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Abstract— Ankle rehabilitation for increasing number of 
strokes is highly demanded, and robot-assisted approach 
has shown great potential. Since the required movement 
and force assistances will concurrently change during 
rehabilitation sessions, the robotic assistances are 
supposed to be adjusted accordingly. In order to achieve 
both adaptive torque and synchronous position control for 
the robot in practice, a novel event-triggered adaptive 
hybrid torque-position control (ET-AHTPC) is proposed for 
a developed ankle rehabilitation robot driven by pneumatic 
muscles (PM). In the novel adaptive torque control scheme, 
the assistive torque adapted to the patient’s recovery state 
is adjusted by a designed robot-assisted rehabilitation 
index mapping from the clinical assessment scale. The 
robotic assistance output is online corrected by patient’s 
performance, based on a correcting index calculated by 
interaction torque and tracking errors. Then a model-based 
event-triggered optimal position controller is established 
and a critic neural network (NN) is introduced to reduce the 
control law update frequency for fast trajectory tracking. 
The stability of the overall system is proved by Lyapunov 
theorem. A series of experiments were conducted on the 
ankle rehabilitation robot to validate the controller’s fast 
trajectory tracking and adaptive assistance capacity, which 
can online adjust the robot’s assistive torque and allowable 
movement range for patients at different recovery stages. 

 
Index Terms— Ankle rehabilitation robot, event-triggered 

position control, adaptive torque control, adaptive 
assistance. 

I. INTRODUCTION 

HE recent statistics reveal that the absolute number of 

strokes worldwide increased by 70.0% during the last two 

decades [1]. Most strokes have to suffer from the impaired 

ankle joint motor ability, which causes a serious negative 

impact on their daily life [2]. But the ankle motor ability of 90% 

strokes can be improved by appropriate rehabilitation training 

[2]. A medical study suggests that the position and force of the 

ankle for chronic strokes display concurrent changes, and thus 

the assistance needs to adapt to the joint’s functional recovery 

and encourage the patient’s voluntary participation [3].  
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To achieve this goal, interaction force/torque is one of the 

most common feedback adjustment signals applied in assisted-

as-needed robotic rehabilitation system [4]. Asl et al. developed 

a force-field-based impedance controller for velocity tracking, 

to maximize the patient’s active participation by limiting the 

movement in a velocity domain [5]. Baser et al. also proposed 

a force feedback impedance control approach a biomimetic 

compliant exoskeleton robot [6]. To further improve the 

stability and safety, Ballesteros et al. [7] and Ghannadi et al. [8] 

both proposed hybrid impedance-position control schemes,  to 

achieve the best trade-off between tracking error and interaction 

force. But the methods did not consider the changes of required 

robotic assistance throughout rehabilitation. Mancisidor et al. 

proposed a complete set of training modes, including assistive, 

corrective and resistive, intended to adapt to the patient’s 
rehabilitation needs in different sessions [9]. But the adjustment 

can only achieve the switch between three controllers (position, 

force, impedance). Naghavi et al. proposed a strength index-

based force/position controller, and the control parameters 

could be adjusted according to the interaction force and tracking 

error [10]. Due to the multiple changing parameters of the robot 

assistance, a multi-modal control system is developed [11], 

which mainly aims to guarantee human safety. More attentions 

are expected on adjustment of the robotic assistance according 

to the patient’s training performance and recovery states. 

Due to the inner compliance, the pneumatic muscle (PM) 

displays better flexibility and is appropriately utilized as the 

rehabilitation robotic actuator. However, the inflation/ deflation 

working principle and highly-nonlinear and hysteresis 

characteristics of the PM make it difficult for PM-driven robots 

to quickly respond to the controller’s frequent updates like rigid 
actuators [12]. Compared with time-driven control, event-

triggered control improves response speed and synchronous 

performance of the multi-parameter control system, since the 

updates are only activated when the event-trigging condition is 

satisfied [13]. The event-triggered control has longer event-

internal time and lower event-triggered frequency, thus 

remaining enough time to adjust the input of PM actuators. 

Further, the discrete characteristics of the event-triggered 
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control scheme can greatly reduce the communication cost 

between the robot control system and the host computer 

database and applications. It is essential and beneficial to 

deeper studies of the practical robotic rehabilitation fields, e.g. 

with more different sensors applied in the human-robot 

interaction system, and the remote online application of the 

rehabilitation robot at home, etc.  

However, most of the current event-triggered controllers are 

utilized for electric systems and multirobot systems [14-16], 

and only a few studies have been applied in robotic arms or 

exoskeletons [17-20]. Wu et al. proposed an event-triggered 

near-optimal tracking controller for robotic aircraft skin 

inspection, with a neural network (NN)-based observer for the 

disturbance compensation [20]. In [18], an event-triggered 

sliding mode controller (SMC) was developed to enhance the 

human-exoskeleton cooperation, and a genetic algorithm-back 

propagation NN is introduced to estimate the motion intention. 

Similarly, a sEMG-based event-triggered SMC scheme with 

deep differential NN  was proposed for a lower limb 

exoskeleton  [17]. An event-triggered motion-force controller 

is designed for the robotic ultrasonic examination, but it can 

only follow the fixed force [19]. Though the event-triggered 

control has been initially applied in the interaction-based robot 

trajectory tracking, the synchronous force/torque-position 

control with adjustable torque feedback has not been realized. 

Combining NNs with the controllers, the disturbance in the 

nonlinear system can be estimated and compensated during 

control. Deep NNs own good approximate performance with 

low learning rate for real-time control [21], while optimization-

based algorithms raise the computational complexity and 

steady-state time [22]. Due to the simple structure and a 

prominent capacity for approximation, critic NN presents a 

faster convergence ability. The weight tuning laws of critic NN 

is simpler and the weights are updated according to the robot’s 
historical state data only when the event-triggered condition is 

satisfied, thus it is more appropriate for the real-time robot 

control. 

