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A B S T R A C T

Precise instrument segmentation aids surgeons to navigate the body more easily and increases patient safety.
While accurate tracking of surgical instruments in real-time plays a crucial role in minimally invasive computer-
assisted surgeries, it is a challenging task to achieve, mainly due to: (1) a complex surgical environment, and
(2) model design trade-off in terms of both optimal accuracy and speed. Deep learning gives us the opportunity
to learn complex environment from large surgery scene environments and placements of these instruments in
real world scenarios. The Robust Medical Instrument Segmentation 2019 challenge (ROBUST-MIS) provides
more than 10,000 frames with surgical tools in different clinical settings. In this paper, we propose a light-
weight single stage instance segmentation model complemented with a convolutional block attention module
for achieving both faster and accurate inference. We further improve accuracy through data augmentation and
optimal anchor localization strategies. To our knowledge, this is the first work that explicitly focuses on both
real-time performance and improved accuracy. Our approach out-performed top team performances in the most
recent edition of ROBUST-MIS challenge with over 44% improvement on area-based multi-instance dice metric
MI_DSC and 39% on distance-based multi-instance normalized surface dice MI_NSD. We also demonstrate
real-time performance (> 60 frames-per-second) with different but competitive variants of our final approach.
1. Introduction

Surgical site infection (SSI) has been the most common cause of
hospital-acquired infection and the most common way of infection
transmission in patients undergoing surgery (Caroff et al., 2019). It is
therefore imminently important to develop strategies for reducing such
infection rates. Minimally invasive surgical (MIS) procedures compared
to open surgery lowers such risks. For these reasons and due to the
growth the data science in the operating room applications, there exists
an increasing demand for computer assisted surgery to improve the
efficacy of MIS (Bartoli et al., 2012; Sheetz et al., 2020).

Computer-assisted minimally invasive surgery methods such as en-
doscopy have grown in popularity in recent years. However, due to
the nature of these procedures, issues like limited field-of-view, ex-
treme lighting conditions, lack of depth information and difficulty
in manipulating operating instruments demand strenuous amounts of
effort from the surgeons (Roßet al., 2021). Surgical data science ap-
plications (Maier-Hein et al., 2021a) could provide physicians with
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context-aware assistance during minimally invasive surgery in order to
overcome these limitations and increase patient safety.

One of the main forms of assistance is by providing accurate track-
ing of medical instruments using computer vision (CV) techniques,
such as object detection and localization or instance segmentation
methods (Ward et al., 2021). These systems are expected to be a crucial
component in tasks ranging from surgical navigation, skill analysis and
complication prediction during surgeries, as well as other computer
integrated surgery (CIS) applications (Maier-Hein et al., 2021b; Fu
et al., 2021). Nonetheless, methods for accurate tracking of instruments
are often deployed in difficult operational scenarios in which the
presence of bleeding, over or under exposed frames, smoke, reflection
and other types of artifacts are oftentimes unavoidable (Bodenstedt
et al., 2018). The net effect of these issues increases the missed de-
tection rates in endoscopic surveillance, limiting the overall robustness
of CV algorithms, hampering the adoption of AI-based tools in this
context (Ali et al., 2021). Moreover, real-time deployment of such
vailable online 6 August 2022
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tools is of tremendous value and one of the major requirement for
it to be applied in clinical settings. Therefore, the development of
robust and real-time techniques that can be effectively deployed during
real endoscopic interventions is of utmost importance. In this regard,
recent years have seen a significant increase in the number of CV con-
tests geared towards endoscopy. More specifically, the Robust Medical
Instrument Segmentation (ROBUST-MIS) Challenge (Roßet al., 2021)
at the International Conference on Medical Image Computing and
Computer Assisted Interventions (MICCAI) has sought to address some
of the issues discussed above. This challenge represents an important
and necessary effort to encourage the development of robust models
for surgical instrument segmentation, integrating the developments in
computer-assisted surgeries, and as a benchmark for the generalization
capabilities of the developed methods on different clinical scenarios.
Furthermore, the challenge organizers provide a large high-quality
dataset in an effort to overcome one of the major bottlenecks of the
development of robust methodologies, i.e., the lack of annotated multi-
instance instrument segmentation data. The development of surgical
tool navigation and tracking methods in a complex environment will
enable improved patient care during surgery by maximizing the focus
of surgeons, accelerating research in CIS as well.

Previous approaches for instance segmentation submitted to the
ROBUST-MIS challenge have been mostly based on two-stage detectors
such as Mask R-CNN (He et al., 2018). While these models exhib-
ited decent performances in terms of robustness, they suffer from
high inference times due to well-known architectural limitations of
such models, preventing them from achieving real-time performance
(i.e. mean average test time of only around 5 frames-per-second, fps).
However, real-time performance is mandatory in order to fully ex-
ploit the capabilities of tracking applications in surgeries. While deep
learning methods using lightweight models are also available, they fail
to robustly segment objects in endoscopy imaging (Ali et al., 2020).
Similarly, there is a trend of using ensemble models to improve the
overall segmentation accuracy in these images. However, combining
few models together drastically increases the inference time, thereby
making it less feasible to deploy such models in clinical settings (Xu
et al., 2020).

In order to overcome the current inference limitations, while main-
taining a robust performance in terms of tool segmentation results, we
propose a new approach based on the single-stage model for instance
segmentation. Although recent years have seen a steady increase in
the search for more capable one stage detectors and instance seg-
mentation architectures (for example PolyYolo Hurtik et al., 2020,
BlendMask Chen et al., 2020 and Solov2 Wang et al., 2020b), the
majority of these models have not been used in the context of endo-
scopic computer vision due to the performance gap they still present.
The YOLACT++ (Bolya et al., 2020) architecture is one of the most
recent methods for real-time instance segmentation and it is particu-
larly appealing due to its simplified architecture capable of learning
to localize instance masks automatically with minimum computational
overhead. It does so by generating a dictionary of non-local prototype
masks over the entire image and predicting a set of linear combination
coefficients per instance. Thus, for this contribution we have used
YOLACT++ as a baseline architecture upon which we have developed
several improvements to make it suitable for robust surgical instrument
instance segmentation. To this extend, we have explored the use of
attention modules on the outputs of the network’s backbone and feature
pyramid network (FPN) at multiple scales. Moreover, we have addi-
tionally carried out a series of optimization techniques by analyzing
the worst-performing frames of the best model in our experiments.
The optimization techniques includes domain-specific data augmenta-
tion, anchor optimization, and multi-scale feature fusion. The main
contributions of our work are summarized as follows:

• A real-time single-stage instance segmentation framework with
2

attention mechanism. I
• Exploration of domain-targeted data augmentation techniques
tailored to the ROBUST-MIS challenge dataset

• Anchor box optimization via a differential evolution
search (Zlocha et al., 2019) for the ROBUST-MIS Challenge.

