, forward

kads, backward
�

AF

ABe
−ΔH′/RT (17)

To simplify, we define λ to denote the log-transformed ratio of
the pre-exponential rate constants:

ω � λeΔH′/RT, λ � loge
AF

AB

( ) (18)

3.2.7 Adsorption Enthalpy
Oliveira et al. (2010) assume the adsorption enthalpy is
independent of the chain length of species being adsorbed.
However, Vernuccio et al. (2019) use the chain length

dependent adsorption enthalpy model from Nguyen et al. (2011):

ΔHj′ � αads + jβads (19)

where αads and βads are characteristic parameters of the HZSM-5
zeolite framework that quantify the dispersive van der Waals
interactions and local interactions with catalyst acid sites,
respectively.

Based on the functional forms available to compute various
kinetic parameters, we postulate six ROK models using a
combination of Eqs 9-19. Table 1 presents the details of the

functional form for ROK models M0 to M5.
Using the kinetic rate equations defined using Eq. 1 and

Table 1, the rate of change of olefin partial pressures with
normalized catalyst loading along a PBR is given by:

dpj

dmcat

�
P pinert

SV ncat pinert0

∑j−2
n�2

∑j−n
m�2

−rn,m( ) (20)

wheremcat is the scaled catalyst mass along the length of the PBR,
SV is the stream space velocity, ncat is the number of moles of
active site per gram of catalyst, P is the total pressure in the
reactor, pinert is the inert partial pressure, and pinert0 is the feed
partial pressure of inerts. Supplementary Section S2 in the
Supplementary Material derives Eq. 20.

3.3 Parameter Estimation
To calibrate parameters in each candidate model, we minimize a
linear combination of the sum of squared errors (SSE) and sum of
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squared percent errors (SSPE) between olefins concentrations

predicted by the MK and ROK models in a PBR:

min
θ

SSE + w SSPE

s.t. rate law from Table (1)
material balance for PBR from Eq. (20)
bounds

(21)

where w is the weight assigned to SSPE. θ is the vector estimated
kinetic model parameters, which are defined as follows for models
M0 throughM5: θ0 = [α1,j, α2,j, E1,j, E2,j] for all j ∈ {4, . . ., N}, θ1 =
[α1′ , α2′ , γ1, γ2, ϕ2, λ, ΔH′, E1′ , E2′], θ2 = [α1′ , α2′ , γ1, γ2, ϕ2, αads, βads,
E1′ , E2′], θ3 = [α′′′1 , α

′′′
2 , γ1, γ2, ϕ2, αads, βads, E1′ , E2′], θ4 = [α′′1 , α

′′
2 , γ′,

δ, E0, κ1, κ2, αads, βads], and θ5 = [α′′′′1 , α′′′′2 , γ′, δ, E0, κ1, κ2, αads,
βads]. Additionally, we analyze the effects of model scaling and
objective function SSE formulation on model fit quality to choose

the best modeling strategy. The formulation and details of this
analysis are reported in Supplementary Material.

The models were implemented in Pyomo (Hart et al., 2017)
and discretized using backward finite-difference scheme via
Pyomo.DAE (Nicholson et al., 2018). The resulting regression
problems were formulated using Pyomo.parmest (Klise et al.,
2019) and contain 22,192 (M0), 23,214 (M1, M2, and M3), and
21,097 (M4 andM5) variables and 22,168 (M0), 23,205 (M1,M2,
and M3), and 21,088 (M4 and M5) constraints. The problems
were solved using with IPOPT (Wächter and Biegler, 2006) and
the HSL linear solver MA27 (HSL).

3.4 Model Identifiability
Kinetic models are often only partially identifiable (Vajda et al.,
1989). A model is said to be identifiable if there exists a unique set
of model parameter values that produce a unique model response.
Conversely, a model lacks identifiability if multiple distinct sets of
model parameter values produce the same model response (Seber

and Wild, 1989). In nonlinear regression problems, the model
being reparameterized is not identifiable when the least-squares
regression objective is flat in one or more directions (related to
fitted parameters) and the Fisher Information Matrix (FIM),
which is proportional to the reduced Hessian for the
regression problem, is (near) singular. The FIM, M, is also
approximately the inverse of the parameter covariance matrix,
V. In this work, we ignore prior information (Franceschini and
Macchietto, 2008) when approximating M as:

M θ̂,ϕ′( ) ≈ V θ̂,ϕ′( )[ ]−1 (22a)

M θ̂,ϕ′( ) ≈ Q θ̂,ϕ′( ) · Σp
−1 · QT θ̂,ϕ′( ) (22b)

Mu,u′ θ̂,ϕ′( )≈ ∑N−1

j′�1

∑N−1

j″�1

∑Mc

mc�1

∑Mc

mc′�1

q j′,mc( ),u~σ j′,mc( ), j″,mc′( )q j″,mc′( ),u′

(22c)

In Eq. 22, the FIM M is evaluated using nominal parameter

valuesparameter values θ̂ at operating conditions ϕ9. Recall, the
parameter covariance matrix V represents the uncertainty in
parameter estimates obtained from the least-squares regression
problem. Classical nonlinear regression theory assumes the
measurements are corrupted with random independently and
identically distributed (i.i.d.) zero-mean observation uncertainty
(Bates andWatts (1988)). Let the measurement covariance matrix
Σp correspond to such multivariate Gaussian uncertainty.
Furthermore, the sensitivity matrix Q contains the partial
derivatives of each model prediction with respect to regressed
model parameter. Thus, Eq. 22b is a first order approximation to

propagate the measurement covariance Σp through the regressed
model to obtain the parameter covariance V. Likewise, when the
model residuals are small, Eq. 22b approximates the inverse of
the reduced Hessian of the regression problem (Bard, 1974). Eq.
22c is the equivalent calculation expressed with summations.
Here the pairs (j′, mc) and (j″, mc’) index the partial pressures
predicted by the model. Specifically, j′ and j″ indicate the olefin
species with carbon numbers j′ + 1 and j″ + 1 (for example, j′ = 1
corresponds to ethylene). Likewise, mc and mc’ indicate
discretization points along the reactor, in terms of scaled
catalyst mass per Eq. 20, at which model responses are

recorded. The regressed parameters are indexed by u and u′.
~σ(j′,mc),(j′′ ,mc′) is the element of the inverse of Σp that corresponds
to the covariance between measurement (j′, mc) and (j″, mc’).
Likewise, q(j′,mc),u corresponds to the element of Q for the
sensitivity of model response pj’ measured at point mc (or mc’)
with respect to model parameter θu:

q j′,mc( ),u �
zpj′,mc

zθu

∣∣∣∣∣∣∣∣
θ̂

(23)

