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Anthony Cohn, De-Shuang Huang*, Fellow, IEEE,

Abstract—Graph neural network(GNN) has obtained out-
standing achievements in relational data. However, these data
have uncertain properties, for example, spurious edges may be
included. Recently, Variational graph autoencoder(VGAE) has
been proposed to solve this problem. However, the distributional
assumptions in the variational family restrict the variational
inference (VI) flexibility and they define variational families
using mean-field, which can not capture complex posterior
distributional. To solve the above question, in this paper, we
proposed a novel GNN model based on semi-implicit variational
inference (SIVI), which can embed the node to the latent
space to improve VI flexibility and enhance VI expressiveness
with mixing distribution. Specifically, to approximate the true
posterior, a variational posterior was given utilizing a semi-
implicit hierarchical variational framework, which can model
complex posterior. Moreover, an iterative decoder is used to better
capture graph properties. Besides, due to the hierarchical struc-
ture in our model, it can incorporation neighbour information
between nodes. Experiments on multiple data sets, our method
has achieved state-of-the-art results compared to other similar
methods. Particularly, on the citation dataset Citeseer without
features, our method outperforms VGAE by nine percentage.

Index Terms—Latent variable, Variation inference, Graph
neural network, Semi-implicit model, Hierarchical frame.

I. INTRODUCTION

C
ONVOLUTIONAL neural networks (CNNs) have made

great achievements in the past ten years in the fields

of speech [1], image [2, 3] and other fields [4]. However,

CNNs can only handle normalized data, e.g., grids, sequences,

i.e., Euclidean space data, which has translation invariance.

Nevertheless, in reality there is a lot of data that is in non-

European space, such as social network data, protein and
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protein (PPI) interaction data, transportation data, etc [8]. To

process this data efficiently, graph neural networks (GNNs)

have been proposed and also achievements huge progress in

many fields, such as social networks [5], recommendation

systems [6], protein-protein interaction [7] and action pre-

diction [8][9]. Kipf et.al [10] proposed graph convolutional

network (GCN), which learns the first-order approximate of

nodes and followed a nonlinear activation function to learn

graph representation. Considered neighbourhood information

between nodes, Hamilton et.al [11] proposed GraphSAGE,

a inductive representation learning method, which can ag-

gregation neighbourhood information by aggregate function.

GraphSAGE is designed to generate low-dimensional vector

representations of nodes and is particularly useful for graphs

with rich information on node attributes. Different neighbour

nodes have different weights, specifying different weights to

different nodes in the neighbourhood that can prevent redun-

dant information from being aggregate, hence, Veličković et.al

[12] proposed graph attention networks(GATs) use masked

self-attentional layers. Besides, based on the GNN, some

interesting works were also proposed by scholars, such as

graph pool [13], place classification [14], and facial expression

recognition [15].

Although it’s very effective in dealing with relational data,

there are some challenges. For example, graphs are very

huge in nature, graph structural information is ignored. To

eradicate the uncertain problem, Bayesian-based approaches

were proposed. For instance, Zhang et.al proposed BGCN

[16] that incorporation uncertainly graph information via para-

metric random graph model. However, BGCN relies heavily

on the selection of random graphs, which ignore the node

features and training labels. To overcome this drawback, Pal

et.al [17] introduced a non-parametric BGCN, which uses

the node features, training labels, and observed graph for

posterior inference. Following this idea, many Bayesian-based

approaches are proposed [18–20].

Variational autoencoders(VAEs) is a popular method for

unsupervised representation learning of high dimensional

data [21]. Inspired by VAEs, variational graph autoen-

coders(VGAEs) [22] was proposed. VGAE uses GCN as an

encoder and a simple inner product as the decoder. VGAE as-

sumes the variational posterior is Gaussian distribution, which

is restricted variational inference flexibility. And inner product

decoder limits the ability to generate models. Recently, semi-

implicit variational inference (SIVI) [24] and normalizing

flow (NF) [25–27] are proposed, which provide flexibility

posterior distribution and effective optimization. Expansion
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Fig. 1. Node distribution propagation. Our method can diffuse the node’s
distributions between neighbors.

SIVI to graph domain, SIG-VAE [28] was proposed. SIG-VAE

introduced a semi-implicit model to learn the posterior, which

can well simulation the complex posterior with heavy tails,

skewness, multimodality characteristics.

Through parameterizing VAEs by GNN, Grover et.al [29]

proposed Graphite, a framework for large graph nodes repre-

sentation. Graphite uses forward message passing for encoding

nodes to latent space and reverse message passing for decod-

ing. Despite the excellent results Graphite obtained, however,

in the encoder step, Graphite assumes the posterior is isotropic

Gaussian, which results in high variance, and it restricts the

expressive ability, hence, it can not model complex posterior.

