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Adaptive Graph Learning
Bingbing Jiang, Xingyu Wu, Xiren Zhou, Yi Liu, Anthony G. Cohn, Weiguo Sheng, Member, IEEE, and

Huanhuan Chen, Senior Member, IEEE

Abstract—As data sources become ever more numerous with
increased feature dimensionality, feature selection for multi-
view data has become an important technique in machine
learning. Semi-supervised multi-view feature selection focuses on
the problem of how to obtain a discriminative feature subset from
heterogeneous feature spaces in the case of abundant unlabeled
data with little labeled data. Most existing methods suffer from
unreliable similarity graph structure across different views since
they separate the graph construction from feature selection and
use the fixed graphs that are susceptible to noisy features. Fur-
thermore, they directly concatenate multiple feature projections
for feature selection, neglecting the contribution diversity among
projections. To alleviate these problems, we present a semi-
supervised multi-view feature selection (SMFS) to simultaneously
select informative features and learn a unified graph through
the data fusion from aspects of feature projection and similarity
graph. Specifically, SMFS adaptively weights different feature
projections and flexibly fuses them to form a joint weighted
projection, preserving the complementarity and consensus of the
original views. Moreover, an implicit graph fusion is devised to
dynamically learn a compatible graph across views according to
the similarity structure in the learned projection subspace, where
the undesirable effects of noisy features are largely alleviated.
A convergent method is derived to iteratively optimize SMFS.
Experiments on various datasets validate the effectiveness and
superiority of SMFS over state-of-the-art methods.

Index Terms—Multi-view feature selection, semi-supervised
learning, graph learning, multi-view data fusion.

I. INTRODUCTION

In many real-world applications, such as scene classifica-

tion, handwritten recognition and object detection, data with

multiple representations from different sources are collected to

form multi-view data. In multi-view data, each view naturally

corresponds to a feature representation that contains indepen-

dent statistical properties [1]–[4]. For instance, an image can

be depicted by diverse types of features, such as HOG [5], LBP

[6] GIST [7], etc. Although these multi-view features charac-

terize data from different perspectives, their high dimension-

ality demands high computation and massive storage during
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data processing. Moreover, high-dimensional data inevitably

contain some redundant or even irrelevant (noisy) features

that might degrade the effectiveness of subsequent tasks [8],

becoming the main challenge in data mining. As a topic of

interest in multi-view learning, multi-view feature selection

aims to obtain a lower-dimensional feature representation

(i.e., feature subset) by removing the irrelevant and redundant

features from the heterogeneous feature space. Due to the

comprehensive representation and better interpretability for

multi-view data, multi-view feature selection has caught the

attention of many researchers [9]–[14].

The key challenge in multi-view feature selection is to ef-

fectively mine and exploit the consensus and complementarity

among views to select the features that cover the original

feature space well. Current multi-view feature selection tech-

niques can be categorized into supervised, unsupervised and

semi-supervised groups according to the availability of label

information in data [15]. Supervised methods usually require

sufficient labeled data to maintain promising performance.

Unsupervised methods select features guided by the intrinsic

structure of data, but often fail to identify some discriminative

features due to the absence of label information. Abundant

unlabeled data in the real world are expensive to label,

therefore, it is desirable to develop multi-view semi-supervised

feature selection that simultaneously exploits labeled and

unlabeled data. Although semi-supervised multi-view learning

has attracted much attention in recent years [16]–[20], to the

best of our knowledge, relatively few efforts have been made

on semi-supervised multi-view feature selection.

To identify relevant features from multi-view data where

only a small proportion has been labeled, existing methods

in the literature follow two different ways. The traditional

way is to indiscriminately concatenate multiple features first

and import the concatenated features into single-view models

that mostly employ data distribution structure or a sparsity

constraint to evaluate the importance of features [21]–[25].

For example, Zhao et al proposed to select features according

to the label information and the local structure information

of data [21]. Ma et al. proposed a structural feature selection

with sparsity [24] which selects features by jointly exploiting

an l21-norm regularization and manifold learning. Chen et al.

[25] proposed a semi-supervised feature selection via sparse

rescaled linear square regression model, using a general l2p-

norm (p ∈ (0, 1]) to ensure the sparsity of the feature space.

However, these methods are originally designed for single-

view data such that they treat view-specific features equally

and neglect the complementarity among views, weakening
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their effectiveness and applicability for multi-view scenarios.

To alleviate this issue, another way is to directly per-

form multi-view feature selection, thereby considering the

diversity of different views. Representative methods include

manifold regularized multi-view feature selection (MRMVFS)

[10], multi-view Laplacian sparse feature selection (MLSFS)

[26] and multi-view Hessian semi-supervised sparse feature

selection [27]. These methods commonly follow two steps,

i.e., construction of an individual graph for each view to

describe the view-specific similarity structure and feature

selection based on a weighted combination of multiple view-

specific structures. Despite achieving better performance than

single-view methods, these multi-view methods suffer from at

least two deficiencies including: a) the view-specific similarity

graph is simply derived from the original feature space where

lots of redundant and noisy features inevitably exist. Moreover,

the local similarity structure remains constant during the pro-

cess of feature selection, making the learned graph suboptimal;

b) these methods treat the feature projections of different views

indiscriminately and directly use the projection matrix of con-

catenated features to select features, ignoring the relationship

(i.e., the complementarity and consensus) between different

views in the aspect of feature projection [28], [29]. Recently,

Shi et al. proposed a multi-view adaptive semi-supervised

feature selection (MASFS), which dynamically updates view-

specific graphs according to the Euclidean distance between

original data points [30]. However, the Euclidean distance is

sensitive to the redundant and noisy features that usually exist

in multi-view data leading to the unreliable graph [31]–[33],

thereby affecting the effectiveness of selected features.

Motivated by the aforementioned problems, this paper pro-

poses a novel multi-view feature selection algorithm, called

Semi-supervised Multi-view Feature Selection with adaptive

graph learning (SMFS). The main contributions of this paper

are summarized as follows:

• We design a novel semi-supervised multi-view feature

selection algorithm that comprehensively exploits multi-

view data from the aspects of both the feature projections

and the similarity graphs to adaptively learn a unified

graph and simultaneously select discriminative features.

• We distinguish the feature projections of different views

and adaptively coalesce them to form a joint weighted

feature projection by merging the learned view weights

into the view-specific projections, so that the complemen-

tarity and consistency among multiple views in the level

of feature projection can be naturally preserved.

• We learn a reliable similarity graph across multiple views

by virtue of the implicit graph fusion across views and

the similarity structure in the projected feature subspace,

which positively facilitates the feature selection.

• An effective and provably convergent optimization

method is developed to solve the formulated objective

function, and extensive experiments on various datasets

are conducted to demonstrate the effectiveness of SMFS

and its superiority over other state-of-the-art competitors.

The remainder of this paper is organized as follows. We

first introduce the formulation of SMFS, including adaptive-

weighting multi-view feature selection, adaptive graph learn-

ing and optimization procedure in Section II. Then Section III

analyzes SMFS in three aspects. In Section IV, we conduct ex-

tensive experiments to validate the proposed SMFS algorithm

on various multi-view datasets. Finally, we conclude this paper

and propose some future directions in Section V.

II. SEMI-SUPERVISED MULTI-VIEW FEATURE SELECTION

WITH ADAPTIVE GRAPH LEARNING

In this section, we introduce the proposed SMFS algorithm.

Firstly, the adaptive-weighting multi-view feature selection

model is formulated in section II-A. Adaptive graph fusion and

learning is developed in section II-B. Section II-C presents the

unified framework integrating the multi-view feature selection

and adaptive graph fusion and learning. Finally, Section II-D

details the optimization procedures of SMFS.

A. Adaptive-Weighting Multi-View Feature Selection Model

Recently, a multi-view fusion model has been widely used

with a unified formulation as follows:

min
πv≥0,

∑
v πv=1

V∑

v=1

πη
vfv(x), (1)

where πv is the weight of the v-th view, fv(·) is a problem-

specific function, x is a task-dependent variable, V is the

number of views, and hyper-parameter η > 1 controls the dis-

tribution of {πv}Vv=1. Multi-view learning can be implemented

in various ways using different functions and variables.

In the machine learning field, a linear least-squares regres-

sion model is frequently utilized to learn a projection subspace

according to the prediction label F ∈ R
n×c (n and c are

the numbers of samples and classes, respectively), thereby

preserving the discriminative information of training data [34].

Accordingly, fv(·) can be materialized as a loss function

which encodes the mismatch between the linear projection

XT
v Wv + 1bT

v and F, where bv ∈ R
c×1 denotes the view-

specific bias vector and Wv ∈ R
dv×c (dv is the dimensionality

of the v-th view) is the feature projection matrix that maps

the original features Xv ∈ R
dv×n into the subspace. For

simplicity, bv is absorbed into Wv by adding 1 ∈ R
n×1 as

an additional row of Xv to reform Eq. (1) as below:

min
F,Wv,πv≥0,

∑
v πv=1

V∑

v=1

πη
v‖XT

v Wv − F‖2F . (2)

By keeping Wv and πv fixed, we take the derivative of Eq. (2)

with respect to (w.r.t.) F and set it to be zero:

V∑

v=1

πη
v

(
F−X

T
v Wv

)
= 0 =⇒





F =
V∑

v=1

αvX
T
v Wv

αv = πη
v/

V∑
v=1

πη
v

, (3)

where αv can be viewed as the non-negative weight for the v-

th projection subspace XT
v Wv and

∑V

v=1
αv = 1. The solution

to F is achieved by merging the single-view projection sub-

space set {XT
v Wv}Vv=1 in an optimal combination. Note that

{αv}Vv=1 are linearly imposed on the single-view projections,

which might lead to the trivial solution, that is αv = 1 only
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for the best one and αv = 0 for others, thereby impeding

the possibility to take full advantage of the consistent and

complementary information contained in multiple views.