Thus, a new event-triggered adaptive hybrid torque-position 

control (ET-AHTPC) is proposed for a developed PM-driven 

ankle rehabilitation robot in this paper. The main contributions 

of this work include: 1) To synchronously adjust both robotic 

assistive torque and position output according to patient’s 
performance in time, a novel hybrid torque-position control 

scheme is established with an adaptive torque control loop and 

an event-triggered position control loop. 2) To adapt to the 

motor ability and assistance requirement in different recovery 

stages, a robot-assisted rehabilitation index corresponding to 

the clinical assessment scale is designed and applied to adjust 

the assistive torque. 3) To enhance the real-time performance 

of the PM-driven robot in practice, a critic NN is introduced to 

update the event-triggered control parameters to reduce the 

update frequency, thus achieving fast trajectory tracking.  

The rest of this paper is organized as follows. In Section II, 

an online adaptive torque control scheme is proposed. An 

event-triggered position controller with a critic NN is designed 

in Section III. Section IV presents experiments and analysis of 

the proposed controller conducted on the developed robot. The 

conclusion is summarized in Section V. 

II. ADAPTIVE ASSISTANCE TORQUE CONTROL  

Considering the human-robot interaction and tracking error, 

an online adaptive assistance torque control scheme is proposed. 

A robot-assisted rehabilitation index corresponding to the 

clinical assessment scale is designed and thus the torque control 

output can be adjusted according to the rehabilitation level. 

A. Robot-Assisted Ankle Rehabilitation Platform 

 
Fig. 1.  Schematic diagram of the developed ankle rehabilitation robot. 

 

During the actual rehabilitation sessions, the patient's motor 

ability and assistance needs are different. Brunnstrom scale is a 

common clinical assessment tool for the patient's motor ability, 

in which the stage III/IV/V are appropriate to facilitate ankle 

rehabilitation [23]. A 3-Degrees-of-Freedom (DOF) ankle 

rehabilitation robot driven by pneumatic muscles has been 

developed, as shown in Fig. 1. The moving platform of the robot 

mainly includes rotating joint 1/2/3 around X/Y/Z-axis and 

their support rods. To drive the moving platform, each PM is 

connected to the fixed point of the platform with the cable 

through the fixed/swinging pulley. PM 1 and PM 2 are 

responsible for the rotation around Y-axis, PM 3 and PM 4 

achieve the rotation around Z-axis; PM 5, together with PM 1 

and PM 2, enables rotation around X-axis. More details of the 

developed robot have been described in our previous work 

[24].The stage III/IV/V of Brunnstrom are mapped to Level-

A/B/C in the robotic rehabilitation system, and define a robot-

assisted rehabilitation index 𝜔𝑅𝐼 . As presented in the previous 

research [24], the dynamic model of the robot is 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝜏 + 𝜏𝑖𝑛𝑡  (1) 

where �̇� and �̈� respectively represent the first and the second 

derivatives of the robot’s 3-DOF rotation angle vectors (X/Y/Z-

axis) with respect to time. 𝜏 describes the robot’s output torque, 

and  𝜏𝑖𝑛𝑡 is the human-robot interaction torque, both are 3×1 

vectors. 𝑀(𝑞), 𝐶(𝑞, �̇�) and 𝐺(𝑞) represent 3×3 inertia matrix 

and Coriolis force matrix and 3×1 gravity vector of the robot, 

respectively. More details about the modelling method and 

model parameters of the robot can be seen in Appendix. A. 
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Based on the robot platform, the total scheme of the proposed 

event-triggered adaptive hybrid torque-position controller (ET-

AHTPC) is designed as Fig. 2. 

 

 
Fig. 2. The proposed ET-AHTPC scheme for ankle rehabilitation robot.  

B. Feedback Weighting-Updated Torque Control 

With the robotic assistance, the ankle should not only follow 

the desired trajectory, but also be encouraged to complete the 

training by the patient’s voluntary participation. When the 

actual trajectory or the interaction torque deviates from the 

expected reference beyond the allowable boundary, the robot is 

triggered to synchronously adjust the position and torque output, 

to help the ankle return to the appropriate movement space.  

To determine a suitable and safe movement space for the 

patient, the maximum movement range 𝑞𝑚𝑎𝑥  of healthy 

subjects in the robot space is taken as reference, and the 

corresponding adjustment is made according to the patient's 

rehabilitation level 𝜔𝑅𝐼 . Considering the patient's real-time 

training performance, the designed correcting index 𝜔𝐶𝐼  is 

added, and its index was determined by the weight proportion 

result of balancing 𝜔𝐶𝐼  and 𝜔𝑅𝐼 . The parameter 𝑘𝑞 and tanh(∙) 

are introduced to make the adjustment smoother. The allowable 

maximum movement region corresponding to the patient’s state 

is defined as 𝑞𝑏𝑜𝑢𝑛𝑑 = tanh(𝑘𝑞𝜔𝐶𝐼3 )𝜔𝑅𝐼𝑞𝑚𝑎𝑥  (2) 

where 𝑞𝑚𝑎𝑥  is the robot’s maximum movement angle vector 

and  𝑘𝑞 is a constant. 𝜔𝐶𝐼  is a correct index responding to both 

the tracking error 𝑒 and interaction torque 𝜏𝑖𝑛𝑡. If not otherwise 

specified in the following, the parameters related to robot 

dynamics, e.g. position or torque parameters, are 3×1 vectors. 𝜔𝐶𝐼 = 1𝛼0𝑒2 + 𝛼1𝜏𝑖𝑛𝑡2 + 1 (3) 

where  𝛼0 and 𝛼1 are the corresponding weighting parameters 

of 𝑒 and 𝜏𝑖𝑛𝑡. The position error vector and velocity error vector 

are defined as 𝑒 = 𝑞 − 𝑞𝑑  and �̇� = �̇� − �̇�𝑑 , where 𝑞𝑑 , �̇�𝑑 

represent the desired position and desired velocity of the robot. 