• Integration of global contextual features by deploying a multi-
scale fusion block in the network’s backbone

• A thorough analysis of the worst-case samples to evaluate each of
the tested model

The rest of the paper is organized as follows. In Section 2 we
present previously published work related to medical instrument seg-
mentation, instance segmentation methods, attention mechanisms and
multi-scale feature fusion network. In Section 3, we present the details
of the ROBUST-MIS dataset and our proposed approach for surgi-
cal instrument segmentation. Section 4 presents our data preparation,
experimental setup and results on ROBUST-MIS dataset. For complete-
ness, we also provide results of our proposed method on the EndoVis
2017 instrument segmentation dataset (Allan et al., 2019). In Section 5,
we discuss the effects of the different types of network configurations
and propose future directions. Finally, Section 6 concludes the paper.

2. Related work

In this section, we will discuss some of the most important aspects to
understand the proposed contribution, namely: instance segmentation
and its current limitations, recent works in attention mechanisms, an-
chor box optimization techniques specifically tailored to the addressed
problem and finally, multi-scale fusion networks that followed to make
our extended instance segmentation model more robust.

2.1. Deep learning for instrument segmentation

Deep learning has accelerated research for surgical instrument seg-
mentation and the public access of labeled data via instrument seg-
mentation challenges mostly at EndoVis (refer to Allan et al., 2019,
2020, Roßet al., 2021) have contributed to these developments over
recent years. Built upon the UNet model (Ronneberger et al., 2015a),
LinkNet and TernausNet were developed for instrument segmentation
on robotic surgery datasets (Shvets et al., 2018), acquired by da Vinci Xi
surgical system of several different porcine procedures made available
in EndoVis17 (Allan et al., 2019). Milletari et al. (2018) proposed
a convolutional long short term memory (LSTM) with deep residual
networks using a coarse-to-fine strategy showing greater improvements
over other state-of-the-art approaches including UNet (Ronneberger
et al., 2015a) and FCN (Long et al., 2015a) on the EndoVis 2015
instrument segmentation challenge dataset1 focused on laparoscopic
and robotic surgery.

The recent ‘‘Robotic Instrument Segmentation Sub-Challenge’’ intro-
duced also at EndoVis was oriented towards binary segmentation, sub-
component segmentation and instrument identification and instance
segmentation tasks (Roßet al., 2021). The challenge was geared to-
wards assessing the robustness and generalization capabilities of the
deep learning models. Most of the competing methods in this challenge
have been mostly based on Mask-RCNN (He et al., 2017) implemen-
tations and its variants for the multi-class instance segmentation and
binary segmentation tasks. Participants also explored methods such as
OR-UNet (Isensee and Maier-Hein, 2020), DeepLabV3+ (Chen et al.,
2018), U-Net (Ronneberger et al., 2015b) and RASNet (Ni et al.,
2019). The best performing methods for the binary segmentation task
were OR-UNet and DeepLabv3+ with pre-trained ImageNet encoders.
Some other contestants also explored the use of ensemble methods,
but they were typically limited in speed, and thus some of the most

1 https://endovissub-instrument.grand-challenge.org/EndoVisSub-
nstrument/
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https://endovissub-instrument.grand-challenge.org/EndoVisSub-Instrument/


Medical Image Analysis 81 (2022) 102569J.C.Á. Cerón et al.
robust methods are incapable of attaining the real-time performances
required for realistically segmenting and tracking objects on endoscopic
video data. A double decoder–encoder network was explored for faster
binary mask segmentation on ROBUST-MIS’19 dataset (Jha et al., 2021)
that outperformed several state-of-the-art methods. Recently, a one-
shot instrument segmentation method (Zhao et al., 2021) using anchor
guided meta-learning approach was proposed and validated on several
publicly available datasets (including EndoVis18 (Allan et al., 2020)
porcine data).

2.2. Real-time instance segmentation methods

While extensive research has been conducted for the development
of real-time object detection and semantic segmentation models, few
works have tackled the problem of real-time instance segmentation (He
et al., 2017; Bolya et al., 2019). This is due to the increased com-
plexity in the instance segmentation task that requires predictions
of instance labels and pixel-level segmentation simultaneously. One-
stage methods (Hurtik et al., 2020; Lee and Park, 2019; Chen et al.,
2020) though conceptually faster than two-stage methods (e.g., Mask
RCNN He et al., 2017), still require many non-trivial computations
(e.g., mask voting). This severely limits their speed making them not
suitable for real-time applications. In contrast, recent methods (Bolya
et al., 2019, 2020) make use of lightweight assemblies of masks (only
linear combinations are used), making the approach very efficient.
Although YOLACT (Bolya et al., 2019) was one of the first real-time
one-stage instance segmentation approaches, the accuracy gap com-
pared to Mask R-CNN (He et al., 2017) was still significant. While Mask
R-CNN is based on a two-stage object detector (e.g., Faster R-CNN Ren
et al., 2015), YOLACT (Bolya et al., 2019) is built on one-stage detector
(RetinaNet Lin et al., 2017b) that directly predicts boxes without a
proposal step, limiting its accuracy. This was partially addressed with
the introduction of Yolact++ (Bolya et al., 2020), which incorporated
deformable convolutions into the backbone network, improving the
feature sampling and yielding an improved accuracy. Furthermore, the
prediction head was optimized with better anchor scale and aspect ratio
choices for an increased object recall.