To better cope with this problem, the equality constraint

of F is relaxed to a quadratic penalty term by introducing

a flexible regression residue (i.e., F −
∑V

v=1
αvX

T
v Wv) to

model the mismatch between F and the weighted combination

projection
∑V

v=1
αvX

T
v Wv. Meanwhile, considering that each

row of Wv reflects the importance of the corresponding

feature, if Wv is sparse in rows, feature selection can be

naturally performed by selecting the features associated with

the non-zero rows in Wv [35]. Owing to the efficacy shown in

the state-of-the-art works [11], [36], the l2,1-norm constraint

is imposed on Wv to ensure that Wv is row-sparse. Therefore,

a feature selection model that compatibly fuses multiple views

from the level of projection subspace is put forward:

min
F,Wv,α≥0,1T

α=1

‖F−
V∑

v=1

αvX
T
v Wv‖2F + λ

V∑

v=1

‖Wv‖2,1, (4)

where α = [α1, · · · , αV ] ∈ R
V is a weight vector. Different

from most existing studies, the proposed model learns view-

specific feature projection subspaces {XT
v Wv}Vv=1 for each

view and discriminates different projections with the view

weights {αv}Vv=1, which takes full advantage of the comple-

mentary information from different projections. To facilitate

feature projections consensus, the prediction label matrix F is

employed as the common regression target across views, which

maximizes the consistency among view-specific subspaces.

Moreover, considering that the weight αv depends on the

discrepancy between F and XT
v Wv such that none of single-

view feature projections can outperform others. By modeling

this discrepancy, αv can be determined adaptively. Therefore,

this fusion manner not only avoids the trivial solution of α

but also releases the model from the extra hyper-parameter η.

However, the objective function in Eq. (4) is difficult to be

optimized due to the introduction of α. To solve this problem,

we merge αv into its associated feature projection matrix

Wv = [w1
v,w

2
v, · · · ,wdv

v ] as αvWv = W̃v, where wi
v is the

i-th row of Wv and W̃v = [αvw
1
v, αvw

2
v, · · · , αvw

dv
v ] ∈ R

dv×c

denotes the weighted feature projection matrix. According to

the definition of l2,1-norm, we have:

‖W̃v‖2,1=
dv∑

i=1

√
αvwi

v(αvwi
v)T =αv

dv∑

i=1

√
wi

v(wi
v)T =αv‖Wv‖2,1

=⇒
V∑

v=1

‖Wv‖2,1 =
V∑

v=1

‖W̃v‖2,1
αv

. (5)

Therefore, the proposed multi-view feature selection model in

Eq. (4) can be transformed into:

min
F,W̃,α≥0,1T

α=1

‖F−X
T
W̃‖2F + λ

V∑

v=1

‖W̃v‖2,1
αv

, (6)

where X = [X1, · · · ,XV ]T ∈ R
d×n is the concatenated

feature matrix, W̃ = [W̃1, · · · ,W̃V ]T ∈ R
d×c denotes a

joint weighted feature projection matrix across all V views,

and d =
∑V

v=1 dv is the dimension of features across all

V views. Different from previous methods [10], [26], [30],

the proposed multi-view feature selection model not only

distinguishes the feature projections derived from different

views, but also coalesces them in an adaptive-weighting way,

thereby providing a comprehensive representation and feature

projection-level fusion compatible across all views. Moreover,

we can efficiently optimize Eq. (6) by merging αv into the

corresponding projection matrix, such that the correlation

and complementarity among multiple views can be naturally

preserved in the joint weighted projection subspace XTW̃.

B. Adaptive Graph Fusion and Learning

In real-world applications, the unavailability of labeled data

motivates feature selection to evaluate features based on the

similarity structure of data. Consequently, learning a graph

that effectively preserves the structure is critical for selecting

informative features [36]. To avoid the separation of graph

construction and feature selection, we plan to perform feature

selection and graph learning simultaneously, such that the

sample similarity in the projected feature subspace is also

taken into account, alleviating the adverse impact of redundant

and irrelevant features (in the original feature space). Toward

this end, two important factors are considered for adaptive

graph fusion and learning: a) the graph fusion should explore

the intrinsic structure across multiple views, so that the fused

graph not only mines the similarity structure within each

view, but also captures the structure compatible across multiple

views; b) the similarity information directly derived from the

original feature space might not be fully reliable, making

the learned feature selection matrix suboptimal and thereby

degrading the performance. To achieve them, an adaptive

graph fusion and learning model is proposed as follows:

min
S1=1,S≥0

V∑

v=1

‖S− S
v‖F + µ

n∑

i,j=1

sij‖W̃T
xi − W̃

T
xj‖22, (7)

where {Sv}Vv=1 denotes the view-specific graphs constructed

from the original feature space [37], sij is the similarity

between samples xi and xj , and µ > 0 is the regularization

parameter. The first term implicitly fuses previously built

single-view graphs {Sv}Vv=1 to learn a unified graph S through

automatically assigning weights according to the matching

degrees between S and {Sv}Vv=1. The second term can be

viewed as a weighted ℓ1-norm constraint on S, which enables

Eq. (7) to adaptively select several projected neighbors. By

virtue of the weighted concatenated feature projection matrix

W̃, the graph S adaptively fused from {Sv}Vv=1 is also guided

by the sample similarity in projected feature subspace. In this

way, multi-view feature selection and similarity graph learning

can benefit from each other in a mutual reinforcement manner.

C. SMFS Algorithm

We propose a new semi-supervised multi-view feature selec-

tion (SMFS) algorithm by combining adaptive graph learning

and multi-view feature selection based on the preliminary

formulations described in Sections II-A and II-B. It is pertinent

to note that the feature selection matrix W̃ obtained from

Eq. (6) is affected by the prediction label matrix F. To

select informative and discriminative features, F should vary
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smoothly along with the learned graph S and be consistent

with the known labels of l labeled samples (i.e., Yl) according

to the semi-supervised setting [38]–[40]. Specifically, F can

be further constrained by graph-based label propagation [41]:

min
F

Tr(FT
LSF) + Tr

(
(F−Y)TU(F−Y)

)
, (8)

where LS ∈ R
n×n is the Laplacian matrix of S, Y =

[Yl;0]
T ∈ R

n×c, and U ∈ R
n×n is a diagonal matrix in

which diagonal element Uii is a very large number if xi is

a labeled sample and 1 otherwise. LS = DS − (ST + S)/2,

where DS is the diagonal degree matrix with the i-th diagonal

element
∑n

j=1(sij + sji)/2. In addition to constraining the

smoothness and the label consistency of F, Eq. (8) ties the

graph learning and the feature selection processes together.

Based on the multi-view feature selection and the graph

learning proposed in Eq. (6) and Eq. (7), respectively, we

formulate the final objective function of SMFS as follows:

min
F,W̃,S,α

Tr(FT
LSF) + Tr

(
(F−Y)TU(F−Y)

)

+ γ
(
‖F−X

T
W̃‖2F + λ

V∑

v=1

‖W̃v‖2,1
αv

)

+ β
( V∑

v=1

‖S− S
v‖F + µ

n∑

i,j=1

sij‖W̃T
xi − W̃

T
xj‖22

)

s.t. α ≥ 0,αT
1 = 1, S1 = 1,S ≥ 0, (9)

where γ and β are the parameters to balance projection

learning and graph fusion, respectively. Different from existing

methods, SMFS not only discriminates multiple feature projec-

tions by virtue of the adaptive weight α, but also preserves the

consensus and complementarity in the projected subspace by

merging α into the joint projection matrix W̃. Furthermore,

by projecting the original data X into the subspace, SMFS

performs feature selection and graph learning based on the

sample similarity in the projected subspace, thereby alleviating

the undesirable effect of irrelevant and redundant features.

D. Optimization Procedure

It is important to emphasize that Eq. (9) is difficult to solve

immediately since it contains the unsmooth l2,1-norm and is

not a jointly convex problem with respect to all variables. To

obtain the optimal solution, we design an iterative optimization

method which works in iterations to alternately optimize a

variable by fixing the values of other variables and guarantees

the monotonic decrease of the objective function in Eq. (9).

This can be achieved via the update rules given below:

• Update F: when W̃, α and S are fixed, the subproblem

of Eq. (9) is simplified into:

min
F

Tr(FT
LSF)+Tr

(
(F−Y)TU(F−Y)

)
+γ‖F−X

T
W̃‖2F . (10)

Taking the partial derivative of Eq. (10) w.r.t. F and setting it

to be zero, we have:

γ(F−X
T
W̃) + LSF+U(F−Y) = 0 =⇒ F = PQ, (11)

where P = (γI+ LS +U)−1 and Q = UY + γXTW̃.