Inspired by SIVI and SIG-VAE, we proposed a hierarchi-

cal graph neural network based on semi-implicit variational

inference. Specifically, to handle Graphite’s distribution as-

sumptions and inability to model complex distributions, we

proposed a hierarchical frame for our model in the encoder

step, enhancing the expressiveness of posterior distribution for

nodes in the latent space. For do this, we construct stochastic

multi-layers hierarchically and inject random noise at every

layer. After doing this, the output of GNN is random variables

rather than deterministic, hence, uncertainty in the structure

of a graph can be measured. More specifically, when obtain

node’s latent posterior distributions, the distributions of their

neighboring nodes are incorporated simultaneously, which is

very important for graph representation, as shown in Fig.1.

The distributions of aqua green nodes can propagation to olive

node. In the decoder step, following Graphite, reverse message

passing is used to construct the graph. For model inference,

we derive a lower evidence lower bound (ELBO) followed by

SIVI [24].

The contributions of our proposed method are as follows:

1) We proposed a new GNN model, which can propagation

uncertainty between neighbourhood nodes. Contrary to

determinant GNN, such as GCN and GAT, our method

can metric the uncertainty of graph structure, which is

very important for information aggregation.

2) We proposed a new encoder framework for variational

posterior learning. Specifically, different from the tradi-

tional encoder, which assumes posterior to be Gaussian

distribution, we use a hierarchical design for model to

learn the parameters of posterior, then, we can obtain

a more expressive posterior, which can model complex

graph data.

3) We use our proposed method to perform link prediction

task and conduct extensive experiments on 3 citation

datasets(ie, Cora, Cisteer, Pubmed) and 4 different sce-

nario datasets, our method obtains start-of-the-art results

compared with the baseline method.

II. PRELIMINARIES

Given a graph G = (E,V) where E and V refer to edges

and nodes of the graph respectively. Additionally, the feature

matrix of the graph defined as a m-dimensional signal X ∈
R
m×n associated with each node. In this paper, graph structure

is represented by symmetric adjacency matrix A ∈ R
n×n

where n = |V| and Ai,j = 1 denote there is an edge between

node i and j and Ai,j = 0 on the contrary.

A. Graph Neural Networks

Sperduti et.al [30] applied neural network to solve directed

acyclic graphs, which is regarded as a motivation of GNN.

The notion of GNN was declared by Gori et.al firstly [31].

After that, Scarselli et.al [32] and Gallicchio et.al [33] further

developed GNN. The intuitive idea behind GNN is message

passing between nodes and their neighbourhood by an iterative

manner until a fixed point appears or converges. However, this

process is inefficient computation, hence many works attempts

to overcome this problem [34] [35].

Drawing on the ideas of CNNs, convolutional GNN (Con-

vGNN) has been proposed. There are two streams of Con-

vGNN: spectral-based and spatial-based approaches. The first

spectral-based method was proposed by Bruna [36], which

introduced a graph convolution based on spectral graph theory.

Inspired by this method, many works have been raised recently

[10, 37, 38]. Spatial-based approaches have been proposed

recently by scholars. Compared with spectral-based methods,

which involved spectral graph theory, spatial-based approaches

operate directly on the nodes of graph. The spatial-based

approach maximizes the use of the rich information of the

nodes, hence, many researchers focus on this area. For ex-

ample, GraphSAGE [12] and GAT [11] are proposed benefits

from effective node aggregation. In order to capture high-order

information of neighbour nodes, multi-hop neighbourhood ag-

gregation is essential. Hence, based on Weisfeiler-Leman(WL)

[39], high order GNN has proposed [40, 41], which extension

1-WL test to k-WL test to capture multi-hop information of

nodes.Furthermore, many VAE-based [42, 43] GNNs are also

proposed. Such as VGAE [22], GraphVAE [44], simple-GVAE

[45], CGVAE [46].

B. Semi-implicit Variational Inference

The vanilla variational inference (VI) has the following

drawbacks: 1) optimization difficulties when learning posterior
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distributions, 2) cannot resolve the distribution with skewness,

kurtosis, multimodality, and other characteristics. To overcome

the above questions, Semi-implicit Variational Inference(SIVI)

[24] has been proposed. SIVI is similar to HVM proposed by

Ranganath et.al [47]. SIVI assumes that posterior parameters

are derived from an implicit distribution rather than being

analytic. SIVI also has a hierarchical structure, which can

capture complex posterior distribution. More specifically, as-

suming φ ∼ qψ(φ), where ψ denotes distribution parameter

can be inferred, the SIVI distribution for Z can be defined as

a hierarchical manner: Z ∼ p(Z|φ), φ ∼ qψ(φ). In order

to obtain a tractable variational posterior, SIVI derives a

lower bound for ELBO [48–51] to optimize the variational

parameters.