 In conventional controllers, the sliding surface is designed as 𝑠 = �̇� + 𝑐𝑒. To enhance the adaptivity of the torque controller, 

the new sliding surface is designed as 𝑠 = �̇� + 𝑐𝑟𝑒 (4) 𝑐𝑟={ 0, 𝑞 ≤ 𝑞𝑏𝑜𝑢𝑛𝑑𝜔𝑅𝐼 , ‖𝑞‖ > 𝑞𝑏𝑜𝑢𝑛𝑑 (5) 

From (5), if the actual trajectory is inside the allowable region 𝑞𝑏𝑜𝑢𝑛𝑑 , 𝑠 is designed to control the velocity only, allowing the 

patient’s arbitrary movement but avoiding the abnormal motion 

speed. But if the actual trajectory is outside 𝑞𝑏𝑜𝑢𝑛𝑑, the robot is 

driven back to the region according to the patient’s motor 
ability as well as the position and interaction feedback. 

Based on robot dynamic model in (1), the adaptive torque 

control law could be designed as  𝜇𝜏 = 𝑀(𝑞)�̈�𝑒 + 𝐶(𝑞, �̇�)�̇�𝑒 + 𝐺(𝑞) − α𝜏s + 𝜀𝑖𝑛𝑡𝑐 (6) 𝜀𝑖𝑛𝑡𝑐 = − 𝑠𝑇𝜏𝑖𝑛𝑡 + 𝜎‖𝑠𝑇𝜏𝑖𝑛𝑡‖ + 𝜎 𝜏𝑖𝑛𝑡 (7) 

where �̇�𝑒 = �̇�𝑑 + 𝑐𝑟𝑒.  α𝜏 is a positive-definite matrix, and 𝜎 is 

a very small positive constant. From (7), if the interaction force 𝜏𝑖𝑛𝑡 is very large, i.e. − 𝑠𝑇𝜏𝑖𝑛𝑡+𝜎‖𝑠𝑇𝜏𝑖𝑛𝑡‖+𝜎 ≈ −1 and 𝜀𝑖𝑛𝑡𝑐 ≈ −𝜏𝑖𝑛𝑡, the 

robot is driven by 𝜏𝑖𝑛𝑡 away from the desired trajectory, and the 

force adjustment vector 𝜀𝑖𝑛𝑡𝑐 reinforces 𝜏𝑖𝑛𝑡, and 𝜇𝜏 is mainly 

adjusted by the interaction force. When 𝜏𝑖𝑛𝑡  is very small or 

even zero, i.e. 𝜀𝑖𝑛𝑡𝑐 is small and𝜇𝜏 is mainly adjusted according 

to (5). If the tracking error is small, it means the patient is 

following the desired trajectory in the allowable region 𝑞𝑏𝑜𝑢𝑛𝑑  

and should be encouraged; if not, the robotic assistance force 

would correct the patient’s trajectory based on (6). 

An observer �̇̂�𝑑 is designed to estimate �̇�𝑑 and acceleration 

observer �̇� is defined as follows, both are 3×1 vectors. �̇̂�𝑑 = 𝜗 + 𝛽1𝑒Δ + 𝑐𝑟 �̂� (8) �̇� = 𝑀−1(𝑞)(𝜀𝑖𝑛𝑡𝑐 − 𝐶(𝑞, �̇�)𝜗 + 𝐺(𝑞) + 𝛽𝑦𝑦 + 𝛽𝑒𝑒Δ) (9) 

where  𝑦 = �̇� − 𝜗 , 𝑒Δ =  𝑞𝑑 − �̂�𝑑 , �̂�𝑑  and �̂�  are the estimated 

values of 𝑞𝑑  and 𝑒 .  𝛽1  is a positive constant, 𝛽𝑦  and 𝛽𝑒  are 

positive definite matrices. Thus the controller in (6) can be 

rewritten as follows, and the control diagram is shown in Fig. 3. �̂�𝜏 = 𝑀(𝑞)�̈̂�𝑒 + 𝐶(𝑞, �̇�)�̇̂�𝑒 + 𝐺(𝑞) − α𝜏ŝ + 𝜀𝑖𝑛𝑡𝑐 (10) 

where ŝ = �̇� − �̇̂�𝑑 + 𝑐𝑟�̂�, �̇̂�𝑒 = �̇̂�𝑑 + 𝑐𝑟�̂�. 

C. Stability Analysis  

To analyze the stability of the torque control loop, the 

Lyapunov function is developed as 𝑉 = 12 �̂�𝑇𝑀(𝑞)�̂� + 12 𝑦𝑇𝑀(𝑞)𝑦 (11) 

Differentiating (11) with respect to time, yields �̇� = �̂�𝑇𝑀(𝑞)�̇̂� + 𝑦𝑇𝑀(𝑞)�̇� (12) 

Combining (1), (9) and (10), (12) can be rewritten as  �̇� = �̂�𝑇(𝜀𝑖𝑛𝑡𝑐 + 𝜏𝑖𝑛𝑡) − 𝑦𝑇𝛽𝑦𝑦 − Λ1Λ𝛽Λ1𝑇 (13) 

where Λ1 = [�̂�𝑇 𝑒Δ𝑇], Λ𝛽 = [ α𝜏 12 𝛽𝑒12 𝛽𝑒 𝛽1𝛽𝑒]. 
Without human interaction, i.e. 𝜀𝑖𝑛𝑡𝑐 = 0, (13) is rewritten as 𝑦𝑇𝛽𝑦𝑦 + Λ1Λ𝛽Λ1𝑇 + �̇� = �̂�𝑇𝜏𝑖𝑛𝑡  (14) 

If Λ𝛽 is positive definite, (15) is guaranteed, which has been 

detailed proved in [11]. And �̂�𝑇(𝜀𝑖𝑛𝑡𝑐 + 𝜏𝑖𝑛𝑡) in (13) is written 

as (16). The detailed derivation is shown in Appendix. B. 𝑦𝑇𝛽𝑦𝑦 + Λ1Λ𝛽Λ1𝑇 ≥ 0 (15) 