• Update W̃: replacing F with its optimal solution in

Eq. (11), the problem in Eq. (9) w.r.t. W̃ is:

min
W̃

Tr
(
Q

T
P

T (γI+ LS +U)PQ−2QT
P

T (UY+γXT
W̃)

)

+Tr(W̃T
XMX

T
W̃) + γλ

V∑

v=1

‖W̃v‖2,1
αv

, (12)

where M = γI + 2βµLS. Due to QTPT (γI + LS + U)PQ =

QTPT (UY + γXTW̃) = QTPQ, Eq. (12) can be written as:

Tr
(
W̃

T
XMX

T
W̃ −Q

T
PQ

)
+ γλ

V∑

v=1

‖W̃v‖2,1
αv

. (13)

By substituting Q = UY+γXTW̃, Eq. (13) is simplified as:

min
W̃

Tr
(
W̃

T
GW̃

)
− 2Tr

(
B

T
W̃

)
+ γλ

V∑

v=1

1

αv

dv∑

i=1

‖w̃i
v‖2, (14)

where G = X(M − γ2PT )XT , B = γXPUY, and w̃i
v is

the i-th row of W̃v. Taking the partial derivative of Eq. (14)

w.r.t. W̃, and setting it to be zero, we obtain:

GW̃ −B+ γλAW̃ = 0 =⇒ W̃ = (G+ γλA)−1
B, (15)

where A = [A1, · · · ,AV ] ∈ R
d×d is a diagonal matrix with

Av = diag(
α−1
v

2‖w̃1
v‖2

, · · · , α−1
v

2‖w̃
dv
v ‖2

) ∈ R
dv×dv . Note that A is

unknown and depends on W̃, once W̃ is determined, then A

can be updated accordingly. Thus, the optimal solution of W̃

can be obtained by updating A and W̃ alternately.

• Update α: when variables are fixed except α, the problem

in Eq. (9) w.r.t. α is written as:

min
α≥0,αT 1=1

V∑

v=1

ev
αv

, (16)

where ev = ‖W̃v‖2,1. To satisfy the constraints in Eq. (16),

the Lagrangian function is formulated as:

L(α, η,φ) =

V∑

v=1

ev
αv

+ η(αT
1− 1)− φ

T
α, (17)

where η ∈ R and φ ∈ R
V are Lagrangian multipliers. Con-

sidering that the optimal α should satisfy the KKT condition

[42], we have:

∀v :





− ev
α2
v

+ η∗ − φ∗
v = 0,

αv ≥ 0,αT1 = 1,

φ∗
v ≥ 0, φ∗

vαv = 0,

⇒ αv =

√
ev

η∗ − φ∗
v

, (18)

where η∗ and φ∗
v are the optimal values of η and φ correspond-

ing to the optimal solution of α, respectively. Since αv ≥ 0,

φv ≥ 0 and φ∗
vαv = 0, we know that φ∗

v = 0 if αv > 0,

and αv = 0 if φ∗
v > 0. Based on αT1 = 1, we can infer the

optimal solution of α

V∑

v=1

√
ev
η∗

= 1 ⇒
√
η∗ =

V∑

v=1

√
ev ⇒ αv =

√
ev

(
∑V

v=1

√
ev)

. (19)

The solution of αv in Eq. (19) satisfies the non-negative

constraint because of ev ≥ 0 for each v.

• Update S: when α, F and W̃ are fixed, the optimization

subproblem of Eq. (9) becomes:

min
S1=1,S≥0

β

V∑

v=1

‖S−S
v‖F +Tr(FT

LSF+2βµW̃T
XLSX

T
W̃). (20)
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Algorithm 1 : The optimization algorithm for SMFS

Input: Data X = [X1, · · · ,XV ]
T , ground truth labels YL of

labeled data XL, initialized single-view graphs {Sv}Vv=1,

and parameters γ, λ, β and µ;

1: Initialize αv = 1/V for each view, S =
∑V

v=1 S
v/V , and

W̃ by least squares regression on {XL,YL};

2: repeat

3: Updated F by Eq. (11);

4: repeat

5: With current W̃, update the diagonal matrix A;

6: With current A, update W̃ by Eq. (15);

7: until convergence

8: Update α by Eq. (19);

9: Update qv by Eq. (23);

10: Update each row of S by solving Eq. (27);

11: until the objective function of Eq. (9) converges;

Output: The joint weighted feature selection matrix W̃. The

matrix is used to calculate the feature scores ‖w̃i‖2 (i =
1, 2, · · · , d), and select p features with the highest scores.

Without introducing explicit weight factors, Eq. (20) implicitly

and adaptively fuses multiple single-view graphs {Sv}Vv=1 to

learn a unified graph S, whose Lagrangian function is:

β

V∑

v=1

‖S−S
v‖F +Tr(FT

LSF+2βµW̃T
XLSX

T
W̃) + Γ(Λ,S), (21)

where Λ denotes the Lagrange multiplier, and Γ(Λ,S) is a

formalized term derived from constraints. Taking the derivative

of Eq. (21) w.r.t. S and setting it to be zero, we have

β
V∑

v=1

qv
∂‖S− Sv‖2F

∂S
+

∂Γ(Λ,S)

∂S

+
∂Tr(FTLSF+2βµW̃TXLSX

TW̃)

∂S
= 0, (22)

where

qv =
1

2‖S− Sv‖F
. (23)

Eq. (22) cannot be directly solved because qv depends on S.

But when qv is set to be stationary, Eq. (22) essentially boils

down to the following problem:

min
S1=1,S≥0

β

V∑

v=1

qv‖S−S
v‖2F +Tr(FT

LSF+2βµW̃T
XLSX

T
W̃). (24)

Thus, Eq. (20) is equivalent to Eq. (24) if qv is stationary.

After we learn S from Eq. (24), qv can be determined corre-

spondingly, which inspires us to optimize S and qv alternately.

Specifically, with fixed qv , Eq. (24) can be rewritten as:

min
S1=1,S≥0

1

2

n∑

i,j=1

‖f i − f
j‖22sij + β

n∑

i=1

V∑

v=1

qv‖si − s
v
i ‖22

+ βµ

n∑

i,j=1

sij‖W̃T
xi − W̃

T
xj‖22

)
, (25)

where f i, si and svi are the i-th rows of F, S and Sv ,

respectively. Note that the optimization problem in Eq. (25)

is independent for different i, so that each row of S (i.e., si)

can be separately solved as:

min
si≥0,si1=1

V∑

v=1

qv‖si − s
v
i ‖22 + sidi, (26)

where di ∈ R
n×1 with the j-th element dij = 1

2β
‖f i −

f j‖22+µ‖W̃Txi−W̃Txj‖22. By simple algebraic manipulations,

Eq. (26) can be further reformulated as:

min
si≥0,si1=1

‖si − ui‖22, (27)

where ui =
1
q (
∑V

v=1 qvs
v
i−di/2) with q =

∑V
v=1 qv . Eq. (27)

can now be efficiently optimized with a closed form solution

[43], whose Lagrangian function is denoted as:

L(si, θi, ζi) =
1

2
‖si − ui‖22 − θi(si1− 1)− siζi, (28)

where θi ∈ R and ζi ∈ R
n are Lagrangian multipliers.

According to the KKT condition, the optimal solution of si
satisfies that:

∀j :





sij − uij − θ∗i − ζ∗ij = 0,

sij ≥ 0, si1 = 1,

ζ∗ij ≥ 0, ζ∗ijsij = 0,

(29)

where θ∗i and ζ∗ij denote the optimal Lagrangian multipliers of

θi and ζi corresponding to the optimal sij , respectively. Based

on the above constraints, the optimal sij = (uij + θ∗i )+ if we

know θ∗i , where x+ = max(x, 0). Due to si1 = 1 and ζ∗ij ≥ 0
for ∀j, we obtain:

{
θ∗i = tij − uij − ζ̄∗,

sij = tij − ζ̄∗ + ζ∗ij ,
⇒ sij = (tij − ζ̄∗)+ , (30)

where tij = uij − 1
T
ui

n + 1
n and ζ̄∗ =

1
T ζ∗

i

n . Thus, we can

get sij if ζ̄∗i is known. Based on Eq. (30) and the constraint

sij ≥ 0 for ∀j, we have:

ζ∗ij = (ζ̄∗ − tij)+ ⇒ ζ̄∗ =
1

n

n∑

j=1

(ζ̄∗ − tij)+ . (31)

By introducing a function f(ζ̄∗) = 1
n

∑n
j=1(ζ̄

∗−tij)+−ζ̄∗, ζ̄∗

would be achieved when f(ζ̄∗) = 0, which can be iteratively

solved with Newton’s method, as follows:

ζ̄∗t+1 = ζ̄∗t − f(ζ̄∗t )

f ′(ζ̄∗t )
. (32)

SMFS separately solves the subproblems of F, W̃, α and

S, and repeats these procedures iteratively until the objective

function converges. We further summarize the overall pipeline

of solving SMFS in Algorithm 1.