III. PROPOSED METHOD

When we use probabilistic graphical model for graph rep-

resentation learning, we are interested in learning a param-

eterized distribution over adjacency matrix A and the nodes

feature X is added as conditioning evidence. In this paper, to

achieve this goal, we induct a latent variable Zi ∈ R
k and the

node feature Xi ∈ R
m for each node i ∈ 1, 2, . . . , n alone

with Ai,j ∈ R. Without loss of generality, we use concise

representation Z ∈ R
n×k, X ∈ R

n×m, and A ∈ R
n×n for the

variables, which are conditional independencies.

Then, through maximizing the marginal likelihood of the

observed adjacency matrix A conditioned on X, model pa-

rameters Θ can be obtained as follows:

argmax
Θ

log pΘ(A|X) = log

∫

Z

pΘ(A,Z|X)dZ (1)

Here, p(Z|X) is a fixed prior distribution over the latent

variable of every node associated with graph G. However,

equation (1) is intractable, hence, a variational posterior

qΦ(Z|A,X) is introduced to approximate the true posterior,

which can be turned into an optimization problem. Therefore,

we can obtain a tractable evidence lower bound (ELBO) to

the above objective with parameters Φ :

log pΘ(A|X) =EqΦ(Z|A,X)

[

log
pΘ(A,Z|X)

qΦ(Z|A,X)

]

︸ ︷︷ ︸

ELBO

+ EqΦ(Z|A,X)

[

log
qΦ(Z|A,X)

pΘ(Z|A,X)

]

︸ ︷︷ ︸

KL(qΦ(Z|A,X)||pΘ(Z|A,X))

(2)

Since the KL(qΦ(Z|A,X)||pΘ(Z|A,X)) ⩾ 0, ie, it’s

non-negative, hence, equation (2) can be rewritten as follows:

log pΘ(A|X) ⩾ EqΦ(Z|A,X)

[

log
pΘ(A,Z|X)

qΦ(Z|A,X)

]

(3)

when the approximate posterior qΦ(Z|A,X) matches the true

posterior pΘ(Z|A,X), the lower bound is tight. Therefore,

in order to obtain the best approximate of true posterior,

we can maximize the (3) to optimize the parameters. Hence,

the question is how to solve the qΦ(Z|A,X)(encoder) and

pΘ(A|Z,X)(decoder).

A. Encoder using semi-implicit variational inference

A typical approach of defining variational posterior is to

use the mean-field (MF), then, the posterior can been written

as qΦ(Z|A,X) ≈
∏n
i=1 qΦi

(zi|A,X), where qΦi
(zi|A,X) is

assumed to be Gaussian distribution. A high variance will

occur, however, when the Gaussian distribution mismatching

true posterior and it’s restricting expressiveness of posterior

following from the distributional assumptions [42]. To address

the aforementioned problem, instead of using MF in previous

work[52], we use a hierarchical semi-implicit framework to

approximation the variational posterior. Specifically, in order

to diffusion the uncertain between node and it’s neighbor-

hoods, first, we inject random noise at every layer of our

encoder and concatenating it with nodes attributes, so that the

output of GNN are random variables:

hp = GNNp(A, CON(X, ϵp,hp−1)) (4)

where ϵp ∼ qp(ϵ) is Bernoulli distribution of N-dimensional

noise. p denotes the number of layers, h0 = X, CON denote

CONCAT operation. With the above operation, the output of

GNN H = CON({hi}
p
i=1) is a random variable. Hence, it

has been used to measure the uncertainty of GNN. Then, we

use this random H with X and A to learn the parameters of

variational posterior:

µ(A,X) = GNNµ(CON(X,hP ),A) (5a)

σ(A,X) = GNNσ(CON(X,hP ),A) (5b)

CON denote CONCAT operation. Through (5a) and (5b), we

can obtain the parameters of variational posterior. Attributed to

the equation (4), which can propagate the uncertainly through

the different layers, hence, when to learn the parameters µ and

σ it can aggregation the neighbourhoods information of nodes,

which is very important for aggregation nodes information.

Finally, we can obtain the variational posterior as follows:

qΦ(Z|A,X, µ, σ) = ΠNi=1qΦ(zi|A,X, µi, σi) (6)

where qΦ(zi|A,X, µi, σi) = N (µi(A,X), σi(A,X)).
In contrast to Graphite [52], which uses the mean-field

approximation to define variational family and assumes the

posterior is isotropic Gaussian, which restricts the expression

of posterior distribution. Moreover, its output of GNN is

determination, which can not propagate uncertainly between

the nodes. Our approach can propagate uncertainly between

the nodes with the random output of GNN and aggregate

the neighborhood information naturally. This can increase the

power of expressiveness and capture the complex posterior.

Our approach can be seen in Fig.2.

B. Decoder using iterative manner

Following the [52] uses iterative manner for decoding, this

paper also uses this approach. Specifically, given the latent

variable Z and feature matrix X, an intermediate weighted Ã

can be calculated through the inner-product of Z.