 

�̂�𝑇(𝜀𝑖𝑛𝑡𝑐 + 𝜏𝑖𝑛𝑡) = �̂�𝑇Λ𝜎𝜏𝑖𝑛𝑡 (16) 

where Λ𝜎 = 1 − 𝑠𝑇𝜏𝑖𝑛𝑡+𝜎‖𝑠𝑇𝜏𝑖𝑛𝑡‖+𝜎 . When �̂�𝑇𝜏𝑖𝑛𝑡 ≥ 0, Λ𝜎 = 0; when �̂�𝑇𝜏𝑖𝑛𝑡 < 0, Λ𝜎 ≥ 0. Thus  �̂�𝑇(𝜀𝑖𝑛𝑡𝑐 + 𝜏𝑖𝑛𝑡) ≤ 0 (17) 

Substituting (15) and (17) into (13), we have �̇� ≤ 0. Thus it 

can be concluded that the torque control loop is stable. 
 

 
Fig. 3. The proposed adaptive torque control scheme.  

III. EVENT-TRIGGERED POSITION CONTROL  

A novel event-triggered optimal position control scheme is 

proposed based on the robot dynamic model. A critic NN is 

applied to update the parameters of the control law under the 

event-trigging condition, to reduce the update frequency of the 

control law. With the adaptive torque input, the controller could 

achieve efficient synchronously torque-position control for the 

robot-assisted rehabilitation in practice.  

A. Event-Triggered Optimal Position Control 

Based on the dynamic model in (1) and inverse kinematics 

of the designed robot, the control object is defined as { �̇�1 = 𝑥2�̇�2 = 𝑓(𝑥) + 𝑔(𝑥)𝜇𝑠 + 𝛽𝛿𝛿𝑒 (18) 

where 𝜇𝑠  is the control signal vector, 𝑥  is the control state 

vector of the robot, and 𝛽𝛿𝛿𝑒  represents the bounded 

disturbance vector. 𝛿𝑒  (3 × 1) denotes the system 

comprehensive disturbances not involved in the robot dynamic 

model, including disturbances caused by the PM’s nonlinearity, 
human-robot interaction, etc. For the event-triggered controller 𝜇𝑠 , a monotonically increasing sequence of event triggering 

instants {𝑧𝑗}𝑗∞  is set up. 𝑧𝑗  represents the 𝑗 th consecutive 

triggering instant, i.e. the moment of 𝑗th event occurred, and 𝑧𝑗 < 𝑧𝑗+1 . The state vector at the triggering component is 

defined as �̂�𝑗 = 𝑥(𝑧𝑗) for 𝑡 ∈ [𝑧𝑗 , 𝑧𝑗+1). Then based on zero-

order hold (ZOH), the trigger error vector 𝑒𝑗(𝑡) is expressed as 

the function between the sampled states and the current value, 

and the obtained control sequence can be converted into 

continuous input signals by ZOH [25]. 𝑒𝑗(𝑡) = �̂�𝑗(𝑡) − 𝑥(𝑡), ∀ 𝑡 ∈ [𝑧𝑗 , 𝑧𝑗+1) (19) 

Thus the event-triggered controller in (18) is rewritten as  �̇� = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝜇𝑠 (𝑥(𝑡) + 𝑒𝑗(𝑡)) + 𝛽𝛿𝛿𝑒 , ∀ 𝑡 ∈ [𝑧𝑗 , 𝑧𝑗+1) 
(20) 

Based on Hamiltonian dynamics, the energy trajectory 

moves within a hypersurface of probability density determined 

by dynamics of the control system, i.e. the system energy can 

be expressed as the control function in the process. Define the 

performance index Φ𝑃𝐼  for the controller as (21). The 

hyperbolic tangent function tanh(∙) is employed for smoother, 

and tanh−𝑇(∙) is the inverse transpose of tanh(∙). Φ𝑃𝐼(𝜇𝑠) = 2𝜀 ∫ tanh−𝑇 (𝜇𝑠𝜀 )𝜇𝑠0 𝛫𝑑𝜇𝑠 (21) 

where 𝜀 ≥ ‖𝜇𝑠‖, and 𝛫 ∈ ℝ3×1. From the integral solution of 

(21), it is rewritten as Φ𝑃𝐼(𝜇𝑠) = 2𝜀𝜇𝑠𝑇𝐾tanh−1 (𝜇𝑠𝜀 ) + 𝜀2𝐾ln (1 − (𝜇𝑠𝜀 )2) (22) 

where 𝐾 ∈ ℝ1×𝑚
. In time-triggered controllers, it is satisfied as ∫ (𝑥𝑇𝑅𝑥 + Φ𝑃𝐼(𝜇𝑠)) 𝑑𝜏 ≤ 𝜚2 ∫ 𝛿𝑒𝑇𝛿𝑒𝑑𝜏∞

𝑡
∞

𝑡  (23) 

where 𝜚 > 0, and 𝑅 is a positive matrix. 

 Then the performance function and the cost function of the 

time-triggered controller is defined as 𝒥(𝜇𝑠, 𝛿𝑒) = ∫ (𝑥𝑇𝑅𝑥 + Φ𝑃𝐼(𝜇𝑠) − 𝜀2𝛿𝑒𝑇𝛿𝑒)𝑑𝜏∞
0  (24) 𝒬(𝑥) = ∫ (𝑥𝑇𝑅𝑥 + Φ𝑃𝐼(𝜇𝑠) − 𝜀2𝛿𝑒𝑇𝛿𝑒) 𝑑𝜏∞𝑡  (25) 

Then the Hamiltonian function is  ℋ(𝒬, 𝜇𝑠, 𝛿𝑒) ≜ 𝑥𝑇𝑅𝑥 + Φ𝑃𝐼(𝜇𝑠) − 𝜀2𝛿𝑒𝑇𝛿𝑒 +  �̃�𝑇�̇� = 0 (26) 

where �̃� = 𝜕𝒬(𝑥)𝜕𝑥 . 