These calculations are performed using the Pyomo.DOE

package (Wang and Dowling, 2022). We approximate the

TABLE 1 | Kinetic model library. M0 is the Arrhenius-form simple model with constant frequency factor and activation energy parameters (no correlations). M1 is the ROK

model adopted from Oliveira et al. (2010). In M2 and M3, the adsorption enthalpy and adsorption isotherm models are updated. Unlike M2, M3 has a temperature-

dependent frequency factor. In addition to the changes in M2 and M3, M4 and M5 have activation energies updated to match the MK model. Similar to M3, M5 has a

temperature-dependent frequency factor while M4 does not.

Model code Adsorption enthalpy

[Jmol−1]

Activation energy

[Jmol−1]

Adsorption isotherm

model

T-dependent frequency

factor

Number of

fitted parameters

M0 Not considered E. 2 Not considered No, Eq. 2 24

M1 Fixed Eqs. 9, 10 Eq. 14 No, Eq. 5 9

M2 Eq. 19 Eqs. 9, 10 Eq. 18 No, Eq. 5 9

M3 Eq. 19 Eqs. 9, 10 Eq. 18 Yes, Eq. 7 9

M4 Eq. 19 Eqs. 11–13 Eq. 18 No, Eq. 6 9

M5 Eq. 19 Eqs. 11–13 Eq. 18 Yes, Eq. 8 9
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inverse of the measurement uncertainties ~σ(j′,mc),(j′′ ,mc′) using the
sum of squared residuals SSE from the regression problem in Eq.

21 as follows:

~σ j′,mc( ), j″,mc′( ) ≈

SSE

ND −Nθ

( )−1

j′ � j″andmc � mc′

0 otherwise

⎧⎪⎪⎨⎪⎪⎩
(24)

where ND is the total number of data points used to
calibrate the model and calculate SSE. Nθ is the total

number of model parameters and defined in Table 1 for
each ROK model.

If the FIM M approximated using Eq. 22c is (near) singular,
eigendecomposition ofM, can be used to identify the direction of
“sloppiness” (Chis et al., 2016), i.e., the parameter(s) which can
assume multiple values without changing the model response and
least-squares regression objective value.

M � UΛUT � ∑Nθ

k�1

λk �uk �u
T
k (25)

In Eq. 25, FIM M is decomposed into eigenvectors U �

[u1, . . . , uNθ
] and corresponding eigenvalues λ1, . . . , λNθ

.1Λ is a
diagonal matrix with the eigenvalues on the diagonal. By
definition, the eigenvectors uk ∈ R

1×Nθ are unit vectors in the
parameter space. Recall, the FIMM is proportional to the reduced
Hessian of the least-squares optimization problem. A (near-)zero
eigenvalue indicates that the regression objective function has
(near-)zero curvature in the direction of the corresponding

eigenvector, which is a consequence of the model predictions
being insensitive to perturbations in said direction. When
interpreting the eigendecomposition, if λk ≈ 0 and the
corresponding uk predominantly points in the direction of a
single parameter, said parameter is sloppy.

In this work, we use a sequential approach to identify ROKmodel
sloppy parameters. In this approach, once a sloppy parameter is

identified usingEq. 25, the parameter is removed as a decision variable
from the regression problem and is fixed to a previously-obtained
value that preserves model feasibility. Then the regression problem is
re-solved, the FIM is recomputed for eigenvalue analysis, and the
process is repeated until the FIM is no longer singular and themodel is
identifiable. This algorithm is further explained in Section 5.3.

Although an ill-posed model with sloppy parameters can be
used for parameter estimation, the uncertainty in resulting
parameter estimates is extremely large. Adding measurements

(data) or removing (i.e., fixing) sloppy parameters as decision

variables often makes the model identifiable and reduces the
uncertainty of parameter estimates. This is a local analysis
because M is approximated at specific values of θ via Eq. 22;
repeating the analysis at different values of θ may reveal different
sloppy parameters.

3.5 Staged Reactor Design
Using the calibrated ROK models, we compute the optimal
temperature profiles for a staged PBR. In place of one PBR with
volume V, catalyst mass Mcat, and temperature T, we consider NZ

isothermal PBRs, each with catalyst loading Mcat/NZ, in series with
inter-stage cooling in the staged PBR design, as shown in Figure 3.

Following from the PBR governing equation, Eq. 20, the
design equation for an olefin with j carbon atoms at each

stage can be written as:

NZ

dpj

dmcat

∣∣∣∣∣∣∣
Tz

−
P pinert

SV ncat pinert0

∑j−2
n�2

∑j−n
m�2

−rn,m( )|Tz

� 0, ∀z ∈ 1, . . . , Nz{ } (26)

Under these assumptions, we propose a staged-PBR
temperature optimization problem to maximize the formation
of high-value olefins, with carbon numbers jmin to N:

max
Tz

∑
jmin ≤ j≤N

pj

∣∣∣∣
z�NZ

s.t. design equation from Eq. (26)
material balance
bounds

(27)

In Eq. 27, the system operates at constant pressure and therefore,
through ideal gas law, maximizing the partial pressure of select
olefinsmaximizes themolar flow, i.e., formation of those olefins. The

FIGURE 3 | PBR divided intoNZ isothermal, equal-volume stages with heat exchangers for inter-stage cooling/heating. The dashed lines represent the presence of

additional reactor and heat exchangers depending on the number of stages considered in the arrangement.