2.3. Attention mechanisms

Attention has been able to boost model performance across a wide
range of computer vision tasks, such as image captioning (You et al.,
2016), visual question answering (Xu et al., 2016), and visual attribute
prediction (Seo et al., 2018). Attention allows the network to focus on
the most relevant features without the need of additional supervision,
preventing redundant use of information and extracting salient features
that are useful for a given task. Attention mechanisms enable convolu-
tional neural networks to overcome the size limitations of its receptive
field, as it has proven to be excellent at extracting global dependencies
between inputs and outputs, thus, improving the modeling of long-
range dependencies even at opposite ends of and image (Sinha and
Dolz, 2021). For example, similar textures may appear in different parts
of an image, several disjoint semantic cues may provide insight to the
general classification of an image, and an object might present complex
and occluded parts throughout an image (Chaudhari et al., 2019). In
the context of medical instance segmentation, multiple attention-based
models (Kaul et al., 2019; Gu et al., 2020; Sinha and Dolz, 2021)
have obtained state-of-the-art performance in fields like brain tumor,
skin cancer and lung lesion segmentation on CT scans and X-rays,
respectively. However, until now, instance segmentation of medical
instruments in laparoscopic surgeries using attention mechanisms has
3

not been fully explored.
Table 1
Training and test sample distribution for each both training and test stages of the
ROBUST-MIS challenge (Roßet al., 2021). The quantities in parenthesis represent the
% of frames with no instrument instance.

Procedure Training Testing

Stage 1 Stage 2 Stage 3

Procto-colectomy 2,943 (2%) 325 (11%) 255 (11%) 0
Rectal resection 3,040 (20%) 338 (20%) 289 (15%) 0
Sigmoid resectiona 0 0 0 2,880 (23%)

TOTAL 5,983 (17%) 663 (15%) 514 (13%) 2,880 (23%)

aUnknown surgery.

2.4. Multi-scale feature fusion

Due to the wide range of scale variation of objects found in in-
stance segmentation, multi-scale features are essential for robust perfor-
mance (Wang et al., 2020a). Therefore, multi-scale feature aggregation
is an adequate strategy to create detailed parsing maps (Ding et al.,
2018). Current methods address this issue by using encoder–decoder ar-
chitectures (Ronneberger et al., 2015a; Lin et al., 2017a) that combine
high level and low level features at a single scale (Long et al., 2015b) or
multiple scales (Ronneberger et al., 2015a). However, these approaches
suffer from redundant use of information (Sinha and Dolz, 2021). In
the field of medical instrument segmentation, the use of multi-scale
aggregation has not been fully explored, especially combined with
attention for improved robustness.

3. Materials and method

In this section we present details on the dataset used in our study
and we describe our proposed framework for multi-instance surgical
instrument segmentation in detail.

3.1. The ROBUST-MIS challenge dataset

For our experiments we made use of the Robust Medical Instru-
ment Segmentation (ROBUST-MIS) (Maier-Hein et al., 2021b) chal-
lenge dataset which is the first large-scale annotated MIS dataset.
The dataset is comprised of a total of 10,040 annotated video frames
extracted from 30 minimally invasive daily-routine surgical procedures
and includes detailed segmentation ground truth masks for the surgical
instruments present in these frames. The surgical procedures include
10 rectal resection procedures, 10 proctocolectomy procedures, and 10
sigmoid resection procedures. The image resolution of all the provided
frames is 960 × 540 pixels. In order to measure the robustness test, the
dataset is comprised of three unique test sets and divided into different
stages:

Stage 1: Test data taken from the same procedures from which
the training data were extracted
Stage 2: Test data taken from the exact same type of surgery as
the training data but from procedures (patients) not included in
the training
Stage 3: Test data taken from a different (unseen) but similar
type of surgery and different (unseen) patients

The detailed training and test distribution is summarized in Table 1.
However, for testing we have used only test set 3, i.e. Stage 3, which is
from an unseen Sigmoid resection procedure and allows us to validate
on the generalizability of the proposed framework directly. Sample
images for challenging frames provided in the test set 3 are shown in

Fig. 1.
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Fig. 1. Challenging images present in test dataset. Stage 3 test data consisted of several
frames that included a) instrument flare, b) partial occlusions due to blood, c) occlusion
due to smoke, d) underexposed regions with instrument, e) motion blur, f) multiple
different instruments in the scene, g) partial occlusion due to organ, h) transparent
instrument and i) different instruments crossing.

3.2. Method

This section describes our proposed approach for multi-instance seg-
mentation of medical instruments in the ROBUST-MIS dataset. Our pro-
posed framework (see Fig. 2) is built upon the single-stage
YOLACT++ (Bolya et al., 2020) instance segmentation architecture.
For our framework we employ ResNet-101 (He et al., 2015) as the
backbone network, followed by a multi-scale feature fusion (MSFF)
module used to aggregate contextual information from the feature maps
across all scales (i.e. high-to-low resolution feature representations).
Each of these contextually rich fused features are then passed through
attention modules to further refine these representations before being
forwarded to the feature pyramid network (FPN) (Lin et al., 2017c).
A second set of attention modules are then applied to further enhance
the FPN output features allowing for an improved performance of the
prototype network and our anchor-optimized prediction head. Finally,
we perform classical non-maximum suppression for final mask instance
prediction which is then combined with the prototype mask and the
cropping provides the predicted bounding box.

Below we describe our MSFF module, attention mechanisms, and
the anchor optimization used our framework.

3.2.1. Multi-scale feature fusion
To aggregate multi-scale features, while maintaining a

high-resolution representation, we integrated a fusion module inspired
by the method proposed in Wang et al. (2018). Considering the features
at different scales indicated as 𝐹𝑠 where 𝑠 denote the scale level in the
architecture (see Fig. 3).

Features from each level 𝑠 are up-sampled through transposed con-
volution to the size of the highest resolution feature maps in the
architecture, leading to enlarged feature maps 𝐹 ′

𝑠 . Next, all 𝐹 ′
𝑠 are

concatenated into a single tensor which is passed through a convolu-
tional layer to integrate context from all scales into a single feature
map 𝐹𝑀𝑆 = 𝑐𝑜𝑛𝑣([𝐹 ′

0 , 𝐹
′
1 , 𝐹

′
2 , 𝐹

′
3 , 𝐹

′
4]). In this manner, 𝐹𝑀𝑆 encodes

both low-level and high-level semantics learned at different stages in
the network. Finally, 𝐹𝑀𝑆 is concatenated with each of the 𝐹 ′

𝑠 feature
maps and convolved to aggregate multi-scale information, creating
multi-scale fused feature maps 𝐹𝐴.