For the designed event-triggered controller, the performance 

function (24) can be expressed as 𝒥(𝜇𝑠(�̂�𝑗), 𝛿𝑒) = ∑ ∫ (𝑥𝑇𝑅𝑥 + Φ𝑃𝐼(𝜇𝑠)𝑧𝑗+1𝑧𝑗⋃ [𝑧𝑗,𝑧𝑗+1)=[0,∞)𝑗 − 𝜀2𝛿𝑒𝑇𝛿𝑒)𝑑𝜏 

(27) 

The control law 𝜇𝑠(�̂�𝑗) is updated when the event is triggered 

at the moment of 𝑧𝑗. For the control object in a nonlinear system 

as (18), its solution is usually based on Hamilton–Jacobi–Isaacs 

(HJI) equation. To optimize the control law and event-triggered 

intervals at the same time, the event-triggered control law needs 

to satisfy the Nash equilibrium solution corresponding to the 

HJI equation [26]. The control law and disturbance item are 

rewritten as  𝜇𝑠(�̂�𝑗)  = − 𝜀tanh (𝐾−1𝑔𝑇(𝑥𝑗)�̃�(𝑥𝑗)2𝜀 ), ∀ 𝑡 ∈ [𝑧𝑗 , 𝑧𝑗+1) (28) 

𝛿𝑒(�̂�𝑗) = 𝛽𝛿 𝑇�̃�(�̂�𝑗)2𝜀2  (29) 

The control law 𝜇𝑠 is Lipschitz continuous with respect to the 

event-triggering error according to [13], which is a stricter 

smoothness condition than the usual continuous. ‖𝜇𝑠(𝑥(𝑡)) − 𝜇𝑠(�̂�𝑗) ‖ ≤ ℒ𝑢‖𝑒𝑗(𝑡)‖ (30) 

where ℒ𝑢 is a positive parameter. 

Based on (26), (28) and (29), the triggering condition is  ‖𝑒𝑗(𝑡)‖2 ≤ (1 − 𝜂)𝜆min[𝑅]‖𝑥‖2𝜀2ℒ𝑢2‖𝐾‖ + Φ𝑃𝐼 (𝜇𝑠(𝑥𝑗))𝜀2ℒ𝑢2‖𝐾‖− ‖𝜚‖2‖𝛿𝑒‖2𝜀2ℒ𝑢2‖𝐾‖ ≜ 𝑒𝑇 

(31) 

where 𝜂  is a parameter of the sampling frequency.  𝑒𝑇  is the 

triggering threshold. If the condition (30) is satisfied, the event 

is triggered and the control law will be updated.  
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For the continuous-time system, the minimum trigger 

interval may be zero if the event trigger control method is 

adopted. This would cause the event to be fired infinite times, 

thus making the controller update an infinite number of times, 

which is called Zeno behavior [27]. To avoid Zeno behavior, 

the minimum sample time 𝑧𝑚𝑖𝑛 should satisfy the condition:   𝑧𝑚𝑖𝑛 ≥ 1𝜅𝑧1 ln (1 + min𝑗∈𝑁 ‖𝑒𝑗(𝑡)‖2‖�̂�𝑗‖2 + 𝜅𝑧2) > 0 (32) 

where 𝜅𝑧1  and 𝜅𝑧2  are positive constants. Since the proof is 

similar to that in [28], it is omitted here. 

B. Critic NN-Updated Event-Triggered Control 

As for optimization of the nonlinear system, it is challenging 

to minimize the cost function in the worst-case disturbance, i.e. 

to find the solution for HJI equations of the PM-driven robot, 

which is a nonlinear system with partially unknown disturbance. 

Critic NN possesses the capability of real-time learning control 

and faster convergence than other deep NNs. Combined with 

the Weierstrass approximation, critic NN can adjust the weights 

according to the historical data of the robot’s certain 
performance, with fewer data requirement and shorter initial 

learning phase than supervisory learning. The weight tuning 

laws of the critic NN is simpler and updated only when the 

event-triggered condition is satisfied, which is appropriate for 

the PM-driven robotic rehabilitation system.  

Thus critic NN is employed to approximate the optimal 

solution of 𝒬(𝑥), 𝜇𝑠  and 𝛿𝑒 . Based on Weierstrass high-order 

approximation, the approximation of  𝒬(𝑥) and �̃�(𝑥) are 𝒬(𝑥) = 𝜔𝑐𝑇𝜎𝑐(𝑥) + 𝜖𝑐 (33) �̃�(𝑥) = ∇𝜎𝑐𝑇(𝑥)𝜔𝑐 + ∇𝜖𝑐 (34) 

where 𝜔𝑐  denotes the ideal weight vector, 𝜎𝑐(𝑥)  is the 

activation function, and 𝜖𝑐 represents the approximated error of 

the critic NN. And assume that ‖𝜔𝑐‖ ≤ 𝜔𝑐𝑚𝑎𝑥 , ‖𝜎𝑐‖ ≤ 𝜎𝑐𝑚𝑎𝑥 , 

and ‖𝜖𝑐‖ ≤ 𝜖𝑐𝑚𝑎𝑥. Then the approximated cost function is �̂�(𝑥) = �̂�𝑐𝑇𝜎𝑐(𝑥) (35) 

where �̂�𝑐 is the estimation vector of 𝜔𝑐 , and the estimation 

error vector is defined as �̃�𝑐 = 𝜔𝑐 − �̂�𝑐.  