TABLE 2 | Comparison of metrics R2 (coefficient of determination), MSE (mean

squared error) in Pa2, MAE (mean absolute error) in Pa, and MSLE (mean

squared logarithmic error) in log_e(Pa)2

Model

Units

R2 MSE

Pa2
MAE

Pa

MSLE

loge(Pa)
2

M0 0.591 2.129, ×, 1010 2.581 × 104 3.421

M1 0.589 2.131 × 1010 2.582 × 104 5.141

M2 0.591 2.130, ×, 1010 2.581 × 104 3.532

M3 0.591 2.130, ×, 1010 2.581 × 104 3.519

M4 0.591 2.129, ×, 1010 2.582 × 104 4.575

M5 0.591 2.129, ×, 1010 2.582 × 104 4.526
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temperatures Tz for stages z ∈ {1, 2, . . .,Nz} are the design degrees of
freedom. The number of reactors in series is varied while keeping the
total available reactor volume constant. The problem is initialized
using the 1-stage or previous best solution. For example, the 2-stage
solution is used to initialize the 4-stage problem. Likewise, 1-, 3-, and
5-stage solutions are used to initialize the 5-, 6-, and 10-stage
problems, respectively. The differential-algebraic equation (DAE)
systemwas discretized along the reactor length using backward finite
difference viaPyomo.DAE (Nicholson et al., 2018) and the resulting
nonlinear optimization problem consists of 1,674 variables and Nz

degrees of freedom. The problem is defined in Pyomo (Hart et al.,

2017) and solved using IPOPT (Wächter and Biegler, 2006) with the
HSL linear solverMA27 (HSL). Each optimization problem solved in
under 14 seconds, including initialization.

The uncertainty in calibrated ROK model parameters induces
uncertainty in the objective function of the staged reactor
problem. We use the Uncertainty Propagation Toolbox in the
IDAES-PSE framework (Lee et al., 2021) to propagate this
parametric uncertainty through Eq. 28 using the following
first-order error propagation formula (Rooney and Biegler, 2001):

Var f xp, θ̂( )[ ] ≈ zf

zθ
+
zf

zx

zx

zθ
( ) · V ·

zf

zθ
+
zf

zx

zx

zθ
( )T

(28)

In Eq. 28, V is the parameter covariance matrix calculated in
Section 4.4, xp is the optimal solution and f(xp, θ̂) is the
corresponding objective function value for the staged reactor
problem obtained using the parameters θ̂. The nonlinear
programming sensitivity code k_aug (Thierry, 2019) is used
to calculate the gradients in Eq. 28.

4 RESULTS: MODEL CALIBRATION AND
SELECTION

4.1 Quality of Fit Metrics
To systematically train, evaluate, and compare ROK models from
the library (Table 1), we performed weighted nonlinear regression

(Eq. 21) using the MK simulation data described in Section 4.1.
Table 2 reports quality of fits metrics R2, mean squared error (MSE),
mean absolute error (MAE), and mean squared logarithmic error
(MSLE) for the six ROK model alternatives.

For ROK model training with MK simulation data, MSLE is
the most informative metric. MK simulation data used to train
the ROK models consists of olefin partial pressure values ranging
from O(10−8) to O(107) Pa. As Table 2 shows, R2, MSE, and
MAE values for models M0 to M5 are almost identical and vary
by less than 0.2%, 0.1%, and 0.05%, respectively, for the six
candidate ROK models. The R2, MSE, and MSE metrics,

therefore, are most influenced by olefins with higher partial
pressures (propylene, butene, pentene, and hexene); olefins
with lower partial pressures (ethylene, heptene, octene, and
nonene) do not significantly affect these metrics. Moreover,
the geometrical interpretation of R2 does not hold for
nonlinear regression (Miaou et al., 1996; Spiess and Neumeyer,
2010). The species-wise MSE and MAE values for the remaining
species are two and four orders of magnitude smaller,
respectively, than the total values and, therefore, a log-scaled
error metric such asMSLE is needed to assess model fit quality for
olefins with low and high partial pressures. TheMSLE values have

the same order of magnitude for all olefin species, regardless of
partial pressure. MSLE shows up to 33.5% difference in fit quality
between the ROK models M5 (lowest MSLE) and M1 (highest
MSLE). The MSLE of models M0, M2, and M3 are within 3% of
each other and within 25% of modelsM4 andM5. The literature
modelM1, with its distinct kinetic functional forms (compared to
the MK model as discussed in Section 4), has the largest MSLE
value of all six ROK models which indicates it has the worst fit to
MK simulation data. The fitted parameter values for the six ROK
models are reported in Supplementary Tables S1-S6 in
Supplementary Material. In ROK modeling literature, it is

most common to qualitatively assess the quality of fit (Oliveira
et al., 2010; Ying et al., 2015; Wang et al., 2021; Zhang and
Sarathy, 2021) or report relative error metrics using experimental
data (Radmanesh et al., 2006; Ebrahimi et al., 2018; Sani et al.,
2018; Sun et al., 2018; John et al., 2019). In some cases, a metric

FIGURE 4 | Propylene conversion fromM0 toM5 with respect to space velocity at constant pressure (2.18 atm) and temperatures 483 K (A) and 522 K (B). The

blue stars represent the MK model simulation data. The solid and dashed lines represent the reparameterized ROK model simulations. The lines for modelsM0 andM2

to M5 overlap each other.
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FIGURE 5 | Propylene conversion fromM0 toM5with respect to pressure at constant space velocity (1123 mol − feedmol − H+−1min−1 ) and temperatures 523 K

(A) and 573 K (B). The blue stars represent the MK model simulation data. The solid and dashed lines represent the reparameterized ROK model simulations. The lines

for models M2 and M3 overlap each other and the lines for models M0, M4, and M5 overlap each other.