III. ALGORITHM ANALYSIS

This section gives analyses of the proposed SMFS algorithm

in three aspects. We first analyze the convergence property

of SMFS theoretically, then discuss the relationship between

SMFS and some single-view feature selection methods. Fi-

nally, we consider the computational complexity of SMFS.
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A. Convergence Analysis of SMFS

The variables in SMFS are alternately optimized, since the

objective function defined in Eq. (9) is not jointly convex

w.r.t. all variables. Therefore, it is necessary to prove that the

optimization procedures described in Algorithm 1 can mono-

tonically decrease objective function value in each iteration

until convergence. The proof of the convergence of SMFS is:

For convenience, suppose that we have Ft, W̃t, St, α
t after

the t-th iteration, and the corresponding objective function is:

L(Ft,W̃t,St,α
t) = Tr

(
F

T
t LStFt

)
+Tr

(
(Ft −Y)TU(Ft −Y)

)

+ γ
(
‖Ft −X

T
W̃t‖2F + λTr

(
W̃

T
t AtW̃t

))

+ β

V∑

v=1

‖St − S
v‖F + 2βµTr

(
W̃

T
t XLStX

T
W̃t

)
. (33)

With current W̃t, St and αt, Algorithm 1 obtains W̃t+1 in

the t+ 1 iteration, which holds that:

G(W̃t+1)+ γλTr
(
W̃

T
t+1AtW̃t+1

)
≤G(W̃t) + γλTr

(
W̃

T
t AtW̃t

)
, (34)

where G(W̃) = 2βµTr(W̃TXLStX
TW̃) + γ‖Ft − XTW̃‖2F ,

At and LSt
are respectively computed by W̃t, αt and St.

According to the inequality
√
x − x

2
√
y ≤ √

y− y
2
√
y in [44], it

is derived that:

‖(W̃v)t+1‖2,1 −
dv∑

i=1

‖(w̃i
v)t+1‖2

2

2‖(w̃i
v)t‖2

≤ ‖(W̃v)t‖2,1 −
dv∑

i=1

‖(w̃i
v)t‖2

2

2‖(w̃i
v)t‖2

⇒ 1

αt
v

(
‖(W̃v)t+1‖2,1 −

dv∑

i=1

‖(w̃i
v)t+1‖2

2

2‖(w̃i
v)t‖2

)

≤ 1

αt
v

(
‖(W̃v)t‖2,1 −

dv∑

i=1

‖(w̃i
v)t‖2

2

2‖(w̃i
v)t‖2

)

⇒
V∑

v=1

‖(W̃v)t+1‖2,1

αt
v

− Tr
(
W̃

T
t+1AtW̃t+1

)

≤
V∑

v=1

‖(W̃v)t‖2,1

αt
v

− Tr
(
W̃

T
t AtW̃t

)
, (35)

Summing Eq. (34) with the γλ times of Eq. (35), we get:

G(W̃t+1) + γλ

V∑

v=1

‖(W̃v)t+1‖2,1

αt
v

≤ G(W̃t) + γλ

V∑

v=1

‖(W̃v)t‖2,1

αt
v

⇒ L(Ft,W̃t+1,St,α
t
) ≤ L(Ft,W̃t,St,α

t
), (36)

which indicates that the objective function decreases mono-

tonically by iteratively optimizing W̃ with current W̃t, St

and αt. Meanwhile, we note that F and α can be sequentially

updated with the closed-form solutions by fixing W̃ as W̃t+1.

Thus, we directly have:

L(Ft+1,W̃t+1,St,α
t+1) ≤ L(Ft,W̃t+1,St,α

t). (37)

Finally, when we fix W̃ as W̃t+1 and F as Ft+1, SMFS

updates S̃ with current St and qtv , which holds that:

β
V∑

v=1

‖St+1 − S
v‖2

F

2‖St − Sv‖F

+ F(St+1) ≤ β

V∑

v=1

‖St − S
v‖2

F

2‖St − Sv‖F

+ F(St), (38)

where F(S) = 2βµTr(W̃T
t+1

XLSX
TW̃t+1) + Tr

(
FT

t+1
LSFt+1

)
.

Similarly, for Eq. (35), we can infer that:
V∑

v=1

(
‖St+1 − S

v‖F − ‖St+1 − S
v‖2

F

2‖St − Sv‖F

)

≤
V∑

v=1

(
‖St − S

v‖F − ‖St − S
v‖2

F

2‖St − Sv‖F

)
. (39)

Summing Eq. (38) with the β times of Eq. (39), we get:

β

V∑

v=1

(
‖St+1 − S

v‖F + F(St+1) ≤ β

V∑

v=1

(
‖St − S

v‖F + F(St)

⇒ L(Ft+1,W̃t+1,St+1,α
t+1

) ≤ L(Ft+1,W̃t+1,St,α
t+1

). (40)

Based on Eq. (36), Eq. (37) and Eq. (40), we can infer that:

L(Ft+1,W̃t+1,St+1,α
t+1) ≤ L(Ft,W̃t,St,α

t). (41)

Considering that L(F,W̃,S,α) has a lower bound (at least

above 0), we conclude that the objective function of SMFS is

monotonously decreased until convergence.

B. Connection to Single-View Feature Selection Methods

In this subsection, we analyze the relationship between the

proposed SMFS and previous single-view feature selection

methods. Firstly, when the number of views is set to 1 (i.e.,

V = 1), the proposed SMFS becomes a single-view problem,

in which the graph S is adaptively optimized according to

the sample similarity in the original feature space and the

projected subspace simultaneously. Accordingly, the single-

view version of SMFS, i.e., SSFS, can also be used to validate

the effectiveness of SMFS in the next section, and it is

formulated as:

min
S1=1,S≥0,F,W

Tr(FT
LSF) + Tr

(
(F−Y)TU(F−Y)

)

+ β
(
‖S− S

1‖2F + µ
n∑

i,j=1

sij‖WT
xi −W

T
xj‖22

)

+ γ
(
‖F−X

T
W‖2F + λ‖W‖2,1

)
. (42)

The optimization of SSFS can use the procedures provided

in Algorithm 1. Notably, SSFS is equivalent to the objective

function of SFSS [24] if we set β = 0, and it can be further

generalized to an unsupervised method by replacing the label

consistency constraint on F with the orthogonal constraint

FTF = I. Similarly, when γ → ∞ and β = 0, SSFS shares

the similar goal with [25] by changing ‖W‖2,1 to ‖W‖2,p
(p ∈ (0, 1]). Thus, these feature selection methods can be

viewed as the special cases of the proposed SMFS under the

single-view scenario. In another perspective, it can be seen that

SMFS performs feature selection and graph learning simul-

taneously, while most existing methods predefine similarity

graph based on the Euclidean distance between samples in

the original feature space, and fix the graph during feature

selection. Therefore, SMFS can achieve better performance

in practice owing to the adaptive multiple graph fusion and

learning model for feature selection.

C. Computational Complexity Analysis

The optimization procedure of SMFS is iteratively updating

F, W̃, α and S with Eq. (11), Eq. (15), Eq. (19) and

Eq. (27). Here, we briefly analyze the computational com-

plexity of SMFS. Specifically, updating F and W̃ involve

matrix inversions, and take O(n3) and O(d3) in each iteration

respectively. For the optimization of α, it usually takes O(dc2)
to solve Eq. (19). Since S is solved with O(n) for each

row, it costs O(n2) for entire S. Besides, updating qv by

Eq. (23) is no more than O(n2). Due to c ≪ d and c ≪ n,
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(h) Learned graph with noise in view 2

Fig. 1. The similarity graph learned by SMFS and the initialized graphs with or without noise for different views of the Two-moon dataset.

the total computational complexity of SMFS is approximated

by O(Td3 + Tn3), where T is the number of iterations in

Algorithm 1. It is notable that T is less than 5 for SMFS to

converge empirically (see Section IV-E).

IV. EXPERIMENTS

In this section, we present the experimental studies of the

proposed SMFS. Firstly, we visually demonstrate the ability

of SMFS in capturing the similarity structure of data, and

further quantify the impact of noisy features (or views) on

the performance of SMFS. Secondly, we perform experiments

on real multi-view datasets to further verify the superiority of

SMFS over state-of-the-art methods. Furthermore, experiments

on emotion recognition datasets are conducted to intuitively

demonstrate the effectiveness of SMFS in terms of identifying

critical views among multiple views and selecting discrimina-

tive features within each view. Finally, we show the parameter

sensitivity and convergence analysis of SMFS.

A. Experiments on Synthetic Dataset

We followed [32] to randomly generate a synthetic dataset

(e.g., Two-moon) to demonstrate the capability of SMFS for

multi-view data. The Two-moon dataset consists of two views

from 2 clusters, in which each cluster contains 100 sample

points. The first two dimensions of both views are generated

with a moon pattern with 0.12 percentage noise and are shown

in Figs. 1(a) and 1(e) respectively, where each moon stands

for one cluster and the points marked with blue circles denote

the labeled samples. To intuitively verify the effectiveness of

SMFS, 8 additional noisy features randomly distributed in the

range of -0.2 to 0.2 are also added to each view of Two-

moon data, resulting in totally 10 features in each view. Figs.

1(b) and 1(f) depict the initialized similarity graphs that are

directly constructed from the two-dimension feature space, and

Figs. 1(c) and 1(g) show the graphs that are built from the

feature space containing the noisy features. From the results,

it is evident that although the graphs in Figs. 1(b) and 1(f)

can roughly identify the data distribution structure, different

clusters are still connected with several lines. Furthermore,

the connecting lines between the two clusters in Figs. 1(c) and

1(g) are significantly strengthened when the noisy features are

added to the feature space. This visualization indicates that the

noisy features adversely affect the sample similarity structure

and degrade the reliability of graph, thereby making the

clusters even harder to be separated. Figs. 1(d) and 1(h) show

the similarity graphs that are dynamically learned from the

original feature space containing noise as well as the projected

feature subspace. From these figures, we observe that the

learned graphs correctly explore the data distribution structure,

such that different clusters can be explicitly separated without

any connecting lines, which means the similarity graph learned

by Eq. (7) can deliver more discriminant information and thus

is more effective for label propagation and feature selection

than the initialized single-view graphs. This indicates that

SMFS can exploit the similarity structure in projected feature

space to learn a reliable graph across multiple views, even

though there exist noisy features.