Based on (18) and (32), HJI function in (26) is rewritten as ℋ(𝑥, 𝜔𝑐) = 𝑥𝑇𝑅𝑥 + Φ𝑃𝐼 (𝜇𝑠(�̂�𝑗)) − 𝜀2𝛿𝑒𝑇𝛿𝑒 +𝜔𝑐𝑇𝜎𝑐(𝑥)(𝑓 + 𝑔𝜇𝑠(�̂�𝑗) + 𝛽𝛿𝛿𝑒) ≜ Ψℎ 
(36) 

 Then the estimated function of (20) is ℋ̂(𝑥, 𝜔𝑐) = 𝑥𝑇𝑅𝑥 + Φ𝑃𝐼 (�̂�𝑠(�̂�𝑗)) − 𝜀2�̂�𝑒𝑇�̂�𝑒 +�̂�𝑐𝑇∇𝜎𝑐(𝑥)(𝑓 + 𝑔�̂�𝑠(�̂�𝑗) + 𝛽𝛿�̂�𝑒) ≜ Ψ̂ℎ 
(37) 

Define 𝓊 = 𝑥𝑇𝑅𝑥 + Φ𝑃𝐼 (�̂�𝑠(�̂�𝑗)) − 𝜀2�̂�𝑒𝑇�̂�𝑒 , 𝓋 =∇𝜎𝑐(𝑥)(𝑓 + 𝑔�̂�𝑠(�̂�𝑗) + 𝛽𝛿�̂�𝑒) , thus Ψ̂ℎ =  𝓊 + �̂�𝑐𝑇𝓋 . The 

stored sample data at 𝑡𝑟 ∈ [𝑧𝑗 , 𝑧𝑗+1) is Ψ𝑒(𝑡𝑟) =  𝓊𝑟 + �̂�𝑐𝑇𝓋𝑟 , 

where 𝓊𝑟 = 𝑥(𝑡𝑟)𝑇𝑅𝑥(𝑡𝑟) + Φ𝑃𝐼 (�̂�𝑠(�̂�𝑗)) − 𝜀2�̂�𝑒(𝑡𝑟)𝑇�̂�𝑒(𝑡𝑟)  and  𝓋𝑟 = ∇𝜎𝑐(𝑥(𝑡𝑟))(𝑓 + 𝑔�̂�𝑠(�̂�𝑗) + 𝛽𝛿(𝑡𝑟)�̂�𝑒(𝑡𝑟)). To guarantee 

the persistence of the activation condition, the adaptive weight 

law of the critic NN �̇̂�𝑐  is designed as (38) to obtain the 

minimum value of residual error.  

�̇̂�𝑐 = −𝜑𝓋(𝓊 + �̂�𝑐𝑇𝓋)(𝓋𝑇𝓋 + 1)2 + ∑ −𝜑𝓋𝑟(𝓊𝑟 + �̂�𝑐𝑇𝓋𝑟)(𝓋𝑟𝑇𝓋𝑟 + 1)2𝑁
𝑡𝑟=1  (38) 

where 𝜑 is the learning rate of critic NN and  𝑁 is the number 

of stored samples. Within the adaptive event-triggered control, 

critic NN can quickly approximate the cost function and shorten 

the convergence time, due to its learning capability from both 

cost function and the stored sample data as shown in (38). Then 

with the quickly convergent weight vector, a novel event-

triggered optimal control law is developed. 

Thus the estimated event-triggered control law in (28) and 

the disturbance item in (29) can be established as (39). The 

control diagram is shown in Fig. 4. 

 

 
Fig. 4. The proposed event-triggered position control scheme. 

C. Stability Analysis  

For the event-triggered position control loop, the stability 

analysis consists of two cases: the state of not triggered and the 

event-triggered state. The Lyapunov function 𝑉 composes the 

function of continuous state 𝑉𝑥, jump state 𝑉𝑥𝑗  and critic NN 𝑉𝑐 . 𝑉 = 𝑉𝑥 + 𝑉𝑥𝑗 + 𝑉𝑐 (40) 

1)  When an event is not triggered. Since in the continuous 

inter-event interval  ∀ 𝑡 ∈ [𝑧𝑗, 𝑧𝑗+1) , the event is not triggered, 

i.e. the triggering item does not work. Thus it is written as 𝑉 = 𝑉𝑥 + 𝑉𝑐 = �̃� + 12𝜑 𝑡𝑟{�̃�𝑐𝑇�̃�𝑐} (41) 

According to (26) and (27), define 𝑉𝑥  as the Lyapunov 

function for the continuous event-triggered controller, thus �̇�𝑥 = �̃�𝑇𝑓 + �̃�𝑇𝑔�̂�𝑠(�̂�𝑗) + �̃�𝑇𝛽𝛿�̂�𝑒 (42) 

Based on (26), (29) and (39), the event-triggered HJI at the 

moment 𝑡 = 𝑧𝑗 is 𝑥𝑇𝑅𝑥 + �̃�𝑇𝑓 + Φ𝑃𝐼 (�̂�𝑠(�̂�𝑗)) + �̃�𝑇𝑔�̂�𝑠(�̂�𝑗) + �̃�𝑇𝛽𝛿𝛽𝛿𝑇�̃� 4𝜚2 = 0 (43) 

Then combined with (29) and (43), (42) can be derived as �̇�𝑥 = ∫ 2𝜀𝐾�̂�𝑠𝑇𝐾𝑑�̂�𝑠(𝑥𝑗)
�̂�𝑠(𝑥) 𝜏 + 2𝜚2𝛿𝑒𝑇�̂�𝑒 − 𝜀�̃�𝑇𝑔 tanh(�̂�𝑠) −𝜀2�̃�ln(1 − tanh2�̂�𝑠) − 𝑥𝑇𝑅𝑥 − 𝜚2𝛿𝑒𝑇𝛿𝑒 

(44) 

Due to the Young’s inequality, (44) is rewritten as �̇�𝑥 ≤ 2𝜀2 (ℒ𝑢2‖𝐾‖‖𝑒𝑗(𝑡)‖ − ‖𝜇𝑠(𝑥) − �̂�𝑠(𝑥)‖2) (45) 

When the event-trigging condition in (31) is satisfied, it can 

be obtained from (45) that 

�̂�𝑠(𝑡)  = − 𝜀tanh (𝐾−1𝑔𝑇(𝑥𝑗)∇𝜎𝑐𝑇(�̂�𝑗)�̂�𝑐2𝜀 ) , ∀ 𝑡 ∈ [𝑧𝑗 , 𝑧𝑗+1) (39) 



 

�̇�𝑥 ≤ 2𝜀2‖𝜇𝑠(𝑥) − �̂�𝑠(𝑥)‖2 < 0 (46) 

Thus the system of the continuous control is proved to be 

asymptotically stable. 