Ã =
ZZT

||Z||2
+ 11T (7)
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Fig. 2. The flowchart of our encoder. H and A denote the output of GNN and adjacency matrix respectively. In the input graph, we add random noise to
every layer, which makes output H has randomness.

⊕
denote CONCAT operation.

Z∗ = GNNΘ(Ã, [Z|X]) (8)

Hence, the decoder is given as follows:

pΘ(A|Z,X) =

n∏

i=1

n∏

j=1

p
(i,j)
Θ (Ai,j |Z

∗) (9)

In order to representation learning of large graph more

scalable, the matrix right multiplications is adopted for in-

ference. A simplified graph propagation rule is adopted:

H(l) ← ζl(ÃH(l−1)). For finally embedding of nodes, we

use Zf = (1− λ)Z+ λZ∗.

Towards to link prediction task, We can compute the prob-

ability that whether two edges are connected as follows:

p(Ai,j = 1|zfi , z
f
j ) = δ(ZfZf

T

) (10)

where λ is hyper-parameter and δ is sigmoid function.

C. Model Inference

The first term on the right side of equation (2) is the ELBO,
which is used to inference the model. Following the SIVI [24],
we construct a hierarchical function: Z ∼ q(Z|Ψ), where Ψ ∼
qΦ(Ψ|X,A). i.e., Ψ drawn from a distribution Therefore, we
can rewritten the ELBO as follows:

L = EqΦ(Z|A,X)

[

log
pΘ(A,Z|X)

qΦ(Z|A,X)

]

= −KL(EΨ∼qΦ(Ψ|A,X)) [q(Z|Ψ)||p(Z))]

+EΨ∼qΦ(Ψ|A,X)

[

EZ∼q(Z|Ψ) log p(A|Z)
]

.

(11)

Based on the [24]’s first theorem, we have:

KL(EΨ∼qΦ(Ψ|A,X)) [q(Z|Ψ)||p(Z))]

⩽ EΨ∼qΦ(Ψ|A,X)KL(q(Z|Ψ)||p(Z)).
(12)

Hence, equation (11) can be written as follows:

L = −KL(EΨ∼qΦ(Ψ|A,X)) [q(Z|Ψ)||p(Z))]

+ EΨ∼qΦ(Ψ|A,X)

[

EZ∼q(Z|Ψ) log p(A|Z)
]

⩾ EΨ∼qΦ(Ψ|A,X) [KL(q(Z|Ψ)||p(Z))]

+ EΨ∼qΦ(Ψ|A,X)

[

EZ∼q(Z|Ψ) log p(A|Z)
]

= L
∗

(13)

Directly optimizing L
∗ could engender our method degen-

erates to the vanilla VGAE, duo to could lead to a point

mass density as qΦ(Ψ|X,A). Therefore, in order to prevent

this degeneracy, add a regularization term to L
∗. Assume

that S samples are derived from qΦ(Ψ|X,A), which denotes

{Ψ(i)}Si=1. Hence, we can define LS as follows:

LS = EΨ,Ψ(1),...,Ψ(S)∼qΦ(Ψ|A,X)[KL(q(A|Ψ)||ĥS(Z)] (14)

where,

ĥS(Z) =
qΦ(Ψ|A,X) +

∑

S

s=1
qΦ(Ψ(s)|A,X)

S+ 1

Finally, the ELBO can be described as follows:

L = L
∗ + LS (15)

Our method is described in Algorithm 1.

Algorithm 1 The algorithm of our method.

INPUT:A,X.

Initializing Θ and Φ.

Sample ϵp ∼ qp(ϵ) where qp(ϵ) is Bernoulli distribution.

for iteration t = 1, 2, . . . , n do do

Computing hP according to equation (4).

Computing µ and σ according to equation (5a) and

(5b) respectively.

Computing q(Z|X,A) according to equation (6).

Computing p(A|X,Z) according to equation (9).

Update Θ and Φ by maximizing L in (14).

return Θ,Φ.

end for

OUTPUT: Model Parameter Θ.

For link prediction task, computing Z∗ according to equa-

tion (8), then, Zf = (1− λ)Z+ λZ∗ is used to computing

p(Ai,j = 1|zfi , z
f
j ) = δ(ZfZf

T

).

IV. EXPERIMENTS

A. Datasets

We evaluate our method on 3 citation networks, ie., Cora,

Citeseer, and Pubmed with paper as nodes and citations as

edges [53]. Furthermore, four different datasets without fea-

tures are used to validate our method, i.e., NS: a collaborative
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(a) NS (b) Router

(c) USAir (d) Yeast

Fig. 3. AUC and AP of link prediction on the four different datasets. (a) NS: Collaboration Network. (b) Router: Internet Network. (c) USAir: Transportation
Network. (d) Yeast: Protein Network. The red dashed and solid lines represent the maximum and minimum values of AUC. The black dashed and solid lines
represent the maximum and minimum values of AP.