FIGURE 6 | Propylene conversion to butene and heavier olefins between 473 K and 1073 K and 1 atm–40 atm using (A) M0, (B) M2 (M3 has similar countours to

M2), (C)M4, and (D)M5. The red dots represent the temperature and pressure conditions at whichMK data is available and was used to train the ROKmodels (although

at different space velocities). The magenta star represents the temperature and pressure conditions suggested by Ridha et al. (2018) for process operations. The cyan-

colored diamond represents the condition for maximum conversion. The white space, as labeled, represents the operating conditions at which IPOPT is unable to

converge the olefin material balance for ROK models M0, M2, and M3 (similar to M2 but, not shown here).
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such as R2 (Yan et al., 2019) is reported, but it is challenging to
meaningfully compare such fit metrics across different models
and datasets.

Figures 4, 5 confirm that M1 fails to emulate MK model

behavior and highlight the importance of model functional form
and model assumptions (see Table 1). By virtue of having unique
pre-exponential factor and activation energy values fitted for each
olefin species and reaction type, M0 emulates MK simulations
with similar accuracy as models M2 to M5. Although model M1

was extended to consider transformations up to nonene, instead
of octene, the activation energy chain length dependence (Eqs.
(9)-(10)), adsorption enthalpy (fixed), and adsorption isotherm
model assumption (Eq. 14) are different compared to the MK
model (Vernuccio et al., 2019); consequently, M1 struggles to
emulate MK simulations. The introduction of adsorption

enthalpy chain length dependence and change in adsorption
isotherm model assumptions in models M2 to M5 (and
additionally updated activation energy functional form of
models M4 and M5), discussed in detail in Sections 4.2.6 and
4.2.7, respectively, and elaborated in Table 1, enable these models
to capture MK model conversion trends and magnitudes better
than modelM1. As a result, ModelM1 is not considered a viable
model for MK model emulation and excluded from further
analysis. There is also a significant gap between the
conversions predicted by MK and ROK models M0 and M2

to M5. We hypothesize this is because the ROK models are

missing some of the pertinent information (e.g., mathematical
expressions in the rate law) and purpose model refinement as
future work.

4.2 Sensitivity Analysis
Next, the calibrated ROK models were simulated with a mixed
feed composition mirroring the Bakken shale basin (Ridha et al.,
2018) and a reactor size estimated to create a space velocity of
25 mol − feedmol −H+−1min−1 (which is reasonable for typical
oligomerization reactors) over process-relevant temperatures of
473–1073 K and pressures of 2–40 atm.

Sensitivity analysis shown in Figure 6 indicates that modelsM3 to
M5 are most reliable at process conditions. Since oligomerization is
exothermic and the reverse cracking is endothermic, a higher
conversion to heavier olefins is expected at lower temperatures
and a lower conversion to heavier olefins is expected behavior at
higher temperatures. Despite having a good in-sample fit, modelM0

is unable to emulate this thermodynamic behavior; it demonstrates
the opposite behavior by predicting higher conversions with
increasing temperatures. Additionally, IPOPT struggles to
converge material balances for the olefins at high temperatures
and pressures (top-right corner of Figure 6A). The apparent good

fit quality of M0 to MK simulation data, discussed previously, is,
therefore, a result of over-parameterization of the ROK model.
Referring back to Table 1, M0 is defined using pairwise unique
activation energies and pre-exponential factors for each olefin species
and reaction type (Eq. 2) and consists of 24 degrees of freedom
(number of fitted parameters). This improves the fit quality ofM0 to
training data (MK simulations) but, leads to poor scaling with
temperature and space velocity due to the lack of operating
condition dependence of the parameters. Models M2 to M5, on

the other hand, each consist of only nine fitted parameters but,
capture oligomerization thermodynamics quite well (through the
parametric dependencies on operating conditions) across the range of
temperatures and pressures and predict maximum propylene

conversion at temperatures below 600 K. However, IPOPT once
again struggles to converge the olefinmaterial balances inM2 andM3

at higher temperature and pressure conditions (top-right corner of
Figure 6B). For models M0, M2, and M3, IPOPT also fails to
converge the olefin material balances at higher temperatures and
pressures. These convergence issues persist even with alternate model
scaling strategies, which are discussed in Section 5.5 and
Supplementary Section S1 of the Supporting Material. IPOPT
converges successfully across the entire range of operating conditions
analyzed for models M4 and M5.

4.3 Identifiability Analysis
Model identifiability analysis is important to properly
characterize the uncertainty in estimated parameters. For
models M2 to M5, one or more parameters are sloppy. We
use the following sequential approach to identify and remove (fix)
the sloppy model parameters:

1) Compute the FIM using Eq. 22

2) If the condition number of the FIM is smaller than
O(108), STOP.

3) Perform an eigen decomposition of the FIM.
4) Fix the parameter with the largest contribution to the

eigenvector that corresponds to the smallest eigenvalue.
5) (Optional) Refit the remaining parameters.
6) GOTO Step 1.

Using this procedure, we analyze model M5. We will use Eqs

29, 30, which are the expanded-form of the rate law from Eq. 8

and Table 1, to provide physical interpretations for the
identifiability analysis results.

log k1,n,m′( ) � log α
′′′′

1( ) + log
T

Tref

( )
+
nβads + αads − E0 + κ1 δ − Δjγ′( )

RT
(29)

log k2,n,m′( ) � log α
′′′′

2( ) + log
T

Tref

( )
+
nβads + αads − E0 − 1 − κ2( ) δ + Δjγ′( )

RT
(30)

Identifiability Iteration 1 for M5: Without fixing any
parameter, the condition number of the FIM is 3.49, ×, 1021.
Supplementary Table S16 in Supplementary Material reports
the eigen decomposition of the FIM for M5 with nine fitted
parameters; these results show that parameter γ′ is sloppy. γ′
cannot be identified uniquely since Δj in Eqs 29, 30 denotes the
change in number of C-atoms between reactants and products
and, therefore, takes a value of zero (law of conservation).

Identifiability Iteration 2 for M5: With γ′ fixed, the
condition number of the FIM decreases to 3.16 × 1018.