From the above analysis about the critic NN in (38), the 

persistence of excitation condition is guaranteed, thus �̇�𝑐  is 

satisfied the following condition [29]. �̇�𝑐  ≤ −𝜂𝑐𝜆min [ 𝓋𝓋𝑇𝓋 + 1] ‖�̃�𝑐‖2 + 𝜂𝑐‖�̃�𝑐‖Ψℎ𝑚 (47) 

where 𝜂𝑐  and Ψℎ𝑚  are positive constants, and 𝜂𝑐 > 1 . 

According to Young’s inequality, (47) is derived as �̇�𝑐  ≤ (1 − 𝜂𝑐)𝜆min [ 𝓋𝓋𝑇𝓋 + 1] ‖�̃�𝑐‖2 + 𝜂𝑐2Ψℎ𝑚24  (48) 

Thus the second item of (48) is bounded, and the system is 

proved to be asymptotically stable. ‖�̃�𝑐‖ needs to satisfy: ‖�̃�𝑐‖ ≥ √𝜂𝑐2Ψℎ𝑚2 / (4(𝜂𝑐 − 1)𝜆min [ 𝓋𝓋𝑇𝓋 + 1]) (49) 

2)  When an event is triggered. The difference between the 

Lyapunov function of the event-triggered condition from that 

of (41) is at the triggering moment ∀ 𝑡 = 𝑧𝑗, thus ∆𝑉 = ∆𝑉𝑥(𝑥) + ∆𝑉𝑥𝑗 + ∆𝑉𝑐  (50) 

According to (46) and (48), the first and third items are both 

asymptotically stable, i.e. ∆𝑉𝑥(𝑥) ≤ 0  and ∆𝑉𝑐(𝑥) ≤ 0 . Then 

we have ∆𝑉𝑥𝑗 = �̃�(�̂�𝑗+1) − �̃�(�̂�𝑗) ≤ −𝜅‖𝑒𝑗(𝑡)‖ (51) 

where 𝜅 is a class- 𝜅 function.  

Substituting (51) into (50), yields ∆𝑉 ≤ −𝜅‖𝑒𝑗(𝑡)‖ (52) 

Thus  the controller at the state of event-trigging is also 

proved to be stable. 

IV. EXPERIMENTS AND RESULTS DISCUSSION 

To validate the event-triggered control performance and the 

adaptive synchronous torque-position control capacity of the 

proposed ET-AHTPC, two groups of experiments were 

conducted on the developed ankle rehabilitation robot. Due to 

the rehabilitation requirement of low-frequency reciprocating 

movements, the robot’s desired trajectory was set as 𝑞𝑥𝑑 =0.2 𝑐𝑜𝑠( 2𝜋𝑓𝑡) (rad) , 𝑞𝑦𝑑 = 0.2 𝑠𝑖𝑛( 2𝜋𝑓𝑡) (rad) , and 𝑞𝑧𝑑 =0.1 𝑠𝑖𝑛( 2𝜋𝑓𝑡) (rad), 𝑓 = 0.05𝐻𝑧. Healthy subjects were asked to 

put their feet on the robot platform and follow the robot’s 
movement. To initially validate the control performance of the 

ET-AHTPC for patients at different rehabilitation stages, the 

healthy subjects were instructed to wear medical bandages of 

different widths and tightness on the ankle to weaken the joint’s 

motor ability. The trials were approved by Human Participants 

Ethics Committees from Wuhan University of Technology, and 

written informed consent was obtained from each participant. 

Since the robot-assisted rehabilitation index 𝜔𝑅𝐼 ∈ (0,1) 

mapping from the Brunnstrom, the value was set as 0.8, 0.5, 0.2 

corresponding to Level-A/B/C in the experiments. As presented 

in Fig. 5, larger movement space is allowable from Level-A to 

Level-C, which satisfies the ankle rehabilitation needs. In the 

experiments, the initial critic NN weights are all set as 0.2, and 

the learning rate 𝜑=18. Other control parameters are selected as:  𝜂= 0.5, ℒ𝑢=4, 𝜚=1 𝑅=diag [10, 10], 𝐾=0.02, 𝜅𝑧1=2, 𝜅𝑧2=0.01, α𝜏 =1, 𝜎 =10-5, 𝛽1 =100 ,  𝛽𝑦 =1, 𝛽𝑒 =50. The initial control 

parameters including the weights of critic NN are selected from 

a reasonable range in simulation experiments, to enable the 

proposed controller to achieve a high tracking accuracy. The 

weights of critic NN are randomly generated within [-1.5 1.5] 

for 40 trials with 200-time steps, to obtain a set of weights that 

are all convergent quickly. After the training, the selected 

weights are kept unchanged for the following experiments. 

Then selected parameters are adjusted in repeated experiments 

on the real robotic platform, and the termination condition 𝜀 =10−5 to achieve approximate optimal control. 
 

 
Fig. 5.  The designed robot-assisted ankle rehabilitation levels. (a) The 
developed ankle rehabilitation robot platform; (b) and (c) are 
corresponding to the 3D/2D movement space of Level-A/B/C. 

A. Event-Triggered Position Control  

By utilizing the proposed event-triggered controller and 

setting the parameters as described above, the critic NN weights 

converge to 𝜔𝑐 =[0.7693, -1.2165, 1.0384, -0.4528, 0.5761] 

after 0.3 s for iterating 20 times, as shown in Fig. 6 (a).  