TABLE I
DESCRIPTION OF THE DATASETS DETAILS. ’-’ INDICATES THAT THE

CHARACTERISTIC IS NOT AVAILABLE IN THE CORRESPONDING DATASET

Nodes Edges Node feature Labels

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3

NS 1589 2742 - -
USAir 332 2126 - -
Router 5022 6258 - -
Yeast 2375 11693 - -

network of network science researchers, including 1589 nodes

and 2742 edges [55], Router: a router internet with 5022

nodes and 6258 edges [56], USAir: US Airlines network,

including 332 nodes and 2126 edges [57], Yeast: a protein-

protein interaction (PPI) network in yeast, which has 2375

nodes and 11693 edges [58]. The detailed characteristics of

the datasets are summarized in TABLE I.

B. Training Configurations

We evaluate the performance of our approach for the link

prediction task. All GNN models in the experiments were

implemented using GCN [10]. The link prediction task is to

predict whether an edge exists between two nodes [21]. We

experiment on two different types of datasets: with and without

features. The datasets was split into 5%, 10% and remaining

for validation, testing and training respectively as done in [22].

We run our model for 3500 epochs with a learning rate of

0.0005 and training using Adam optimizer. The latent space

dimensional is 16. The dimensional of Bernoulli noise ϵ is 64

and 32 for features and featureless respectively.

We organized the experiments on an experimental machine

with Intel Xeon(R) CPU E7-8867 v4 @2.00GHz*80, GPU

NVIDIA GTX 2080Ti, MEMORY 47.0GiB, Disk 698.4GB.

Experimenting with implementation on the GPU version using

TensorFlow [54].

C. Baselines And Metric

We compared our approach with some similar methods:

Spectral Clustering (SC) [59], DeepWalk (DW) [60], Graphite

[52], VGAE [22], GAE [22]. The model was evaluated by

Area Under the ROC Curve (AUC) and Average Precision

(AP). Particular, SC and DW do not provide the ability to

merge node features when learning embeddings, hence they

both validate on featureless datasets.
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(a) (b)

(c) (d)

Fig. 4. TSNE embeddings of the latent feature vectors for the Cora dataset. Colors denote labels. (a) VAE. (b) VGAE. (c) Graphite. (d) Ours.

TABLE II
AREA UNDER THE ROC CURVE (AUC) FOR LINK PREDICTION WITH

NODE FEATURES. THE BEST RESULTS ARE BOLDED. ‘-’ DENOTE NO NODE

FEATURES

Cora Citeseer Pubmed

SC - - -

DW - - -

GAE 91.05 89.99 92.33

VGAE 91.37 90.05 84.64

Graphite 94.50 97.63 95.96

Ours 94.84 98.00 96.89

D. Results

1) With nodes features: In the first place, we conduct

our method on 3 datasets with node features. The results are

illustrated in TABLE II and TABLE III. We can discover at

the table, our approach outperforms others. Compared with

VGAE, which uses simple Gaussian assumptions, our method

is more efficient than it in Citeseer and Pubmed datasets with

a large margin, which demonstrates our model has powerful

expression ability for the complex graph. In particular, our

method outperforms VGAE by 10% on the Pubmed dataset.

TABLE III
AVERAGE PRECISION (AP) FOR LINK PREDICTION WITH FEATURES. THE

BEST RESULTS ARE BOLDED. ‘-’ DENOTE NO NODE FEATURES.

Cora Citeseer Pubmed

SC - - -

DW - - -

GAE 92.62 91.00 92.61

VGAE 92.26 91.00 86.02

Graphite 95.37 97.41 96.15

Ours 95.37 97.80 97.00

The reason behind this is our method can capture the complex

posterior and propagate uncertainty between nodes and their

neighbourhoods, enhancing expressive ability.

2) Without nodes features: We execute our method on

node featureless datasets. The results are shown in TABLE

IV and TABLE V. As we can see in the table, our method

achieved excellent results. Compared with GAE and VGAE,

our method improves up to nearly 10% with AUC for Citeseer

and Pubmed datasets. Besides, we demonstrate our approach

on the four different datasets: NS, Router, USAir, Yeast. The

results can be shown in Fig. 3. From Fig. 3 we can discover,
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TABLE IV
AREA UNDER THE ROC CURVE (AUC) FOR LINK PREDICTION WITHOUT

FEATURES. THE BEST RESULTS ARE BOLDED.

Cora Citeseer Pubmed

SC 84.6 80.5 84.2

DW 83.1 80.5 84.4

GAE 85.92 78.34 85.36

VGAE 84.65 79.04 85.13

Graphite 88.58 85.57 95.36

Ours 91.14 91.30 95.01

TABLE V
AVERAGE PRECISION (AP) FOR LINK PREDICTION WITHOUT FEATURES.