With eight fitted parameters, the eigen decomposition
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reported in Supplememtary Table S17 in Supplementary

Material shows δ is the next sloppy parameter. Referring to
Eqs 29, 30, δ forms a bilinear combination with parameters κ1
and κ2. At most only one parameter in a bilinear combination

can be uniquely estimated.
Identifiability Iteration 3 for M5: With γ′ and δ fixed (and

seven remaining parameters), the condition number of the FIM
decreases to 7.21 × 1017. The eigen decomposition reported in
Supplementary Table S18 shows that E0 is the next sloppy
parameter. In Eqs 29, 30, E0 forms a linear combination with
two other fitted parameters—αads and κi from the bilinear term
κiδ—out of which only one parameter can be estimated uniquely.
E0 is, therefore, fixed in this iteration.

Identifiability Iteration 4 for M5: With γ′, δ, and E0 fixed, the
condition number of the FIM decreased to 7.95 × 1016.

Supplementary Table S19 reveals that κ1 is the next sloppy
parameter. Inspecting Eq. 29 shows that despite fixing E0, κ1 in
the bilinear term κ1δ forms a linear combination with αads (fitted
parameter) and, therefore, could not be identified uniquely.

Identifiability Iteration 5 for M5: With γ′, δ, E0, and κ1
fixed, the condition number of the FIM decreased to 1.56 ×
106. Supplementary Table S20 in Supplementary Material

shows the eigen decomposition. This is smaller than the
threshold of O(108) and the identifiability analysis
procedure is terminated.

Per Table 1, model M4 is structurally similar to M5. As

expected, repeating the identifiability analysis also reveals γ′, δ,
E0, and κ1 as the sloppy parameters for model M4. Fixing these
parameters improved the condition number of the FIM from 2.55
× 1021 to 2.40, ×, 106. For completeness, Supplementary Tables

S11—S15 in Supplementary Material tabulate the eigenvalue
analysis for model M4 in sequential order.

We performed similar analysis forM2 andM3. Fixing parameters
α1′ (M2) and α′′′1 (M3) reduced the FIM condition numbers from
3.87 × 109 to 1.47 × 107 and 7.70, ×, 109 to 1.30, ×, 107, respectively.

Supplementary Tables S7–S10 tabulate the eigenvalue analysis for
models M2 and M3, respectively.

Recalibration of modelsM2 toM5 with sloppy parameters fixed
does not affect model fit quality. This is because the presence of

sloppy parameters reduces the confidence of parameter estimates
without affecting the overall model fit quality. In this work, all results
for models M2 to M5 were generated after fixing the sloppy
parameters. As we will see in Section 6, the fixing of sloppy
parameters to make models identifiable not only reduces
parameter estimate uncertainties but, as a consequence, improves
the confidence in results obtained using the updated models.

For identifiability analysis described above, we assume the
measurement covariance matrices Σp are identity matrices times

FIGURE 7 | Product distribution by outlet mole percent at (A) low pressure operation and (B) high pressure operation. Indicated inmagenta are the lumped product

mole percents predicted by the MK model at the corresponding temperature and pressure conditions.

FIGURE 8 | Parity plot to compare the selectivity for ethylene, butene,

and heavier olefins at varying feed pressures using the extended MK model

and the MK model used to validate the ROK models.
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the following scalars: 9.47 × 10−4 atm2 (M2), 9.46 × 10−4 atm2

(M3), 9.93 × 10−4 atm2 (M4), and 9.92 × 10−4 atm2 (M5).

4.4 Product Distribution Predictions
Figure 7 shows that none of the ROK models, including M4 and
M5, accurately recapitulate product distribution at both high and
low pressures. The ROK models under-predict propylene
conversion at low pressures (Figure 7A) and models M2 and M3

over-predict propylene conversion at high pressure (Figure 7B).
Models M4 and M5, which have a low in-sample residual, match
propylene conversions well only at high pressure but, over-predict
the formation of nonene. The overproduction of C9 species suggests
that the flux of the MK model might be artificially truncated by the
termination criterion adopted for the automated network

generation. The exclusion of C>9 from the reaction network
results in an accumulation of C9 species which are not allowed to
further oligomerize. As a result, C9 intermediates in the MK model
are forced to deprotonate or generate smaller products via β-scission.
It is worth noting that the number of species and reactions that are
automatically generated for an oligomerization network increase
exponentially as a function of the termination criterion (Vernuccio
and Broadbelt, 2019). Thus, the inclusion of heavier species in the
reaction mechanism would result in unmanageable models and
impracticable computational costs.

The differences observed in Figure 7 for low and high pressure

operation can be also ascribed to the different MK model
assumptions that were used to generate the low and high-
pressure data. In order to investigate this aspect, we used the
extended MK model described in 3.1 to simulate the
oligomerization process at 523 K and 10–30 atm. Figure 8

shows a parity plot for the product selectivity calculated with
the extended model and the MK model used in this work. At
10 atm, the rate of hydride transfer which leads to the formation
of paraffins is negligible and the omission of the corresponding

reactions from the MK model results in minor deviations from
the model performance. However, at 20 and 30 atm, the presence
of these additional reactions alters the rates of oligomerization

and the product selectivity. Thus, the omission of hydride
transfer, cyclization as well as aromatization steps, not
included in the MK model for numerical tractability, has an
impact on the overall model performance. Due to this implicit
issue with the data source, the overall in-sample fit quality of the
ROKmodels is a trade-off across the range of pressure conditions
over which the models were calibrated. In addition to simplified
chemistry, this trade-off makes it very challenging to train a “one-
size-fits-all” ROK model.

4.5 Objective Weight Sensitivity Analysis
Finally, we studied the effect of weight w in the objective of the
optimization problem in Eq. 21. Supplementary Figure S2 in
Supplementary Material shows the trade-off in SSE and SSPE
with varying values of w. A weight w of 0.1 balances the trade-off
and produces calibrated models that best emulate the entire
product distribution (Supplementary Figure S3).
Supplementary Figure S1 in Supplementary Material shows
that ROK model predictions are robust to the choice of model
scaling, i.e., partial pressures as shown in Eq. 1, or mole fractions
as shown in Supplementary Equation S2. Supplementary

Figure S2 in Supplementary Material shows that model fit

for the ROK models is also robust to SSE objective function
scaling options shown in Supplementary Equation S3,S4.