B. Experiments on Waveform Dataset

To further analyze the impact of noisy features and views on

the performance of SMFS, we conducted experiments on the

Waveform1 dataset, which is widely used in feature selection

tasks [45], [46]. The Waveform contains 5, 000 samples with

40 features, consisting of 21 normal features (used as the

first view) and 19 noisy features (used as the second view).

Obviously, the noisy features in the second view would hamper

feature selection, such that an ideal multi-view feature selec-

tion should identify the relevant features from the first view

and simultaneously assign appropriate weight to each view.

In this experiment, the Waveform is randomly partitioned into

2 parts, i.e., 1000 samples for training and the remaining for

testing. To verify SMFS, we add noisy features to the above

two views gradually and evenly, in which the noisy features are

independent and identically distributed from N (0, 1). SMFS

is firstly run 20 times on disparate training sets to select

1https://archive.ics.uci.edu/ml/machine-learning-databases/waveform/
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Fig. 2. The experimental results on Waveform, in which (a) shows the
accuracy variation curves with gradually added noisy features, and (b) shows
the view weights with respect to the number of iterations.

optimal feature subsets, in which the proportion of labeled

samples varies from 10% to 30%, then the top 10 features

selected by SMFS are adopted to train the regularized least-

squares classifier (RLSC). The average classification accuracy

on different testing sets is used to evaluate the effectiveness

of SMFS on feature selection.

To quantify the impact of noisy features on performance

more intuitively, the accuracies against the gradually in-

creasing noisy features are illustrated in Fig. 2(a). As can

be seen, the accuracy with different proportions of labeled

samples has a slightly decreased trend with the increase of

noisy features, demonstrating better robustness against noisy

features. It is particularly noteworthy that SMFS behaves more

stably against the increase of noisy features when the labeled

proportion is larger than 15%. This indicates that SMFS is

more immune to the noisy features with more labeled samples.

Furthermore, Fig. 2(b) records the view weights after each

iteration when the labeled proportion and the number of noisy

features are 20% and 60, respectively. From the results in

Fig. 2, we observe that: a) SMFS can identify the relevant

features for classification from the first view such that the

performance is less affected by the noisy features; b) the noisy

features in the second view likewise cannot degrade the per-

formance since SMFS assigns appropriate weights to different

views, thereby weakening its role. Therefore, SMFS maintains

promising effectiveness for multi-view feature selection in the

presence of noisy features and views.

C. Experiments on Multi-view Datasets

1) Experimental Setting: Towards the further evaluation of

the proposed SMFS algorithm, we employ six real multi-

view benchmark datasets including MSRC-v1, Handwritten

(HW), Caltech101-7 (Cal-7), COIL20, ORL and SCENE. The

details about all datasets including the numbers of classes, the

data sizes, and the dimension of features (i.e., the values in

brackets) in different views are summarized in Table I.

To comprehensively verify the effectiveness and superiority

of SMFS, we compare SMFS with different feature selection

methods, including four semi-supervised single-view methods

and four state-of-the-art multi-view feature selection methods,

respectively. We briefly introduce these methods below:

• Locality sensitive discriminant feature (LSDF) [21] is

a single-view method that selects features based on the

label information and the distribution structure of data.

TABLE I
THE DETAILED INFORMATION OF MULTI-VIEW DATASETS.

View MSRC-v1 HW Cal-7

#1 CENTRIST(1302) PIX(240) GABOR(48))
#2 CMT(48) FOU(76) WM(40)
#3 GIST(512) FAC(216) CENTRIST(254)
#4 HOG(100) ZER(47) HOG(1984)
#5 LBP(256) KAR(64) GIST(512)
#6 SIFT(200) MOR(6) LBP(928)

Feature size 2418 649 3766
Classes 7 40 7

Data size 210 2000 1474

View COIL20 ORL SCENE

#1 GIST(512) GIST(512) GIST(512)
#2 HOG(420) LBP(59) CM(432)
#3 LBP(1239) HOG(864) HOG(256)
#4 SIFT(630) CENTRIST(254) LBP(48)

Feature size 2801 1689 1248
Classes 20 40 8

Data size 1440 400 2688

• Structural feature selection with sparsity (SFSS) [24] is a

state-of-the-art single-view semi-supervised method that

incorporates sparse l21-norm into manifold regularization.

• Sparse Rescaled Linear Square Regression (SRLSR) [25]

is a single-view method without a similarity graph.

• SSFS is the single-view version of SMFS, which directly

employs the concatenated features to learn a similarity

graph for feature selection. SSFS is used to verify the

effectiveness of the proposed feature selection and graph

learning model for multi-view data.

• Multi-view sparse feature selection (MSFS) [47] is a

supervised method, which validates if the introduction

of unlabeled data improves the effectiveness of semi-

supervised multi-view feature selection.

• MRMVFS [10] is a semi-supervised multi-view method

that integrates the label information, data distribution and

correlation among multiple views to select features by ap-

plying manifold regularization into multi-view scenario.

• MLSFS [26] exploits multi-view Laplacian regularization

to extend the single-view semi-supervised method and

replaces the l21-norm by l2,1/2-norm for feature selection.

• MASFS [30] is a semi-supervised multi-view feature

selection method that adaptively changes the single-view

similarity graph based on the sample distance information

derived from the original feature space and the feedback

information of the current prediction label.

We randomly partition each dataset into 2 subsets, i.e., 80%

samples for training and the remaining samples for testing,

in which each training set is also randomly divided into the

labeled samples and unlabeled samples according to different

labeled ratios. For a fair comparison, we tune the parameters

of all competitors in the same way as given in the respective

research works [21], [24], [48]. The regularization parameters

of SFMS are searched in a grid of {10−3, 10−2, · · · , 103}.

Considering that different datasets have different dimensions

of features, the numbers of selected features vary from

{60, 90, · · · , 300} for HW and {100, 150, · · · , 500} for other

datasets. Following the semi-supervised feature selection stud-

ies [49], in the first step, each method is implemented on

the training set to select the optimal feature subset, then the
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Fig. 3. The classification accuracy of SMFS and the single-view feature methods on concatenated features with the different numbers of selected features.
The figures in the first and second rows display the experimental results with 10% and 30% labeled samples, respectively.

RLSC with a fixed regularization parameter (i.e., C = 0.1)

is adopted to train a classifier based on the selected features

of labeled samples. The trained classifier is used to assess

the classification accuracy on testing samples with selected

features. We use classification accuracy as a measure to

evaluate the effectiveness of selected features in this paper. To

reduce the statistical variability, each feature selection method

is independently run 20 times on disparate training and testing

partitions and the average classification accuracy with the

optimal parameter configuration is reported.

2) Experimental Results: Comparison to Single-view

Methods. To evaluate the quality of selected features, the

proposed SMFS is firstly compared with single-view methods

which directly concatenate multi-view features as single-view

data for feature selection. The experiment is performed with

10% and 30% labeled samples, respectively. We measure the

classification accuracy of SMFS and the single-view algo-

rithms (i.e., SRLSR, LSDF, SFSS, SSFS) on the benchmark

datasets with different numbers of selected features and show

the results in Fig. 3. We make the following observation

• As the number of selected features increases, the accuracy

of SMFS tends to increase gradually and is considerably

superior to the single-view methods that directly use

the concatenated features in most cases. Guided by the

feature selection model in Eq. (6), SMFS can effectively

exploit the consensus and complementarity information

contained in multiple views by assigning adaptive weights

for different views, facilitating the selection of discrimi-

native features. This also indicates that it is inappropriate

to treat each view equally and indiscriminately concate-

nate multiple projections for joint feature selection.

• SSFS (i.e., the single-view version of SMFS) always

outperforms the single-view method SFSS which regards

the construction of graph and feature selection as two

individual parts and keeps the sample similarity informa-

tion extracted from the original feature space unchanged

during the feature selection process. It verifies that the

implicit graph fusion and dynamical similarity learning

indeed improve the quality of selected features.

Consequently, compared to the single-view methods that

directly select features from the concatenated features of

multiple views, SMFS can discriminate different views with

adaptive weights and coalesce them to learn a joint weighted

feature projection across multiple views, which is more effec-

tive in identifying informative and discriminative features.

Comparison to Multi-view Methods. To further validate

the effectiveness of the newly proposed SMFS, we compare

the performance of SMFS and four state-of-the-art multi-

view feature selection methods with 10% and 30% labeled

samples. Table II reports the classification accuracy computed

by the RLSC with a varying number of selected features. The

last column of Table II records the average and the standard

deviation of using the different numbers of features for each

feature selection method. From the experimental results in

Table II, we make the following observations

• As the number of selected features increases, the ac-

curacies of all multi-view methods raise. Furthermore,

SMFS achieves competitive or significantly better results

on all datasets than the other competitors, fully showing

its effectiveness for multi-view feature selection.