THE BEST RESULTS ARE BOLDED.

Cora Citeseer Pubmed

SC 88.5 85.0 87.8

DW 85.0 83.6 84.1

GAE 88.74 83.4 88.65

VGAE 87.37 83.12 88.49

Graphite 90.09 85.14 94.32

Ours 92.84 92.89 96.00

our method obtained state-of-the-art results in four datasets.

Especially, our method is more effective than LINE and SC in

USAir dataset, 20% higher in the AUC and AP. For the Yeast

dataset, our approach procures the best result, compared with

LINE, our method is nearly seven percentage points higher

than the line in AP, ten percentage points higher than the line

in AUC. For NS, Router, and Yeast datasets, reference the

dash and solid lines, compared to other methods, our method

greatly improves the results in terms of both AUC and AP.

The results prove that our method is more effective for both

sparse and dense graphs.

3) Visualization Display: We visualize the embeddings

learned by our method using 2-D TSNE for the Cora dataset.

As is shown in Fig. 4. As we can see, Our method has a

better clustering effect with more compactness between nodes.

For example, for the red label, compared with other methods,

our method makes clustering more compact. And the division

between each class is more obvious.

E. Complexity Analysis

1) Computational Complexity Analysis: In our method,

the highest complexity is the operation of inner products of

potentially dense matrices Z in Equation (7) (i.e. ZZT ). In

order to computationally efficient, in our method, we apply

a simplified graph propagation rule: H(l) ← ζl(ÃH(l−1)).
Instead of directly compute inner product of Z, we use associa-

tivity property of matrix multiplications. If dl and dl−1 denote

dimensional of layers of H(l) and H(l−1) respectively, the

computational complexity is given by O(nkdl−1 + ndl−1dl),
where k is the dimension of the per-node latent vectors Zi
used to define Ã, n is the number of nodes.

2) Time Cost: For the analysis of the real-world graph

dataset Cora on a single NVIDIA GTX 2080Ti GPU node, it

took 12.8, 20.8 , and 30.5 seconds for Graphite, VGAE, and

Our method with 100 epochs, respectively. For the analysis

of the small real-world graph dataset USAir on a same GPU

node, it took 4.7, 4.8 , and 15.8 seconds for Graphite, VGAE,

and Our method with 100 epochs, respectively.

V. CONCLUSION

In this paper, we proposed a novel GNN model based

on semi-implicit variational inference. Our method uses a

hierarchical frame to construct the model, which can obtain a

tractable posterior inference. Specifically, in the encoder step,

differs from the traditional method, which assumes the pos-

terior as Gaussian distribution, which restrict expressiveness

of posterior, hence, in this paper, we design a hierarchical

semi-implicit variational posterior to approximate the true

posterior. Contributed to this variational posterior and the

hierarchical architecture between GNN layers, our method can

capture complex posterior and propagate uncertainly between

nodes, which is very essential for information aggregation. We

prove our method procure outperformance results on citation

networks and four different scenarios datasets. In the future,

we will be using more simple approaches to approximate

complex posterior, such as normalization flow.
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[37] Defferrard, Michaël, Xavier Bresson, and Pierre Van-

dergheynst. “Convolutional neural networks on graphs

with fast localized spectral filtering”. Advances in neural

information processing systems 29 (2016): 3844-3852.

[38] Henaff, Mikael, Joan Bruna, and Yann LeCun. “Deep

convolutional networks on graph-structured data”. arXiv

preprint arXiv:1506.05163 (2015).

[39] Weisfeiler, Boris, and Andrei Leman. “The reduction of

a graph to canonical form and the algebra which appears

therein”. NTI, Series 2.9 (1968): 12-16.

[40] Morris, Christopher, et al. “Weisfeiler and leman go

neural: Higher-order graph neural networks”. Proceedings

of the AAAI Conference on Artificial Intelligence. Vol. 33.

No. 01. 2019.

[41] Grohe, Martin, Pascal Schweitzer, and Daniel Wiebking.

“Deep weisfeiler leman”. Proceedings of the 2021 ACM-

SIAM Symposium on Discrete Algorithms (SODA). Society

for Industrial and Applied Mathematics, 2021.

[42] Kingma, Diederik P., and Max Welling. “Auto-encoding

variational bayes”. arXiv preprint arXiv:1312.6114 (2013).

[43] Rezende, Danilo Jimenez, Shakir Mohamed, and Daan

Wierstra. “Stochastic backpropagation and approximate

inference in deep generative models”. International con-

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3193398

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Leeds. Downloaded on August 06,2022 at 16:10:58 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

ference on machine learning. PMLR, 2014.