5 RESULTS: REACTOR TEMPERATURE
OPTIMIZATION

We now explore how ROK model selection impacts reactor
design decisions, especially the temperature profile, using a

FIGURE 9 |Optimization results from the staged reactor design calculations aimed at maximizing outlet mole percent of butene and heavier olefins (A) The optimal

temperature profile across 10 staged isothermal PBRs for modelsM2 toM5. Each step in the plot corresponds to the temperature in a staged reactor. Catalyst loading is

directly proportional to the volume of a PBR; the horizontal axis is presented in terms of scaled catalyst loading (similar to profiles generated across a PBR) and is

indicative of the PBR stages from first to last (B) The optimal outlet mole percent of butene and heavier olefins obtained from the staged reactor calculations by

resolving Eq. 28 for one to 6 and 10 stages.
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mixed feed composition mirroring the Bakken shale basin (Ridha
et al., 2018) and a total reactor size estimated to create a space
velocity of 25 mol − feedmol −H+−1min−1 with up to 10
temperature stages. Figure 9A shows the optimal temperature
profiles obtained by resolving Eq. 27 using ROK models M2 to
M5 for a 10-stage PBR. The monotonically decreasing
temperatures across the PBRs in series shown in Figure 9A

maximizes the production of heavier olefins. Surprisingly, ROK

models M2 to M5 predict qualitatively-similar optimal
temperature profiles despite the difference in quality of fit and
conversion predictions shown in Figure 6. To understand this

result, recall that the rates of oligomerization and cracking are
temperature-sensitive.While forward exothermic oligomerization
yields heavier (preferred) olefins, reverse endothermic cracking
breaks down heavier olefins to lighter olefins. Therefore, a
monotonically decreasing temperature profile improves the
conversion to heavier olefins. Quantitatively, however, the
profiles differ across the four ROK models. While the
temperature decreases by 11% for M2 (630 K–562 K) and 13%
for M3 (640 K–558 K) across the 10 stages, for models M4 and
M5, the decrease is much larger at approximately 38% (900
K–560 K) and 35% (847 K–554 K), respectively. Additionally,

the first stage temperature for M4 (900 K) is almost 43%
higher than M2 (630 K) while the effluent temperature varies
by less than 1% across all four models. From a process design
perspective, despite the quantitative differences, the
monotonically decreasing temperature profiles are a favorable
outcome since the same temperature profile is desired for the
reactor irrespective of ROK model choice to preserve the physical
arrangement of the reactor and necessary heat exchangers.

Despite the similar temperature profiles, Figure 9B shows that
the optimal staged-reactor outlet conversion varies significantly
based on the choice of ROK model. Model M2 consistently

predicts up to 22 mol% and 20 mol% less butene and heavier
olefin production compared to models M4 and M5, respectively,
across the different PBR staging configurations. This difference in
the optimal effluent composition (i.e., objective function) reflects
the effect of model-form uncertainty which may have significant
consequences for both reactor design and the integrated shale gas
conversion process. Interestingly, the yield of desired butene and
heavier products increases by up to 2.5 mol% across all four ROK
models as the number of isothermal PBRs in series increases.

FIGURE 10 | The optimal product distributions predicted using modelsM2 toM5. The outlet mole percent of each olefin species is reported above each bar (A) 1-

stage PBR, special case of staged reactor design: traditional reactor temperature optimization (B) 4-stage PBR: when number of staged is increased beyond four, the

cumulative outlet mole percent of butene and heavier olefins remains roughly the same. Thus, we have only shown the species-wise product distribution up to four stages

here. The two plots show that the product distribution from models M2 and M3 are quite different from models M4 and M5.

FIGURE 11 |Outlet mole percent of butene and heavier olefins predicted

at optimal temperature operation of a 4-stage PBR at different space velocities

predicted by models M2 to M5.
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Moreover, the increase in yield diminishes beyond four
temperature stages for all four ROK models.

Figure 10 further shows the effect of ROK model choice,

i.e., model-form uncertainty, on the product distribution leaving
the reactor. For modelsM2 andM3, lighter olefins (up to butene)
are more preferred compared to modelsM4 andM5 which favor
the formation of heavier olefins (pentene and higher). This
behavior indicates that the ROK model-form affects the
formation rate of specific olefins within the model. Recall, M2

and M3 incorporate chain length dependencies for activation
energies via Eqs 9, 10, which are adapted from Oliveira et al.
(2010). In contrast,M4 andM5 use chain length dependencies in
Eqs 11—13, which are adapted from theMKmodel. These results
highlight the impact of chemistry modeling choices, especially

chain length dependencies, on optimal reactor design.
Figure 11 shows the outlet composition when the temperature

optimization problem in Eq. 27 is resolved for space velocities from
0.025 to 25,000 mol − feedmol −H+−1min−1 which correspond to
laboratory and conventional gas-processing reactors, respectively.
These optimization results demonstrate that models M2 to M5

exhibit the same sensitivity to changing space velocity and predict
a decrease in outlet mole percentage of butene and heavier olefins as
the space velocity is increased. Increasing space velocity decreases the
residence time of the reacting feed in the reactor which reduces the
extent of the reactions occurring and subsequent conversion to heavier

olefins. However, the difference in product distribution predictions is
persistent across the ROK models over the range of space velocities
considered. ModelsM4 andM5 consistently predict a product outlet
that is rich in pentene and heavier olefins compared tomodelsM2 and
M3. Thus, additional experiments, simulations, or both could be
performed at these conditions to further distinguish between models
M2 to M5. However, because the MK model has not been validated
yet with high conversion laboratory data, this is left as future work. At
this point, we can, therefore, conclude that modelsM2 toM5 emulate
expected kinetic behavior over a wide range of space velocities despite
differences in product distribution predictions.