• The accuracy using features selected by SMFS is con-

siderably superior to that of the supervised MSFS, which

validates that learning the similarity structure of unla-

beled samples benefits the selection of more informative

features and accordingly achieves better performance.

• Compared with the semi-supervised methods MRMVFS,

MLSFS and MASFS, the proposed SMFS shows better

or highly competitive performance with the different

numbers of selected features. This indicates that it is

effective to adaptively optimize graph structure according

to the sample similarity both in the original and projected

space and to learn a joint feature projection with adaptive

weights across all views for multi-view feature selection.

Therefore, SMFS achieves significant competitiveness in

comparison with the state-of-the-art multi-view feature selec-

tion methods, validating the effectiveness and superiority of

the multi-view feature selection in Eq. (6) equipped with the

adaptive multiple graph fusion and learning.

To verify the efficiency of SMFS, we implement each

feature selection method in the same computing environment
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TABLE II
THE CLASSIFICATION ACCURACY (%) WITH VARYING NUMBERS OF SELECTED FEATURES BY SMFS AND OTHER MULTI-VIEW FEATURE SELECTION

METHODS WHEN 10% AND 30% DATA ARE RESPECTIVELY LABELED ON THE BENCHMARK DATASETS. THE BEST RESULTS ARE IN BOLD.

Dataset MSRC-v1 with 10% labeled data MSRC-v1 with 30% labeled data

Method 100 150 200 250 300 350 400 450 500 Average 100 150 200 250 300 350 400 450 500 Average

MSFS 69.3 72.0 74.3 74.8 75.5 76.7 77.5 78.0 78.6 75.2±3.0 76.9 78.8 84.8 88.8 91.9 93.2 93.6 93.5 95.0 88.5±6.8

MLSFS 73.2 80.4 82.7 83.8 84.4 85.8 85.8 86.1 86.7 83.2±4.2 85.6 89.9 93.0 93.2 93.7 96.0 96.3 96.4 96.8 93.4±3.7

MRMVFS 73.0 79.6 81.9 84.2 83.8 84.9 86.1 85.4 87.1 83.0±4.3 85.7 92.1 93.9 94.9 96.2 96.7 96.8 97.3 97.0 94.5±3.7

MASFS 74.7 80.5 83.1 85.2 85.6 86.4 87.0 87.4 87.7 84.2±4.2 82.4 90.4 94.3 95.4 97.4 97.5 97.0 97.4 97.5 94.3±5.1

SMFS 78.7 84.1 85.7 87.1 88.1 88.8 89.5 89.8 89.6 86.8±3.6 86.4 94.9 96.6 97.4 97.9 98.0 98.1 98.5 98.2 96.0±3.8

Dataset HW with 10% labeled data HW with 30% labeled data

Method 60 90 120 150 180 210 240 270 300 Average 60 90 120 150 180 210 240 270 300 Average

MSFS 88.8 91.2 92.4 93.0 93.4 93.8 93.9 94.0 94.1 92.7±2.8 92.7 93.9 94.7 95.1 95.5 95.8 95.9 95.9 96.1 95.1±1.1

MLSFS 94.0 94.5 95.1 95.5 95.7 96.0 96.1 96.3 96.4 95.5±0.8 97.5 97.8 98.0 98.1 98.0 98.0 97.9 97.8 97.8 97.9±0.2

MRMVFS 93.5 94.5 95.0 95.4 95.8 95.9 96.1 96.2 96.4 95.4±0.9 96.5 97.2 97.4 97.5 97.8 97.9 98.1 98.0 98.0 97.6±0.5

MASFS 95.7 96.1 96.1 96.1 96.2 96.2 96.2 96.2 96.2 96.1±0.2 97.6 97.8 97.9 98.1 98.0 98.0 98.0 98.0 97.8 97.9±0.1

SMFS 96.6 96.9 97.2 97.0 96.9 96.5 96.4 96.4 95.9 96.6±0.4 97.2 97.5 98.0 98.2 98.5 98.5 98.4 98.2 98.1 98.1±0.4

Dataset Cal-7 with 10% labeled data Cal-7 with 30% labeled data

Method 100 150 200 250 300 350 400 450 500 Average 100 150 200 250 300 350 400 450 500 Average

MSFS 84.1 86.9 87.6 88.6 90.1 90.9 91.3 91.8 92.1 89.3±2.7 91.9 93.6 94.5 94.9 95.2 95.5 95.6 96.0 95.8 94.8±1.3

MLSFS 88.7 90.0 90.1 90.9 91.3 91.4 91.6 91.8 92.1 90.9±1.1 91.8 93.4 94.5 95.2 95.4 95.7 96.0 96.1 96.3 94.9±1.5

MRMVFS 91.3 92.0 92.3 92.6 92.8 92.9 92.8 92.9 92.9 92.5±0.5 92.8 94.2 94.9 95.5 95.6 96.0 96.0 96.2 96.4 95.3±1.1

MASFS 90.5 92.1 92.5 92.6 92.9 93.0 93.0 93.0 93.0 92.5±0.8 92.4 94.2 95.8 96.3 96.6 96.7 96.7 96.7 96.7 95.8±1.5

SMFS 91.3 91.8 93.5 92.7 93.7 93.8 94.1 93.3 92.9 93.0±0.9 93.3 94.6 95.3 97.0 97.6 97.3 97.3 98.3 96.5 96.3±1.6

Dataset COIL20 with 10% labeled data COIL20 with 30% labeled data

Method 100 150 200 250 300 350 400 450 500 Average 100 150 200 250 300 350 400 450 500 Average

MSFS 68.8 71.8 85.7 88.8 90.8 91.8 92.7 93.3 93.6 86.4±9.5 90.4 93.1 94.3 95.2 96.1 96.5 96.8 97.0 97.3 95.2±2.3

MLSFS 86.8 89.7 92.2 93.3 94.2 94.7 94.8 95.1 95.0 92.9±2.9 97.4 97.8 98.3 97.8 97.7 98.1 98.3 98.7 98.9 98.1±0.5

MRMVFS 90.2 92.0 94.0 94.4 94.6 94.9 95.1 95.3 95.5 94.0±1.8 95.0 96.2 97.0 97.7 97.9 98.3 98.5 98.7 98.8 97.6±1.3

MASFS 88.9 90.9 93.4 94.3 94.8 95.3 95.7 95.7 95.8 93.8±2.4 96.8 97.9 98.3 98.6 98.8 98.9 98.9 99.1 99.1 98.5±0.7

SMFS 89.7 91.2 95.6 96.7 96.8 97.3 97.2 97.4 97.5 95.5±2.9 98.2 98.5 98.9 99.0 99.0 99.0 99.1 99.4 99.6 98.9±0.4

Dataset ORL with 10% labeled data ORL with 30% labeled data

Method 100 150 200 250 300 350 400 450 500 Average 100 150 200 250 300 350 400 450 500 Average

MSFS 55.5 59.3 62.8 64.6 65.9 67.6 68.6 69.1 70.2 64.8±4.9 77.4 80.8 82.8 83.8 84.4 85.6 86.7 87.4 88.3 84.1±3.4

MLSFS 61.5 67.3 70.2 72.0 74.1 75.5 77.9 78.1 78.7 72.8±5.7 84.6 89.1 89.7 90.9 91.1 91.6 91.9 92.5 92.9 90.5±2.5

MRMVFS 72.1 76.9 78.6 79.9 81.4 81.8 82.9 83.6 83.9 80.1±3.8 77.6 82.1 87.5 90.6 91.9 92.8 93.6 93.8 94.1 89.3±5.8

MASFS 71.4 78.1 80.3 81.8 82.0 82.4 82.9 83.4 83.5 80.6±3.9 86.6 88.8 89.9 90.6 91.6 91.5 92.1 92.1 92.3 90.6±1.9

SMFS 76.9 82.2 84.1 85.3 85.7 86.3 87.1 87.9 87.4 84.8±3.4 79.9 90.3 92.8 94.7 95.6 95.8 96.4 96.0 96.0 92.7±5.3

Dataset SCENE with 10% labeled data SCENE with 30% labeled data

Method 100 150 200 250 300 350 400 450 500 Average 100 150 200 250 300 350 400 450 500 Average

MSFS 46 .8 47.8 47.6 47.5 47.3 47.0 46.9 46.5 46.3 47.1±0.5 52.0 52.9 53.0 52.2 52.5 52.1 51.8 51.6 51.4 52.2±0.6

MLSFS 42.5 45.2 47.0 47.7 48.5 48.6 48.8 48.7 48.6 47.3±2.1 51.1 52.5 52.3 53.2 53.4 53.4 53.1 53.5 53.3 52.9±0.8

MRMVFS 46.2 47.9 48.7 48.8 49.3 49.0 49.0 48.6 48.5 48.4±0.9 53.8 54.1 54.5 55.0 53.9 53.4 53.1 53.1 52.7 53.8±0.7

MASFS 50.1 50.4 50.1 49.8 49.3 49.6 49.3 48.9 48.7 49.6±0.6 54.0 54.3 54.2 54.0 53.9 53.8 53.5 53.7 53.3 53.9±0.3

SMFS 46.8 49.0 50.0 50.4 50.8 50.8 50.9 51.1 50.8 50.1±1.4 49.8 51.7 53.0 54.0 54.9 55.3 55.7 55.4 55.7 53.7±2.1

TABLE III
THE RUNNING TIME (MEASURED BY SECOND) OF SMFS AND OTHER

MULTI-VIEW FEATURE SELECTION METHODS ON MULTI-VIEW DATASETS.