[44] Simonovsky, Martin, and Nikos Komodakis. “Graphvae:

Towards generation of small graphs using variational au-

toencoders”. International conference on artificial neural

networks. Springer, Cham, 2018.

[45] Salha, Guillaume, Romain Hennequin, and Michalis

Vazirgiannis. “Keep it simple: Graph autoencoders

without graph convolutional networks”. arXiv preprint

arXiv:1910.00942 (2019).

[46] Liu, Qi, et al. “Constrained graph variational

autoencoders for molecule design”. arXiv preprint

arXiv:1805.09076 (2018).

[47] Ranganath, Rajesh, Dustin Tran, and David Blei. “Hier-

archical variational models”. International Conference on

Machine Learning. PMLR, 2016.

[48] Bishop, Christopher M., and Michael Tipping. “Vari-

ational relevance vector machines”. arXiv preprint

arXiv:1301.3838 (2013).

[49] Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe.

“Variational inference: A review for statisticians”. Journal

of the American statistical Association 112.518 (2017):

859-877.

[50] Jordan, Michael I., et al. “An introduction to variational

methods for graphical models”. Machine learning 37.2

(1999): 183-233.

[51] Wainwright, Martin J., and Michael Irwin Jordan.

“Graphical models, exponential families, and variational

inference”. Now Publishers Inc, 2008.

[52] Grover, Aditya, Aaron Zweig, and Stefano Ermon.

“Graphite: Iterative generative modeling of graphs”. In-

ternational conference on machine learning. PMLR, 2019.

[53] Sen, Prithviraj, et al. “Collective classification in network

data”. AI magazine 29.3 (2008): 93-93.

[54] Abadi, Martı́n, et al. “Tensorflow: A system for large-

scale machine learning”. 12th USENIX symposium on

operating systems design and implementation (OSDI 16).

2016.

[55] Newman, Mark EJ. “Finding community structure in

networks using the eigenvectors of matrices”. Physical

review E 74.3 (2006): 036104.

[56] Spring, Neil, et al. “Measuring ISP topologies with

Rocketfuel”. IEEE/ACM Transactions on networking 12.1

(2004): 2-16.

[57] Vladimir Batagelj and Andrej Mrvar.

http://vlado.fmf.uni-lj.si/pub/networks/data/, 2006.

[58] Von Mering, Christian, et al. “Comparative assessment

of large-scale data sets of protein–protein interactions”.

Nature 417.6887 (2002): 399-403.

[59] Tang, Lei, and Huan Liu. “Leveraging social media

networks for classification”. Data Mining and Knowledge

Discovery 23.3 (2011): 447-478.

[60] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena.

“Deepwalk: Online learning of social representations”.

Proceedings of the 20th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. 2014.

Hai-Long Su is now a Ph.D. candidate with the
Institute of Machine Learning and Systems Biology,
School of Electronic and Information Engineering,
Tongji University, Shanghai, China. He received his
master’s degree from School of Computer, Electron-
ics and Information, Guangxi University, China in
2019. And he received the B.S. degree from School
of Computer Science and Engineering, SouthWest
Minzu University, China, in 2016. His research
interests are graph neural networks and computer
vision.

Zhi-Peng Li is now a Ph.D. candidate with the
Institute of Machine Learning and Systems Biology,
School of Electronics and Information Engineering,
Tongji University, China. He received the B.S. de-
gree from Qilu University of Technology (Shandong
Academy of Sciences), China, in 2017, and the
M.S. degree from Qilu University of Technology
(Shandong Academy of Sciences), China, in 2019.
His research focuses on graph neural networks and
computer vision.

Xiao-Bo Zhu is now a Ph.D. candidate with the
Institute of Machine Learning and Systems Biology,
School of Electronics and Information Engineer-
ing, Tongji University, China. He received the B.S.
degree from Liaoning University of Technology,
China, in 2016, and the M.S. degree from Ningxia
University, China, in 2019. His research focuses on
graph neural networks.

Li-Na Yang received the B.S. degree in computer
engineering from Shijiazhuang Railway University,
Shijiazhuang, China, in 2005; the M.Eng. degree in
computer science from the University of Malaya,
Kuala Lumpur, Malaysia, in 2011; and the Ph.D.
degree from the University of Macau, Macau, China,
in 2015. She is currently a Lecturer with the School
of Computer, Electronics and Information, Guangxi
University, Nanning, China, the ”academic back-
bone” of high-level talents from abroad. Her re-
search interests focus on pattern recognition, ma-

chine learning, image processing and artificial intelligence.