We also find that parametric uncertainty induces less than a
9.9 mol% uncertainty in the optimized butene and heavier olefin
production. Table 3 shows the results of propagating the parameter
covariance matrix V defined in Eq. 22 through the 4-stage
temperature optimization problem defined in Eq. 27. The
reported standard deviations in the objective function were
calculated using Eq. 28 for models M2 to M5 using V estimated
with and without fixing sloppy parameters. As expected, fixing
sloppy model parameters improves the confidence in optimal

results by reducing parametric uncertainty even when the
objective function value remains unaffected. Fixing sloppy
parameters in models M2 and M3 leads to an almost 90%

reduction in standard deviation of the objective function and
increases the confidence in optimal decisions (as opposed to
more conservative decisions obtained using models with sloppy
parameters). Similarly, fixing of sloppy parameters in M4 and M5

facilitates confident decisions on par with sloppy-parameter-fixed
M2 andM3. The standard deviation with unfixed sloppy parameters
inM4 andM5 is extremely large because the covariance matrix (V)
is near singular. These results are included for completeness, but we
caution against over-interpretation.

Additionally, IPOPT required under 14 seconds on average to
solveEq. 27 usingMacbook Pro 2020 with 1.4 GHzQuad-Core Intel

Core i5 and 8 GB of RAM. We speculate this low computation time
is sufficient to integrate the ROK model or reactor optimization
problem into sequential modular or equation-oriented flowsheet
optimization tools but, leave the analysis of an integrated process as
future work.

6 CONCLUSION

This paper demonstrates ROK modeling strategies to embed multi-
product MK modeling information into computationally tractable
nonlinear reactor design optimization problems. We consider partial
pressure data generated using the propylene oligomerization MK
model from Vernuccio et al. (2019) that tracks the transformation of
909 species using 2,345 net reaction rates over HZSM-5 catalyst. We
postulate a library of ROK models (see Table 1) and find that the
candidate ROKmodels which most closely mimic MKmodel and its
assumptions (e.g., similar chain length dependence) better emulate
MK simulations. Statistical fit quality assessment shows that mean
squared logarithmic error (MSLE) successfully quantifies the

prediction quality for all olefin species (low and high partial
pressures) and, therefore, is more informative compared to R2,
mean squared error (MSE), and mean absolute error (MAE).
Through sensitivity analyses, we show that ROK models with
temperature and olefin chain length dependencies that best mimic
the MK model exhibit expected thermodynamic behavior for
oligomerization and improved tractability across conditions
relevant to gas-processing systems. Sequential model identifiability
analysis shows that the candidate models contain one or more sloppy
parameters which when fixed through a systematic eigenvalue
analysis of the FIM, lead to more meaningful parametric

TABLE 3 | Comparison of the effect of parametric uncertainty in modelsM2 toM5 on optimal conversion predictions to butene and heavier olefins. The Objective column

lists the value of the optimization problem objective function. The following two columns list the standard deviation in predicted objective function values due to

parametric uncertainties associated with the ROK models with sloppy parameters not fixed and sloppy parameters fixed, respectively.

Model code Objective [mol%] Standard Dev. [mol%]

(sloppy parameters not

fixed)

Standard Dev. [mol%]

(sloppy parameters fixed)

M2 50.563 ± 93.555 ± 9.532

M3 56.481 ± 85.598 ± 9.182

M4 72.653 ± 107 (V is near singular) ± 7.865

M5 70.625 ± 107 (V is near singular) ± 9.882
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uncertainty estimates. Next, we demonstrate nonlinear temperature
optimization of a staged packed bed reactor (PBR) using a subset of
the four best ROKmodels. We find that optimal temperature profiles
are qualitatively-consistent and decrease monotonically.

Quantitatively, the optimal temperature varies by up to 43% across
ROKmodels at the first stage while the effluent temperature is within
1% for all four ROK models. The optimal design decisions are
consistent across six orders of magnitude of space velocity and
gives the qualitative insight that the optimal temperature profile in
the staged-reactor configuration is monotonically decreasing. All four
ROKmodels predict an increase in heavier olefin production of up to
2.5% for a 4-stage reactor configuration and show that there is limited
benefit of adding more than four stages. We find that this model-
form, i.e., epistemic, uncertainty results in butene and heavier olefins
predicted varies up to 22% across ROK models. This is twice the

impact of parametric uncertainty, which, approximated with a first-
order propagation formula, resulted in a standard deviation in the
objective of less than 9.9%. These results highlight the importance of
accounting for both parametric and model-form uncertainties in
multi-scale reactor and process design optimization.

This paper highlights several nuanced aspects of ROK model
selection; there is no single “best-fit” model for all simulation
conditions. Validation of MK models using high pressure
experiments that track conversion to heavier olefins and paraffins,
which is left as future work, can facilitate further extensions and
discrimination betweenROKmodels. Additionally, machine learning,

hybrid, or distribution-emulating kinetic models should be explored
to reconcile the difference in predictions between ROK and MK
models. As future work, design of experiments can be deployed to
maximize information gain from eitherMK simulations or laboratory
kinetic characterization which, in turn, will enhance ROK model fit
and prediction quality. Discrepancies in predicted conversion across
ROK models indicate that reactor configuration (staging) and design
(temperature profile) are not sufficient to balance epistemic (model-
form) uncertainty introduced by the choice of ROK model. Instead,
operational degrees of freedom in an integrated process design with
ROK models need to be considered to mitigate ROK model-form

uncertainty. The presented framework, which includes ROK model
selection, regression and identifiability analysis, dynamic
optimization, and uncertainty quantification and propagation steps,
is generally applicable to all catalytic systems. Additionally, the specific
model library proposed in this work can also be easily extended to
consider oligomerization using other catalysts and other similar
hydrocarbon conversion processes.
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NOMENCLATURE