Dataset MSRC-v1 HW Cal-7 COIL-20 ORL SCENE

MSFS 1.07 0.35 3.37 2.65 0.69 0.51

MLSFS 19.55 5.26 30.98 15.98 4.06 9.98

MRMVFS 12.91 3.47 18.10 12.51 2.99 8.24

MASFS 13.25 5.83 26.34 18.74 4.58 12.51

SMFS 7.07 3.98 11.67 10.69 2.11 7.27

and record their CPU running time on six multi-view datasets.

The average running time of five multi-view methods using

10% labeled samples are reported in Table III. From Table

III, it can be observed that the running time varies according

to the characteristics of dataset (e.g., the data size and the

feature size), and the supervised MSFS always performs more

efficiently than semi-supervised methods since MSFS only

uses few labeled samples. For all semi-supervised methods,

our SMFS achieves better results on five multi-view datasets.

On dataset HW, SMFS consumes less time than other methods,

except for MRMVFS. The results show that the computational

efficiency of SMFS is comparable or considerably superior to

the state-of-the-art competitors. The reason is that although

SMFS involves matrix inversions, its objective function con-

verges rapidly, which has been theoretically proved in Section

III-A and will be demonstrated experimentally in Section IV-E.

Ablation study. Here, we conduct an ablation study to

further illustrate the significance of the adaptive weights of

feature projections and the proposed graph fusion and learning

model. We first remove the procedures for optimizing the

view weights {αv}Vv=1 and set each αv to be the average

number of views, i.e., 1/V , thus getting a simplified version of

SMFS (named SMFS0) that treats different projections equally.

Then, we eliminate the adaptive graph fusion and learning part

of SMFS to get another version of SMFS (named SMFS1),

which uses a fixed graph (i.e., S =
∑V

v=1
Sv/V ) during the

process of feature selection. From the results in Table IV,

we observe that the performance of SMFS0 is consistently

inferior to those of SMFS with different numbers of selected

features. This indicates that the low-quality projections will

adversely affect feature selection if different feature projec-

tions are assigned with the same weights, making the selected

features unreliable consequently. With the adaptive weights

{αv}Vv=1, SMFS can effectively discriminate and fuse different

feature projections, not only considering the complementarity

among projections but also facilitating the feature selection.

Meanwhile, SMFS is considerably superior to SMFS1 that

uses a fixed graph. This verifies that the proposed graph fusion
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TABLE IV
THE CLASSIFICATION ACCURACY (%) OF SMFS, SMFS0 AND SMFS1 ON ALL BENCHMARK DATASETS.

10% labeled data with different numbers of selected features 30% labeled data with different numbers of selected features

Dataset Method 100 150 200 250 300 350 400 450 500 Average 100 150 200 250 300 350 400 450 500 Average

MSRC-v1
SMFS 78.7 84.1 85.7 87.1 88.1 88.8 89.5 89.8 89.6 86.8±3.6 86.4 94.9 96.6 97.4 97.9 98.0 98.1 98.5 98.2 96.0±3.8

SMFS0 72.3 79.2 83.5 86.0 87.6 86.7 85.5 85.7 85.7 83.6±4.8 81.7 91.4 93.6 92.9 95.2 95.0 95.0 96.9 97.0 93.2±4.6

SMFS1 66.7 72.0 76.1 78.9 80.2 81.8 82.9 83.9 83.6 78.5±5.9 76.0 86.8 90.6 93.3 93.7 94.9 96.4 96.7 96.7 92.8±4.1

Cal-7
SMFS 91.3 91.8 93.5 92.7 93.7 93.8 94.1 93.3 92.9 93.0±0.9 93.3 94.6 95.3 97.0 97.6 97.3 97.3 98.3 96.5 96.3±1.6

SMFS0 87.3 90.2 92.8 91.5 91.9 92.4 92.0 91.7 91.3 91.2±1.6 91.1 94.3 95.3 95.3 95.5 96.1 96.6 96.5 95.5 95.1±1.7

SMFS1 90.8 92.1 92.0 91.3 89.7 86.4 89.8 91.5 92.3 90.6±1.9 91.8 93.1 94.0 94.0 95.1 95.7 96.1 96.3 95.3 94.7±1.5

COIL20
SMFS 89.7 91.2 95.6 96.7 96.8 97.3 97.2 97.4 97.5 95.5±2.9 98.2 98.5 98.9 99.0 99.0 99.0 99.1 99.4 99.6 98.9±0.4

SMFS0 82.2 87.4 88.4 92.6 95.0 95.9 96.2 96.3 96.3 92.6±4.4 96.8 97.5 97.8 97.4 96.9 96.3 97.9 98.5 99.0 97.6±0.9

SMFS1 90.5 92.1 94.0 95.0 95.3 95.4 95.7 95.8 96.0 94.4±1.9 95.4 96.0 96.3 96.3 96.4 96.4 96.7 96.9 97.1 96.4±0.5

ORL
SMFS 76.9 82.2 84.1 85.3 85.7 86.3 87.1 87.9 87.4 84.8±3.4 79.9 90.3 92.8 94.7 95.6 95.8 96.4 96.0 96.0 92.7±5.3

SMFS0 68.4 75.5 78.3 81.5 81.5 82.3 83.4 84.0 83.7 79.8±5.1 74.8 86.5 91.0 93.1 93.4 94.5 93.9 94.5 95.0 90.7±6.5

SMFS1 71.8 78.3 80.9 81.9 82.9 83.1 82.8 82.9 82.7 80.8±3.7 73.0 85.3 92.3 93.1 93.6 93.8 94.5 94.6 94.9 90.6±7.2

SCENE
SMFS 46.8 49.0 50.0 50.4 50.8 50.8 50.9 51.1 50.8 50.1±1.4 49.8 51.7 53.0 54.0 54.9 55.3 55.7 55.4 55.7 53.7±2.1

SMFS0 43.3 45.7 47.9 48.2 50.2 48.8 46.5 48.7 48.9 47.6±2.1 47.4 50.1 50.6 51.2 52.2 53.2 53.7 52.4 53.0 51.5±2.0

SMFS1 43.4 45.6 46.7 47.2 47.8 47.7 47.8 48.0 47.9 46.9±1.5 52.7 51.8 50.8 50.1 49.4 48.5 47.6 46.6 46.0 49.3±2.3

Dataset Method 60 90 120 150 180 210 240 270 300 Average 60 90 120 150 180 210 240 270 300 Average

HW
SMFS 96.6 96.9 97.2 97.0 96.9 96.5 96.4 96.4 95.9 96.6±0.4 97.2 97.5 98.0 98.2 98.5 98.5 98.4 98.2 98.1 98.1±0.4

SMFS0 95.4 95.7 95.2 93.9 92.9 91.9 91.8 92.5 92.8 93.6±1.5 96.4 97.0 98.0 98.2 98.0 97.7 97.4 97.4 97.3 97.5±0.6

SMFS1 95.4 95.2 94.9 94.6 94.1 93.9 93.9 94.3 94.4 94.5±0.6 96.0 96.4 96.0 96.8 96.7 96.7 96.5 96.4 96.4 96.4±0.4

TABLE V
THE ACCURACY (MEAN%±STD %) OF USING TOP 20 FEATURES SELECTED BY DIFFERENT MULTI-VIEW FEATURE SELECTION METHODS WHEN WE

RANDOMLY SELECT 10 LABELED SAMPLES IN EACH CLASS ON THE SEED DATASET. THE BEST RESULTS ARE IN BOLD, AND * DENOTES THAT THE

RESULT IS NOT SIGNIFICANTLY WORSE THAN THE BEST USING THE PAIRED T-TEST AT THE 5% SIGNIFICANCE LEVEL.

Subject 1 2 3 4 5 6 7 8 9 10 11 Average

LSDF 88.7±3.8 84.8±3.3 91.2±3.5 93.7±0.5 91.7±1.4 92.6±4.7 88.5±1.0 88.0±3.0 92.4±3.8 93.8±1.4 83.9±4.2 89.3±3.4

SFSS 90.7±2.9 89.4±1.3 94.1±1.5 95.8±0.7 93.5±2.3 93.3±4.4 93.0±2.9 90.1±0.9 93.3±3.7 94.7±0.5 90.6±1.1 92.6±2.1

SRLSR 91.6±0.9 91.4±2.0 93.7±1.8 93.5±1.5 92.2±1.6 93.8±3.9 91.6±1.0 91.1±1.6 92.1±4.2 93.7±0.7 91.7±1.7 92.5±1.2

SSFS 91.3±1.3 91.0±2.2 94.7±1.8 96.3±1.3 93.7±2.0 94.2±2.7 93.9±0.8 91.9±1.4 94.0±3.0 94.4±2.2 91.4±3.0 93.3±1.7

MSFS 89.8±3.5 88.5±2.3 92.9±2.5 95.8±0.6 93.0±1.1 91.3±3.7 91.2±1.1 88.8±0.8 92.6±3.5 92.8±0.7 89.6±2.4 91.5±2.2

MLSFS 90.5±3.0 89.9±2.3 94.3±2.7 96.3±0.2 94.2±1.5 93.7±4.7* 92.5±0.7 91.1±1.3 93.6±1.6 96.4±1.2 90.2±2.8 93.0±2.3

MRMVFS 93.0±1.0* 92.7±2.8 94.3±3.0* 96.0±2.3 93.9±2.2 94.6±4.2* 94.4±1.4 92.8±2.5 94.4±2.3 94.7±0.8 93.5±1.6 94.0±1.0

MASFS 92.0±2.6 92.1±1.6 95.2±2.3* 96.9±0.6 94.8±0.6 94.3±4.3* 93.8±0.7 92.3±1.3 95.1±2.2 96.8±0.5 92.0±0.7 94.1±1.8

SMFS 95.4±3.1 96.6±1.8 97.8±1.8 99.3±0.4 97.4±1.3 97.2±2.7 97.3±0.9 97.1±1.3 98.5±1.0 98.9±0.1 96.8±1.0 97.5±1.1

and learning model indeed enhances the performance of multi-

view feature selection. With the implicit graph fusion and

the adaptive structure learning in projection subspace, SFMS

can accurately capture the similarity structures across multiple

views, improving the reliability of label prediction and thus

identifying more discriminative features.