Valeriya Gribova is with the Institute of Automa-
tion and Control Processes, Far Eastern Branch of
Russian Academy of Sciences, Russia. She is an
expert of Analytic Center in Government of Russian
Federation, the Vice-President of Russian Associa-
tion of Artificial Intelligence, the member of ITHEA,
the member of the Expert Council of Russian Foun-
dation for Basic Research and the expert of Russian
Science Foundation. She has received the ITHEA
award for Outstanding Achievement in the Field
of Information Theory and Application (2009), the

commendation certificate of the Far East Branch of the Russian Academy
of Sciences (2001, 2006, 2012), and the commendation certificate of the
Ministry of Education and Science of Primorsky Krai (2011). Her research
interests include artificial intelligence and decision making, user interface,
multiagent systems, program models and systems, specialized program models
and systems.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3193398

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Leeds. Downloaded on August 06,2022 at 16:10:58 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Vladimir F. Filaretov was born in 1948. In 1966
he finished school with an honors (gold) medal and
in 1973 graduated from Moscow State Technical
University named after Bauman with honors with
the specialty “Automatic systems”. In 1976 Mr.
Filaretov was awarded the degree of candidate of
sciences (engineering) and in 1990 he was awarded
the degree of doctor of sciences in the field of auto-
matic control. In 1992 Mr. Filaretov was confirmed
in professor’s degree. In 1995 he was elected the
member of an Russian and in 1996 the member of

an International Engineering Academy. At present he is head of Department
of Automation and Control of Far Eastern Federal University and Head
of Robotic Laboratory of the Institute of Automatics and Control Process
of Russian Academy of Sciences, President of Far Eastern Branch Russian
Engineering Academy and Vice-president of Russian Engineering Academy.
His researches are mainly directed at creation both industrial and underwater
robots and manipulators and also other dynamic systems, allowing to automate
technical devices and technological processes.

Anthony Cohn is Professor of Automated Reason-
ing in the School of Computing, at the University
of Leeds. His current research interests range from
theoretical work on spatial calculi (receiving a KR
test-of-time classic paper award in 2020) and spatial
ontologies, to cognitive vision, grounding language
to vision, robotics, modelling spatial information in
the hippocampus, and Decision Support Systems,
particularly for the built environment. He is Editor-
in-Chief Spatial Cognition and Computation and was
previously Editor-in-chief of the AI journal. He is

the recipient of the 2015 IJCAI Donald E Walker Distinguished Service Award
which honours senior scientists in AI for contributions and service to the
field during their careers, as well as the 2012 AAAI Distinguished Service
Award. He is a Fellow of the Royal Academy of Engineering, the Alan Turing
Institute in the UK, and is also a Fellow of AAAI, AISB, EurAI (formerly
ECCAI; Founding Fellow), the BCS, and the IET. He is a Distinguished
Visiting Professor at Tongji University and Qingdao University of Science
and Technology, and an Adjunct Professor at Shandong University.

De-Shuang Huang received the B.Sc., M.Sc. and
Ph.D. degrees all in electronic engineering from
Institute of Electronic Engineering, Hefei, China,
National Defense University of Science and Tech-
nology, Changsha, China and Xidian University,
Xian, China, in 1986, 1989 and 1993, respectively.
During 1993-1997 period, he was a postdoctoral
research fellow respectively in Beijing Institute of
Technology and in National Key Laboratory of Pat-
tern Recognition, Chinese Academy of Sciences,
Beijing, China. In Sept, 2000, he joined the Institute

of Intelligent Machines, Chinese Academy of Sciences as the Recipient of
“Hundred Talents Program of CAS”. In September 2011, he entered into
Tongji University as Chaired Professor. From Sept 2000 to Mar 2001, he
worked as Research Associate in Hong Kong Polytechnic University. From
Aug. to Sept. 2003, he visited the George Washington University as visiting
professor, WashingtonDC, USA. From July to Dec 2004, he worked as the
University Fellow in Hong Kong Baptist University. From March, 2005
to March, 2006, he worked as Research Fellow in Chinese University of
Hong Kong. From March to July, 2006, he worked as visiting professor in
Queen’s University of Belfast, UK. In 2007, 2008, 2009, he worked as visiting
professor in Inha University, Korea, respectively. At present, he is the director
of Institute of Machines Learning and Systems Biology, Tongji University. Dr.
Huang is currently Fellow of International Association of Pattern Recognition
(IAPR Fellow), IEEE Fellow ,senior members of the IEEE and International
Neural Networks Society. He has published over 180 journal papers. Also, in
1996, he published a book entitled “Systematic Theory of Neural Networks
for Pattern Recognition” (in Chinese), which won the Second-Class Prize of
the 8th Excellent High Technology Books of China, and in 2001 & 2009
another two books entitled “Intelligent Signal Processing Technique for High
Resolution Radars” (in Chinese) and “The Study of Data Mining Methods
for Gene Expression Profiles” (in Chinese), respectively. His current research
interest includes bioinformatics, pattern recognition and machine learning.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3193398

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Leeds. Downloaded on August 06,2022 at 16:10:58 UTC from IEEE Xplore.  Restrictions apply. 