Note that multi-scale feature fusion can be applied in the same way
in both the backbone features and the FPN features. We opted to attach
it on the backbone features as we believe it would create stronger
representation which will get even further refined on the FPN.
4

3.2.2. Attention mechanisms
We employed Criss-cross Attention Modules (CCAM) (Huang et al.,

2020) and Convolutional Block Attention Modules (CBAM) (Woo et al.,
2018), specifically due to their fast and computationally efficient per-
formance, which is paramount to introduce as less computational over-
head as possible into the model, thus maintaining low inference times.
We attach the attention modules between the backbone and neck
structures, as well as the neck and head of our network (see Fig. 2).

The rationale behind the selection of these locations is that the
addition of attention allows the model to extract richer context by
aggregating local information with its corresponding global dependen-
cies (Huang et al., 2020). Additionally, attention aids to emphasize
interdependent relationships between channel maps and between spa-
tial regions without additional supervision (Woo et al., 2018). Since the
backbone network and the FPN are where most of the semantic context
is distilled, it is a natural choice to attempt to refine their feature
representations using attention, especially since mask prototypes and
the prediction head benefit from better features.

3.2.3. Prototype generation
ProtoNet is the prototype generation branch in the architecture

that predicts a set of 𝑘 ‘‘prototype masks’’ for the entire image. It is
implemented as a Fully Connected Network (FCN) in which the last
layer predicts 𝑘-channels consisting of a set of image-sized masks. These
masks do not depend on any one instance and the ProtoNet is itself
attached to the backbone feature layer through a Feature Pyramid Layer
(FPN) (see Fig. 2).

ProtoNet enables the generation of robust masks (from deeper fea-
tures) with higher resolution resulting in a higher quality masks and
improved performance for small object segmentation. Here, the largest
feature layer P3 of a FPN network is first used to extract prototype
masks which are then up-sampled to one fourth of the input image to
increase performance on small objects. To produce instance masks, the
generated maps of the prototype branch are combined with that of the
instance maps from the prediction head, using a linear combination of
the former with the latter as coefficients. Finally, a sigmoid non-linearity
is applied to produce the final output instance masks.

3.2.4. Loss function and anchor optimization
We used a combination of three losses (Bolya et al., 2020), namely,

classification loss 𝐿𝑐𝑙𝑠, bounding box regression loss 𝐿𝑏𝑜𝑥, and mask
loss 𝐿𝑚𝑎𝑠𝑘 for model training with weights of 1, 1.5 and 6.125, re-
spectively. The individual weights are chosen such that they equally
contribute to the final loss function 𝐿𝑠𝑒𝑔 . For 𝐿𝑚𝑎𝑠𝑘 the value of 6.125
is computed based on the number of prototype masks generated; this
value is used to normalize the ProtoNet branch outputs to diminish the
overpowering activation from each prototype (Bolya et al., 2020). For
computing the mask loss we simply calculated the pixel-wise binary
cross entropy between estimated masks 𝐌 and the ground truth masks
𝐌𝑔𝑡: 𝐿𝑚𝑎𝑠𝑘 = 𝐵𝐶𝐸(𝐌,𝐌𝑔𝑡). We employ softmax cross entropy for 𝐿𝑐𝑙𝑠
with one positive label (i.e., instrument class) and a background label.
For the 𝐿𝑏𝑜𝑥 we used smooth-𝐿1 loss. An equally weighted (weight of
1) fourth loss referred to as semantic segmentation loss 𝐿𝑠𝑒𝑚 is used
to improve feature richness on some layers that are evaluated only
during training, where the ground truths for this loss is computed from
instance annotations (Bolya et al., 2020). The provided weights for
each component in 𝐿𝑠𝑒𝑔 were empirically set on baseline YOLACT++
method.

We experimented using different weight combinations in the loss
function 𝐿𝑠𝑒𝑔 in the baseline model. Empirically we found that changing
the weights from default values impacted negatively on the model
performance. For example, setting the weights of all loss functions to a
value of 1, resulted in a performance degradation of about 4.18%.

For improving the results in the ROBUST-MIS challenge, we fur-

ther optimized the anchor boxes by deploying the same strategy as
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Fig. 2. Overview of our proposed framework. Our architecture is built upon popular single-stage YOLACT++ and comprises of additional multi-scale feature fusion and attention
modules. It is to be noted that the attention modules can be easily interchangeable from criss-cross attention (CCAM) to convolutional block attention module (CBAM) or none.
Fig. 3. Multi-scale feature fusion (MSFF) module. Feature maps from the different
scale feature maps of the backbone are combined to create aggregated features from
all scales.

in (Zlocha et al., 2019), in which a differential evolution search al-
gorithm was used to optimize the scale and ratio of anchors in the
validation set. We used the algorithm to find best anchor settings for
5 scales and 5 ratios (Ren et al., 2015; Zlocha et al., 2019) which
was done by maximizing the overlap between the target instrument
bounding-box and the best anchor on the validation dataset. The result-
ing values after running the anchor box optimization algorithm in the
ROBUST-MIS dataset, we obtained [0.435, 0.502, 0.578, 0.664, 0.762]
for scales and [0.267, 0.554, 1.0, 1.804, 3.746] for aspect ratios. We
observed that three of the optimized ratios ([0.554, 1, 1.804]) were
similar to the default values ([0.5, 1, 2]). Therefore, we opted to keep
the default ratios that are rounded to one decimal place. Similarly,
the remaining two ratios [0.267, 3.746] corresponding to the long
horizontal and vertical objects, respectively, were approximated to
[0.25, 4] leading to a final rounded aspect ratio of ([0.25, 0.5, 1.0,
2.0, 4.0]). It is to be noted that no test data were used in finding the
optimal scale and ratio values reported in this work.
5

4. Experiments and results

4.1. Data preparation

As shown in Table 1, the ROBUST-MIS dataset contains about 17%
empty frames (ef) on its training set. These frames do not have any
visible instruments in them, and although we could have left them
as negative examples for training, we opted to remove them from
the training set. This decision was taken considering that the data
already has plenty of negative examples in the frames’ background for
the model to learn from; additionally, removing such frames speeds
up the training. In the end, a total of 996 images with no visible
instruments were discarded, leaving 4,987 frames in our training set.
We then applied an 85%–15% split to the curated training set with 15%
for validation purposes. The training set was then randomly shuffled
before creating the train and validation splits. We finally obtained a
training set composed of 4,239 frames and a validation set comprised
of 748 frames. As a final step, the training and validation datasets
were converted to COCO-style format, which involved extracting mask
contours and generating bounding box coordinates from the provided
annotation images and translating them to the target JSON format.