Set and Indices
C Set of number of car atoms in species

I Set of type of reactions

N number of C-atoms in largest olefin species in reaction network

ND Total number of datasets

Nθ Total number of parameters

NZ Maximum number of PBR stages

i Index for type of reaction

j, n, m Indices for number of carbon atoms in an olefin species molecule

j9, j Model response indices for FIM calculations (j′, j″ = j − 1)

k Index for eigenvalues and eigenvectors

mc, mc9 Indices for catalyst loading points along the length of the PBR

where data is recorded

u, u9 Indices for elements in the parameter vector θ

z Index for number of temperature zones in staged PBR

Kinetic Model Variables and Parameters
αi=1,n,m Frequency factor for oligomerization involving olefins with n, m,

and n + m C-atoms in model M0, mol atm−2 min−1g−1a.u.−1

αi=2,n,m Frequency factor for cracking involving olefins with n, m, and n +

m C-atoms in model M0, mol atm−1 min−1g−1a.u.−1

αi�19 Frequency factor for oligomerization in modelsM1 andM2, mol atm−1

min−1g−1a.u.−1

αi�29 Frequency factor for cracking in models M1 and M2,

mol min−1g−1a.u.−1

α99

i�1 Frequency factor for oligomerization in model M4, mol atm−1

min−1g−1a.u.−1

α99

i�2 Frequency factor for cracking in model M4, mol min−1g−1a.u.−1

α999

i�1 Frequency factor for oligomerization in model M3, mol atm−1

min−1g−1a.u.−1

α999

i�2 Frequency factor for cracking in model M3, mol min−1g−1a.u.−1

α9999

i�1 Frequency factor for oligomerization in model M5, mol atm−1

min−1g−1a.u.−1

α9999

i�2 Frequency factor for cracking in model M5, mol min−1g−1a.u.−1

αads Parameter to quantify dispersive Van der Waals interactions for models

M2 to M5, J mol−1

AB Frequency factor of desorption for modelsM2 toM5, mol min−1a.u.−1g−1

AF Frequency factor of adsorption for modelsM2 toM5, mol min−1atm−1g−1

βi Compensation factor to relate pre-exponential rate constant and activation

energies for reaction i in models M1 to M3, mol/J

βads Parameter to quantify local interactions of olefins with the acid site for

models M2 to M5, J mol−1

CZ Concentration of active sites for model M1, a.u.

δ Standard heat of formation for olefins, J mol−1

ΔH Enthalpy of adsorption for model M1, J mol−1

ΔH9 Enthalpy of desorption for models M2 to M5, J mol−1

ΔHFj Heat of formation of olefin with j C-atoms, J mol−1

ΔHRi,n,m Heat of reaction for reaction iwhere olefins with n andm C-atoms

react to produce olefin with n + m C-atoms, J mol−1

Ei,n,m Activation energy for reaction i involving olefins with n, m, and n +

m C-atoms in model M0, J mol−1

Ei9 Chain length independent activation energy for reaction i in modelsM1 to

M3, J mol−1

Ei,n,m9 Chain length dependent activation energy for reaction i involving

olefins with C-atoms n, m, and n + m in models M1 to M3, J mol−1

E99

i,n,m Chain length dependent activation energy for reaction i involving

olefins with C-atoms n, m, and n + m in models M4 and M5, J mol−1

E0 Intrinsic energy barrier for models M4 and M5, J mol−1

F Total molar flow rate, mol min−1

finert Inert molar flow rate, mol min−1

fj Molar flow rate of olefin with j C-atoms, mol min−1

γ9 Coefficient for chain length dependence of heat of formation, J mol−1

γi Parameter to model influence of chain length on activation energy of

reaction i in models M1 to M3

kads, backward Rate constant of desorption for models M2 to M5,

mol min−1a.u.−1g−1

kads, forward Rate constant of adsorption for models M2 to M5,

mol min−1atm−1g−1

K0 Langmuir adsorption equilibrium pre-exponential constant for model

M1, atm−1

k0i�1,n,m Pre-exponential rate constant of oligomerization reaction of Xm+n

olefin, mol min−1atm−1g−1a.u.−1

k0i�2,n,m Pre-exponential rate constant of cracking reaction of Xm+n olefin,

mol min−1g−1a.u.−1

ki�1,n,m9 Rate constant of oligomerization reaction for Cm+n olefin, mol atm−2

min−1g−1a.u.−1

ki�2,n,m9 Rate constant of cracking reaction for Cm+n olefin, mol atm−1

min−1g−1a.u.−1

κi Transfer coefficient for reaction i in models M4 and M5

λ Log-transformed ratio of adsorption to desorption rate constants for models

M2 to M5, a.u. atm−1

Mcat Total mass of catalyst, g

mcat Scaled differential mass of catalyst

ncat Moles of active site per Gram of catalyst, mol g−1

ν Volumetric flow rate of gas, m3 min−1

ω Isotherm constant, a.u. atm−1

P Total pressure inside reactor, atm

Pinlet Total inlet pressure, atm

pinert Inert partial pressure, atm

pinert0 Inlet inert partial pressure, atm

pj Partial pressure of olefin with j carbon atoms, atm

pj
obj Lumped partial pressure of olefins with j C-atoms predicted by MK

model, atm

ϕi=2 Parameter to model influence of chain symmetry on activation energy of

cracking in models M1 to M3
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R Universal gas constant, m3 atm mol−1 K−1

ri,n,m Rate of reaction type i for reaction of species with carbon numbers n

and m, mol min−1g−1

ρcat Catalyst bulk density, g m−3

SV Space velocity, mol − feedmol −H+−1min−1

T Reactor temperature, K

Tz Temperature of zth stage of staged PBR, K

V Reactor volume, m3

Xj Olefin species with j carbon atoms

XjZ Olefin species Xj adsorbed on catalyst site Z

xj Mole fraction of olefin with j C-atoms

xj
obj Lumped mole fraction of olefins with j C-atoms predicted byMKmodel

Generic Variables and Parameters

Λ Matrix of eigenvalues

λk Eigenvalue

M Fisher information matrix

ϕ9 Vector of operating conditions

q(j9,mc),u Sensitivity of model response (j′, mc) with respect to model

parameter θu

Σp Measurement covariance matrix

~σ(j9,mc),(j99 ,mc9) Element of Σ−1
p corresponding to model responses (j′, mc)

and (j″, mc′)

θ̂ Vector of nominal parameter values

U Matrix of eigenvectors

uk Eigenvector

V Parameter covariance matrix
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