D. Applications on Emotion Recognition Datasets

In this section, we apply SMFS to emotion recognition

on a newly developed emotional EEG dataset, i.e., the SJTU

Emotion EEG dataset (SEED)2. The SEED contains the EEG

neural signals of multiple subjects who participated in stimu-

lation experiments, where each subject watched 15 emotional

film clips that lasted 57 minutes in total, and their emotional

reactions are used as the emotional labels of the corresponding

film clips. Each subject joined the stimulation experiments

in three separate sessions, and each session generated 3394

samples (1120 negative samples, 1104 neutral samples, and

1170 positive samples). The neural signals were recorded at a

sampling rate of 200 Hz and processed by a frequency filter

with five frequency bands, i.e., Delta (1–3 Hz), Theta (4–7 Hz),

Alpha (8–13 Hz), Beta (14–30 Hz), and Gamma (31–50 Hz).

Following [50], the differential entropy features extracted from

2http://bcmi.sjtu.edu.cn/∼seed/seed.html

the above frequency bands are chosen for emotion recognition.

Hence, each frequency band has 62 electrode features over all

the brain areas (shown in Fig. 4) and can be used as one

view, so SEED can be regarded as a multi-view dataset with 5

views and 310 features in total. We randomly take 10 samples

with label information per class from each session of one

subject and 30% unlabeled samples as the training set, and

the remaining samples are used for testing.

To evaluate the effectiveness of SMFS on emotion recog-

nition, we conduct experiments on the data generated from

three separate sessions of 11 different subjects and compare

SMFS with the single-view and multi-view feature selection

algorithms. The experiments are repeated 20 times using the

same experiment settings as in Section IV-C. Table V presents

the average classification accuracy of the RLSC using the top

20 features selected by different feature selection methods. The

last column of Table V shows the average performance over

all the subjects for each feature selection method. Generally,

the semi-supervised multi-view methods mostly outperform

the single-view competitors as well as the supervised MSFS,

demonstrating the significance of using abundant unlabeled

data and complementary information of multiple views for

performance improvement. Moreover, SMFS achieves sig-

nificantly better results compared to all competitors on all

subjects for classification accuracy. The single-view version
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TABLE VI
THE LEARNED AVERAGE WEIGHTS OF DIFFERENT BANDS/VIEWS.

Band/View Delta Theta Alpha Beta Gamma

MSFS 0.42 0.23 0.20 0.10 0.05

MLSFS 0.20 0.20 0.20 0.20 0.20

MRMVFS 0.33 0.17 0.18 0.17 0.15

MASFS 0.19 0.19 0.19 0.21 0.22

SMFS 0.25 0.12 0.10 0.18 0.35
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Fig. 4. The top 20 features (marked by red font) selected by SMFS on the
Subject 1 are from the Gamma, Delta and Beta bands.

(i.e., SSFS) likewise performs better or comparably than other

single-view competitors. Especially, SMFS achieves a 4.6%

improvement on Subject 8 in comparison with the best result

of all the other competitors, and also achieves 3.6% to 9.2%

improvement compared to others in terms of the average

performance over all the subjects. The results indicate that

the proposed SMFS is more effective in emotion recognition

than the state-of-the-art feature selection methods.

According to [51], the neural signals of positive emotions

have significantly higher Gamma and Beta responses than

those of negative and neutral emotions. Furthermore, the

neural signals of neutral emotions have higher Delta responses

compared to the negative emotions, indicating that the Gamma,

Delta and Beta bands are critical views and more related to

these emotions than others. To further evaluate the ability of

SMFS for identifying the critical views/bands and features for

emotion recognition, we record the learned average weights

of different views (i.e., frequency bands) by the multi-view

methods on all the subjects in Table VI. From Table VI, we

observe that other methods either assign the same weights

to different bands or leave out some critical bands. Contrary

to this, the proposed SMFS identifies these critical bands

and adaptively assigns larger weights to them. This implies

that the features from the Gamma, Delta and Beta bands

contain more important information for emotion recognition

task. Accordingly, Fig. 4 shows the top 20 features selected

by SMFS on Subject 1. As depicted in the figure, the selected

features are mostly from the Gamma and Delta bands, and

their positions are also consistent with the previous studies of

critical brain areas [50], [51]. The results indicate that SMFS

not only effectively identifies the critical views among multiple

views but also the discriminative features within each view.

E. Parameter Sensitivity and Convergence Analysis

In SMFS, there are four manual parameters λ, β, γ and µ.

To investigate the impacts of the parameters and the number

of selected features on the performance, we first vary each

parameter and the number of selected features. Due to space

limitation, the experimental results on the HW and ORL
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Fig. 5. The accuracy of SMFS with varying parameters and the number of
selected features on the HW and ORL datasets with 10% labeled samples.
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Fig. 6. The accuracy with varying β and γ on the HW and ORL datasets.

datasets with 10% labeled samples are shown in Fig. 5. It is

observable that SMFS has similar performance variation trends

on HW and ORL, i.e., ascending initially and descending with

the increase in parameters. Moreover, the performance drops

significantly with λ greater than 1, indicating the sensitivity

of SMFS towards λ. Besides, SMFS is somewhat sensitive

to these parameters when the number of selected features

is small. To further study the impacts of β and γ on the

performance, we fix λ and µ as 1, and set the number of

selected features to the median value (i.e., 180 for HW and

300 for ORL). The experimental results are shown in Fig. 6.

It can be seen that the performance of SMFS ascends initially

and descends with the increase in β and γ. Through tuning

the parameters, SMFS achieves relatively good results with β
and γ in the range of {0.1, 1, 10}. When β is larger than 10,

the performance has a significant decreasing trend, indicating

that the quality of selected features will be degraded if the

graph learning is overemphasized. Moreover, SMFS performs

worse when the values of β and γ are very small (e.g., 10−3).

This demonstrates that the terms corresponding to β and γ are

particularly important for identifying discriminative features.

Specifically, graph learning can guarantee the accurate propa-

gation of label information on the learned graph, while feature

selection aims to learn discriminative projection for fitting

prediction labels. Therefore, β and γ should be appropriately

set to improve the performance. Considering the different roles

of feature selection and graph learning in semi-supervised

multi-view feature selection applications, how to automatically

determine the optimal β and γ is still an open problem, which

will be studied in the future.

Although, we have theoretically proved the convergence of

SMFS in Section III-A, here, we further verify its convergence

on the benchmark datasets with 10% labeled samples. The
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Fig. 7. Convergence curves of SMFS with 10% labeled samples.

parameters λ, β, γ and µ are set to 1, and the variation

curves of the objective function in Eq. (9) with the number of

iterations are shown in Fig. 7. It is clear that the objective

function rapidly decreases in the first few iterations and

stably converges within 5 iterations on all datasets. The fast

convergence guarantees the optimization efficiency of SMFS.

V. CONCLUSION

In this paper, we propose a novel semi-supervised multi-

view feature selection algorithm (SMFS), providing a com-

prehensive and effective scheme to exploit multi-view data.

Different from most existing works which indiscriminately

concatenate multiple view features for joint feature selection,

and predefine view-specific similarity graphs based on the

Euclidean distance between original data points, SMFS not

only balances the contributions of different view features,

but also effectively coalesces multiple feature projections

straightforward. This helps to form a joint feature projection

in an adaptive-weighting way by merging the learned weights

into the corresponding feature projections, which facilitates

preserving the complementarity and consensus among multiple

views in the aspect of the feature projections. Furthermore,

SMFS adaptively learns a unified similarity graph compatible

across multiple views with implicit multiple graph fusion and

sample similarity in the joint feature projection space, largely

alleviating the adverse effects of irrelevant and redundant

features. Moreover, an iterative solution with convergence

guaranteed theoretically and demonstrated experimentally is

presented to solve SMFS. Extensive experiments on different

datasets fully verify that SMFS is effective to select the

discriminative features from heterogeneous feature spaces, and

achieves superior performance to the state-of-the-arts.

Although SMFS achieves its objectives, some important

directions are worth for future research. First, we would like to

generalize the l2,1-norm to a more feasible l2,p-norm constraint

where p ∈ (0, 1) [25]. Second, it is possible to design

a more general multi-view feature selection framework that

could work in supervised, semi-supervised and unsupervised

scenarios. Additionally, the task to extend SMFS to handle

large-scale and high-dimensional multi-view data is another

important direction in the future.
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