4.2. Training setup

The training was performed on an NVIDIA DGX-1 system consisting
of 8 NVIDIA Volta-based GPUs; however, each model was trained on a
single GPU. The models were trained for up to 400,000 iterations with
a learning rate of 0.001, momentum of 0.9, weight decay of 5𝑒−4, and
a batch size of 16.

We applied data augmentation techniques to increase our model
performance. These included random photometric distortions
(i.e., changes in contrast, color-space, saturation, hue, brightness, and
noise transformations) and affine transformations (i.e., random scaling
and random sample crop). These augmentations were incrementally
applied to the model to assess their effect on the model performance.
As we noticed that some miss-detections were due to the presence of
various rotations of the instruments, we further applied augmentations
consisting of additional random flips and random rotations to the
previous list.
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Table 2
Model configurations for our experiments with integration of different attention
mechanisms in unique settings.

Model identifier Attention
type

Backbone
attention

FPN
attention

Base YOLACT++

CCAM-Backbone CCAM ✓

CCAM-FPN CCAM ✓

CCAM-Full CCAM ✓ ✓

CBAM-Backbone CBAM ✓ ✓

CBAM-FPN CBAM ✓

CBAM-Full CBAM ✓ ✓

CBAM-Full + Aug CBAM ✓ ✓

CBAM-Full + Aug + Anch CBAM ✓ ✓

CBAM-Full+ Aug + Anch MS CBAM ✓ ✓

4.3. Ablation study setup

Our experiments systematically integrate attention mechanisms in
two strategic locations of the baseline YOLACT framework: (1) at the
output of each convolutional block of the ResNet-101 backbone (He
et al., 2015), and (2) at the multi-scale output features of the FPN (Lin
et al., 2017c).

The incorporation of attention in these locations was alternated
throughout experiments leading to three different network configura-
tions:

1. Exclusively incorporated in the backbone
2. Exclusively incorporated in the FPN
3. Integrated in the backbone and FPN simultaneously (which we

refer to as a Full configuration)

At the end, six attention-based models were created by following
his strategy, plus a baseline network without attention. Next, we
elected the top performing configuration from the six mentioned net-
ork configurations. We then applied other optimization techniques

o understand the network performance that included domain-targeted
ata augmentation and anchor optimization. Finally, we added our
ulti-scale MSFF module. Table 2 summarizes all the different model

onfigurations.

.4. Metrics and assessment

The algorithms’ performance was evaluated following the guide-
ines defined by the ROBUST-MIS Challenge. Robustness performance
as assessed considering the area-based metric multi-instance dice
I_DSC and the distance-based multi-instance normalized surface dice
I_NSD using the code implementations employed in the challenge
hich are provided in Roß and Reinke (2019). Furthermore, our re-
orted model rankings were computed using the publicly available
hallengeR (Wiesenfarth et al., 2021) R package developed by the
hallenge organizers to accurately evaluate competitors. The ranking
tability was investigated using bootstrapping for quantifying ranking
ariability using 1000 samples.

The robustness rankings are particularly focused on models’ capa-
ilities in stage 3 of the challenge and pay particular attention on
he worst-case performance of methods. For this reason, the robust-
ess rankings are computed by aggregating the resulting scores for
ll the test cases by the 5% percentile instead of by the mean or
edian (Roßet al., 2021).

We performed inference speed assessments by running inference
ests on a 10 s video snippet from the ROBUST-MIS dataset a total of
en times per model. The reported frame rates were then aggregated
y the mean. Inference was tested on a single Tesla P100 GPU from the
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DGX-1 cluster with video multi-frame enabled.
4.5. Results

In this section, we compare our results to the ROBUST-MIS chal-
lenge methods and present both quantitative and qualitative results.

4.5.1. Quantitative results
Table 3 shows the detailed result for the multi-instance segmenta-

tion task on the ROBUST-MIS dataset. It can be observed that over-
all, attention-based models show improvement over the previous ap-
proaches for the aggregated MI_DSC and MI_NSD, and most notably
FPS. CCAM-Full, CCAM-Backbone, and CBAM-FPN achieved competi-
tive results in terms of MI_DSC compared to the top contestant www,
scoring 0.30, 0.31, and 0.31 respectively against www’s 0.31. On the
other hand, the three models fall behind by 0.02 in average regarding
MI_NDS. Nonetheless, such a small difference in performance is out-
weighted by the dramatic increase of inference speed of at least 9× from
all the models.

The highest metric scores from the initial ablation experiments cor-
respond to CBAM-Full, which resulted in 0.34 MI_DSC and 0.38 MI_NSD.
CBAM-Full presents an improvement of 2.8% on MI_DSC and 3.3% on
MI_NSD compared to the previously best model while attaining real-
time inference speed of 65 FPS. The additional domain-targeted data
augmentation efforts applied in CBAM-Full + Aug resulted in an im-
provement of 4.4% and 4.6% on MI_DSC and on MI_NSD, respectively,
with respect to CBAM-Full. CBAM-Full + Aug + Anch greatly benefited
from anchor optimization, which resulted in the model with the best
balance between robustness and speed. The model achieved scores of
0.43 MI_DSC, 0.47 MI_NSD, and runs at 69 FPS. For comparison, this
model outperforms team www’s by 11.5% on MI_DSC and 12.1% on
MI_NSD while running 13.8× faster.

Our most robust network and proposed architecture, namely CBAM-
Full + Aug + Anch + MS, reached 13.7% MI_DSC and 13.9% MI_NSD
scores higher, compared to the top contestant of the challenge (im-
provement over 44% and 39% on MI_DSC and MI_NSD, respectively). It
also outperforms CBAM-Full + Aug + Anch with metric values showing
2.2% and 1.8% higher on MI_DSC and MI_NSD, respectively. However,
CBAM-Full + Aug + Anch + MS’s increased complexity has an impact
on its inference speed yielding 24 FPS. Nevertheless, the model is
still 4.8× faster than the previous state-of-the-art. Table 4 shows the
results for each development stage of our final network on all three
test datasets. It can be observed that for other Stage 1 and Stage
2 as well our proposed architecture with CBAM-Full + Aug + Anch
showed improved performance over most combinations. However, in
these cases the addition of the multi-scale feature fusion network (MS)
only provided competitive result (e.g., 0.46 and 0.43 on MI_DSC for
Stage 1 and Stage 2, respectively).

Fig. 4 shows the dot-and-boxplots of the MI_DSC and MI_NSD metric
values obtained by each of our algorithms on Stage 3 test set used in
the challenge. We can observe a large difference between the top model
and the baseline model, as well as the progressive improvement from
experiment to experiment. Despite of the fact that most of these models
are similar in terms of their median, the improvement is evident when
looking at the aggregated metric values, as well as the first and third
quartiles, with our final model having the least deviations.

4.5.2. Qualitative results
To better understand the effects of different components of our

models, we performed a comparative analysis of frames with the worst
performance of each network, as show in Fig. 5. Fig. 5(a) shows the
qualitative comparison between worst frames of Base YOLACT++ and
their corresponding frames from CBAM-Full. We can observe from the
images on the left side that the baseline model often presents missed
detections, which hinders the model’s recall. Similarly, the model con-
fuses tissue and other objects like bandages as instruments, evidencing
its lack of robustness. On the other hand, CBAM-Full overcomes some

of these problems by attending to the important features, leading to
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Table 3
Evaluation results for stage 3 of the challenge.

Team/Model Base method Aggr. MI_DSC Aggr. MI_NSD FPS

www Mask R-CNN 0.31 0.35 5*
Uniandes Mask R-CNN 0.26 0.29 5*
SQUASH Mask R-CNN 0.22 0.26 5*
CASIA_SRL Attention Network 0.19 0.27 5*
fisensee 2D U-Net 0.17 0.16 12*
VIE Mask R-CNN 0.00 0.00 5*

Base YOLACT++ YOLACT++ 0.00 0.00 75
CCAM-FPN YOLACT++ 0.00 0.00 60
CBAM-Backbone YOLACT++ 0.25 0.29 65
CCAM-Full YOLACT++ 0.30 0.30 45
CCAM-Backbone YOLACT++ 0.31 0.33 49
CBAM-FPN YOLACT++ 0.31 0.33 66
CBAM-Full YOLACT++ 0.34 0.38 65
CBAM-Full + Aug YOLACT++ 0.38 0.43 63
CBAM-Full + Aug + Anch YOLACT++ 0.43 0.47 69
CBAM-Full + Aug + Anch + MS YOLACT++ 0.45 0.49 24

The upper part of the table shows the aggregated metrics for the competitors of the 2019 ROBUST-MIS challenge. The lower
part of the table shows the results of the our developed models. MI_DSC and MI_NSD metrics are reported along with the
base models and frame rates.
*Approximated from base method. Original measurement was not reported.
Table 4
Metric comparison for all three test stages of ROBUST-MIS dataset.

Model Stage 1 Stage 2 Stage 3

MI_DSC MI_NSD MI_DSC MI_NSD MI_DSC MI_NSD

Base YOLACT++ 0.31 0.33 0.00 0.00 0.00 0.00
CCAM-Backbone 0.4 0.47 0.32 0.33 0.31 0.33
CCAM-FPN 0.23 0.33 0.00 0.00 0.00 0.00
CCAM-Full 0.40 0.45 0.28 0.33 0.31 0.33
CBAM-Backbone 0.43 0.46 0.32 0.35 0.25 0.29
CBAM-FPN 0.43 0.49 0.33 0.37 0.31 0.33
CBAM-Full 0.40 0.47 0.33 0.38 0.34 0.38
CBAM-Full + Aug 0.45 0.5 0.31 0.38 0.38 0.43
CBAM-Full + Aug + Anch 0.46 0.50 0.44 0.47 0.43 0.47
CBAM-Full + Aug + Anch + MS 0.46 0.49 0.43 0.48 0.45 0.49

Best metric values are shown in bold for each test dataset.
l
o

f

Table 5
Evaluation results on the EndoVis 2017 challenge dataset for some recent methods and
the nine configurations of our proposed model. All the performance (FPS) results for
the Yolact model are given for 3 instances in the frame.

Model Mean IoU FPS

U-Net 56.87 12*
TernausNet 80.34 10*
RASNet 90.33 5*

Base YOLACT++ 79.90 71
CCAM-Backbone 84.14 52
CCAM-FPN 84.80 62
CCAM-Full 84.82 52
CBAM-Backbone 85.00 62
CBAM-FPN 85.20 64
CBAM-Full 86.25 58
CBAM-Full + Aug 86.50 60
CBAM-Full + Aug + Anch 86.80 60
CBAM-Full + Aug + Anch + MS 87.00 25

better localization and segmentation results. We identified four dif-
ferent conditions that seemed particularly challenging for CBAM-Full:
transparent instruments, vertical instruments, small instruments on the
edge of the field of view, and partially occluded instruments. According
to Roßet al. (2021), most of these issues have also been challenging
to previous participants. Fig. 5(b) illustrates the comparison of worst
frames of CBAM-Full and the improvements obtained after training with
target-domain data augmentation.

In contrast to the baseline model with attention, we can observe that
CBAM-Full + Aug is capable of addressing problematic instances such
7

a

Table 6
Execution times for stage 3 of the ROBUST-MIS challenge (in FPS).

Team/Model 1 inst. 2 inst. 3 inst.

Base YOLACT++ 74 72 64
CCAM-Backbone 53 49 44
CCAM-FPN 60 58 60
CCAM-Full 50 47 52
CCAM-Backbone 65 63 55
CBAM-FPN 68 64 57
CBAM-Full 61 57 56
CBAM-Full + Aug 63 58 53
CBAM-Full + Aug + Anch 68 65 59
CBAM-Full + Aug + Anch + MS 26 24 25

Each of the models was tested with different sequences of videos, containing 1, 2 and
3 instrument instances respectively. Reported values were averaged over 50 runs.

as small instruments on the edge of the field of view. Similarly, trans-
parent, partially occluded, and vertical instruments are now detected
and segmented to a larger extent.

Nonetheless, it must be emphasized that the CBAM-Full + Aug
model still presented recurrent missed detections on long vertical and
transparent instruments. For comparison, Fig. 5(c) illustrates its worst
cases and the improvements obtained after training this model with an
optimized set of anchors to combat this issue. As we can observe in the
figure, the anchor optimization in the CBAM-Full + Aug + Anch model
ed to additional detection and segmentation improvements not only
n previously undetected objects but across all instruments.

On the other hand Fig. 5(d) illustrates the comparison of worst
rames of CBAM-Full + Aug + Anch and the improvements obtained
fter training with MSFF. We can observe that CBAM-Full + Aug + Anch
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Fig. 4. Dot-and-boxplots for the MI_DSC and MI_NSD. Individual performances of algorithms on stage 3 of the challenge are shown. The red lines indicate the value of the
aggregated metric (by 5% percentile) for each algorithm.
+ MS is better at recognizing more challenging instances, like small
nder-exposed instruments, transparent instruments, and reflections.

.6. Results on the EndoVis robotic instrument segmentation 2017 dataset

In order to assess the applicability of our model beyond the Robust
IS dataset, we carried out experiments on previous MICCAI EndoVis
obotic Instrument Segmentation Challenge 2017 dataset (Shvets et al.,
018). We trained all nine different configurations of our Yolact++-
ased architecture (described in Section 3.2). The Robotic Instrument
egmentation challenge consisted of three sub-tasks: a) binary instru-
ent segmentation, b) instrument part segmentation, and c) instrument

ype segmentation tasks. Our experiments reported in this work is
imed at the instrument type segmentation task as it is similar to the
OBUST-MIS challenge.

The EndoVis-2017 Robotic Instrument Segmentation Challenge
ataset consists of 10 sequences of abdominal porcine procedures
ecorded using the da Vinci Xi robotic system (Shvets et al., 2018). The
urgical instruments were divided into six categories, namely Bipolar
orceps, Prograsp Forceps, Needle Driver, Vessel Sealer, Grasping Re-
ractor and Curved Scissors. A miscellaneous category is labeled for
ny other surgical instrument. For the original challenge, the organizers
rovided the first 225 frames of 8 sequences as training data and kept
he last 75 frames of those sequences as test data. Additionally, two
f the full 300 frame sequences were kept as test sequences. The final
ataset is comprised of 1800 images with a resolution of 1920 × 1080
8

1400 for training and 400 for test). Since the labels of test set are
not available for model evaluation, we followed the same protocol for
training and testing as reported in the Refined Attention Segmentation
Network (RASNet) (Ni et al., 2019). We selected consecutive sequences
to avoid similar frames in the training and test set. We kept the 1350
images as the training set and reserved 450 images for the test set.
We did not use any additional data for training or fine-tuning our nine
model configurations and the baseline methods.

The results are summarized in Table 5. We compare our results with
three baseline methods used in Ni et al. (2019): (i) a simple U-Net
architecture (Ronneberger et al., 2015a), (ii) TernausNet (Iglovikov and
Shvets, 2021), a U-Net-like architecture that uses a VGG16 backbone
as an encoder module and (iii) RASNet (Ni et al., 2019), which makes
use of an encoder–decoder structure extended with an attention fusion
modules (AFM) to combine multi-scale features in a similar manner
to our work. From the table, it can be observed that our method
outperforms other methods originally presented in the EndoVis Robotic
Instrument Segmentation Challenge (UNet and TernausNet) and falls
slightly behind RASNet (87% vs 90% mIoU). Nonetheless, all these
previous methods run at much slower frame rates than ours. In fact,
as shown in the last column of table, our base model runs at 71 FPS
whereas our proposed full model configuration can attain 25 FPS (for
3 instances) which is still 5 times faster than RASNet. An optimal choice
between speed and accuracy would be our CBAM-Full+Aug+Anch
model which is 12 times faster and with an mean IoU of 86.80.



Medical Image Analysis 81 (2022) 102569J.C.Á. Cerón et al.
Fig. 5. Qualitative comparison of challenging cases showing incremental improvements from baseline to our proposed final model.
Fig. 6. Network output with and without attention. (top) Large part of image covered
with instrument in purple and in blue (left). (bottom) Three instruments two at the
bottom of image and one on the top of image (see left). In visual saliency maps, the
dark blue color indicates lowest activation values, while bright red indicates higher
values.
9

5. Discussion

While deep learning has allowed us to design data driven solutions,
generalization remains a key issue that can cause significant perfor-
mance degradation, especially in instrument segmentation applications
where the intervention objects are of variable shapes and exposed to dy-
namic environments (e.g., smoke, flares, specularity etc, see Fig. 1). In
surgery, real-time performance of such tool is of enormous importance
for clinical utility. However, most methods built in the past relied on
two stage networks that are not computationally efficient.

In order to tackle previous methods limitations, we built over single
stage YOLACT (Bolya et al., 2019) and added several modifications
to improve both the accuracy and robustness of our final surgical
instrument segmentation algorithm. Among our models, we observed
that those based on CBAM achieved slightly better performance that
the ones based on CCAM. Regardless, attention-integrated models al-
ways outperformed the attention-less baseline in terms of robustness.
Fig. 4 shows dot-and-boxplots of the metric values obtained by each
algorithm over all test cases in stage 3 dataset (unseen test dataset
in the ROBUST-MIS challenge). We can observe that adding attention
mechanisms boosts the performance compared to the baseline model
used in our architecture design (Bolya et al., 2019). This especially true
for instances below the third quartile, which are the most important for
our performance metrics. Among the three model variations to which
we added CCAM attention modules, CCAM-Backbone achieved the best
results in terms of robustness (0.313 MI_DSC and 0.338 MI_NSD, see
Table 3). This indicates that the contextually enriched feature maps
from the ResNet-101 backbone are powerful enough to generate more
accurate mask prototypes and coefficients in the YOLACT architecture
better segmentation outputs.
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However, it must be noted that the CBAM-Full model outperformed
all other attention modules by nearly 9% on MI_DSC over the best
performing CCAM-Backbone. The superiority of CBAM when integrated
together with backbone and FPN all together enhances both channel-
wise and block attentions better to represent local and global features
well. The FPN layer allows to capture size variability present in the
dataset for which CCAM yielded zero on aggregated MI_DSC score
(Fig. 4).

We thoroughly investigated on model improvement for general-
izability through different mechanisms such as data augmentation
and optimization of anchor weights. These steps were experimentally
proven to be right directions giving subsequent increase in both ag-
gregated MI_DSC and MI_NSD (see Table 3, Figs. 5(a) and 5(b)). For
example, by using augmentation, we observed that the images with
different view points (mostly long sized instruments either straight or
slightly oblique) performed better; this can be because of low number
of such samples in the dataset (Fig. 5(b)). Similarly, for the variable
size instruments optimizing anchors provided substantial improve-
ments (Fig. 5(c)). We also noticed issues with the small instrument
appearing either on the bottom or sides of the frame, and also for
those which appeared as background, due to specularity or covering
large tissue area with similar color (see Fig. 5(c), left). The use of the
Multi-scale feature fusion (MSFF) network allowed us to fuse features
at different scales and layers (Fig. 5(d)). Our architecture with this
MSFF network integrated together with the attention maps allowed to
transfer both local and global context fusing high and low-level feature
representations.

As a result of integrating MSFF, we observed further 2% higher per-
formance on aggregated MI_DSC above the CBAM-Full model (Table 3).
Our final best approach has near real-time performance of 24 FPS on
NVIDIA Volta GPU. However, our second best performing method can
run at 69 FPS which is above the required real-time performance in
most cases (i.e., 45 FPS). A similar, performance improvement was
observed for other two test datasets (Table 4).

To better understand the behavior of the two types of attention
modules used in our experiments, we visualized the attention maps
generated by 4 different models, in addition to the feature maps of the
baseline model (see Fig. 6). We chose the CBAM-Full, CCAM-Full, and
CBAM-Full + Aug + Anch + MS configurations for visualization purposes
as they show the refined feature maps using 2 types of attention
modules. Fig. 6 illustrates the activation maps taken before and after
the attention modules. We are interested in the effects of attention on
this specific point of the network since mask prototypes and coefficients
are extracted from FPN features and backbone network. We can observe
that over-mixing problem of CCAM-Full. In fact, the maps before CCAM
in the Full model are cleaner and more discriminative than the actual
attention output.

This result confirms that CCAM excels at refining features that
have not been mixed before. On the other hand, CBAM-based models
produce slightly lower quality feature maps from attention modules in
the backbone, as it can be observed by the clouds and blobs on the
top maps of the figure. Nonetheless, the features are drastically refined
after passing the attention modules in the Full model configuration,
leading to clean and discriminative activations. This corroborates our
hypothesis that CBAM is better at refining previously aggregated data,
yielding a superior overall performance.

Nonetheless, as shown in the last column of Table 3, these improve-
ments in terms of robustness come at the price of an increased inference
time, impacting the attainable real-time performance of our model.
In order to further understand the effect the various optimizations
of the model, as well as the impact of the number of instrument
instances present in the frame on the model’s performance, we carried
out various inference speed assessments by running inference tests on
three different 10-second video snippets from the ROBUST-MIS dataset.
The results of this experiment are summarized in Table 6. The first
10

video contains only one instrument instance, the second contains two
instruments and the third one contains three instrument instances in
the same frame. Each video was evaluated a total of fifty times per
model, and the reported frame rates were then aggregated by the mean.
Inference time was tested on a single Tesla P100 GPU using a batch size
of 1. The results of this experiment show that there is indeed a loss in
performance as the number of instances within the frame is increased;
in average, there is a decrease of about 2 to 4 FPS when the number
of instances is increased to two and of 10 FPS when 3 instances are
in the frame. As discussed above, our best model is able to attain very
high scores with a performance of about 24 FPS; it must be noted that
this model is more robust to changes in the number of instances in the
frame, as it can be observed in the last row of Table 6.

Several interesting findings aroused from these experiments. For
instance, as it can be observed in the table, there is a noticeable
difference in inference time between the CBAM-Full and CBAM-Full +
Aug models, which might be surprising at first glance as they are in
fact the same model. However, this gap can be due to the difference
in the number of instances predicted during inference, which would
vary with the degree of domain-targeted data augmentation used for
training the model. In our architecture (see Fig. 2), the prediction head
is connected to subsequent post processing steps such as NMS, region
cropping and thresholding. Ideally, fewer false positives should yield a
higher FPS. However, the FPS difference of 2 between CBAM-Full and
CBAM-Full+Aug could be due to outlier samples. Similarly, if one looks
at the CBAM-Full+Aug+Anchor which improves the MI_DSC by 10%,
while providing a better FPS, as it minimizes the false positives.

Furthermore, domain-targeted data augmentation improves the ac-
curacy of the model thereby creating less false positives during in-
ference. This reduces the computational overhead introduced by the
prediction head. As a result, other post processing steps such as NMS,
region cropping and thresholding consume less time compared to the
CBAM-Full model, which can bee seen as sub-optimally trained model

6. Conclusion

We have developed a real-time novel architecture that builds upon
a single-stage instance segmentation method. Through our step-wise
solution to different problems in surgical data, we have identified and
integrated components that can be deal with existing and eminent
challenges for robust segmentation of surgical instruments. We have
provided comprehensive experiments and analysis that supports our
final architecture development and its impact on surgical tool seg-
mentation in clinic. Our method outperformed all methods reported in
recently conducted ROBUST-MIS challenge.

Our current work is built upon publicly available retrospective
dataset providing a strong evidence of robustness ability compared to
presented methods at the ROBUST-MIS challenge and current literature.
In future work, we will validate on prospective data and benchmark it
in clinical settings.
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