 

 
Fig. 6. The performance of the proposed event-triggered position control 
scheme for the robot-assisted ankle rehabilitation. (a) Convergence of 
the critic NN weights; (b) Evolution of the event-triggered error and 
threshold; (c) Event interval time of control during the learning process; 
(d) Trajectory tracking performance under the event-triggered control. 

 

From Fig. 6 (b) and (c), the updates only occur when the 

event-triggered condition is satisfied, thus the updating 

frequency of the control law is much lower than time-driven 



 

controllers [30]. Fig. 6 (d) proves the proposed controller’s 

accurate tracking performance. As seen from Table I, event-

triggered controllers (ETC) [18, 19] have a faster response than 

time-driven controllers (TDC) [31, 32], and the former can also 

achieve stable and accurate tracking. However, the few existing 

ETC research for robots are mostly simulation. To adapt to the 

working characteristics of the PM-driven robot, the ET-AHTPC 

has longer event-internal time and lower event-triggered 

frequency compared with that of [31, 32], thus remaining 

enough time to adjust the input of PM actuators. In comparison 

with the simulation results in [31, 32], the tracking error of the 

proposed controller is also acceptable. 

TABLE I 

PERFORMANCE COMPARISON OF ADVANCED TIME-DRIVEN CONTROLLERS 

AND EVENT-TRIGGERED CONTROLLERS  

Reference Type 
Event-

triggered 

count (100s) 

Response 

Time (s) 

Tracking error 

ME 

(%) 

AE 

(%) 

RMSE 

(%) 

[31] TDC * 2.0 12.50 * * 

[32] TDC * 7.0 * 4.25 * 

[19] ETC 170 0.4 * * 1.25 

[18] ETC 204 0.3 * * 2.41 

ET-AHTPC ETC 83 0.3 6.74 2.83 1.47 

* = The unknown value, ME = Maximum error, AE = Average error, RMSE = 

Root mean square error.  
 

To demonstrate the effect of critic NN on the event-triggered 

control strategy, a comparison experiment of the controllers 

with or without critic NN was conducted, and results are shown 

in Fig. 7. It can be seen that the position and torque tracking of 

the controller without critic NN presents a delay compared with 

the one with critic NN, since critic NN can enhance the 

convergence speed of the event-triggered controller, reducing 

the tracking errors as well as the number of events triggered. 

Due to the discrete characteristics of the event-triggered 

controller, its position and torque tracking curves appear to be 

toothed. While the critic NN’s fast update and convergence 
capability make the robot’s control output more stable and 

smoother, which is essential for robotic rehabilitation 

application.  

 

 

Fig. 7. The comparison of the event-triggered controller with/without 
critic NN. (a) The trajectory tracking performance; (b) The interaction 

torque and assistive torque output by the robot; (c) The triggered events 
during the control process. 

 

For further validation of the proposed event-triggered 

controller’s fast-response and its synchronous torque-position 

control capacity, abrupt changes of the position and human-

robot interaction were applied in the experiments, and results 

are shown in Fig. 8 and Fig. 9. When the subject exerts a sudden 

position deviation from the desired trajectory, the error is large 

enough to activate the event-triggered condition and the control 

law is updated to drive the robot to quickly follow the desired 

trajectory, as shown in Fig. 8. During the control process, the 

robotic assistive torque also displays a fast response with small 

adjustments when the abrupt deviation occurs. Similarly, when 

the subject suddenly changes the interaction force applied to the 

robot (Fig. 9), the assistive torque quickly corrects in the 

opposite direction of the interaction to drive the movement back 

into the allowable region. The abrupt position error also 

triggered the event and the trajectory is adjusted at the same 

time. These two cases validate that the proposed ET-AHTPC 

guarantees the stability and adaptivity of the synchronous 

torque-position control system, which are significant for robot-

assisted rehabilitation in practice. 
 

 
Fig. 8. The performance of the proposed event-triggered controller 
under the sudden position deviation. (a) The trajectory tracking 

performance; (b) The interaction torque and assistive torque output by 
the robot; (c) The triggered events during the process. 

 
Fig. 9. The performance of the proposed event-triggered control scheme 
under the sudden changing human-robot interaction. Take the 

experimental data around X-axis as an example. (a) The assistive torque 
output towards the changing interaction torque; (b) The trajectory 

tracking performance; (c) The triggered events during the process. 



 

B. Adaptive Robotic Assistance 

In this section, the adaptive synchronous torque-position 

assistance capacity of the proposed ET-AHTPC according to 

the patient’s real-time performance and rehabilitation state will 

be proved by the experiments. Firstly, two cases of adjusting 𝜔𝑅𝐼  were carried out, as shown in Fig. 10. When the value of 𝜔𝑅𝐼  is changed from 0.5 to 0.2, the assistance level is switched 

from Level-B to Level-C, i.e. it steps into a better rehabilitation 

stage, thus the robot would provide larger motion space and less 

assistance, as presented in Fig. 10 (a) and (b). The assistive 

torque is reduced to encourage the subject’s voluntary 
participation. Then when the level is switched from Level-C to 

Level-B, the allowable movement space is smaller, and larger 

assistive torque is output to drive the subject to follow the 

desired trajectory (Fig. 10 (c) and (d)). As seen from Table II, 

the ET-AHTPC can achieve trajectory/ torque fast-tracking at 

the same time, and the errors are always within an acceptable 

range. Thus ET-AHTPC’s synchronous torque-position 

adjustment for different rehabilitation sessions is proved.  
 

 
Fig. 10. The adaptive assistance capacity of the proposed ET-AHTPC 
when switching the rehabilitation index 𝜔𝑅𝐼. Take the experimental data 
around X-axis as an example. (a) and (b) present the trajectory and 
assistance tracking performance of the robot from Level-B to Level-C; 
(c) and (d) present the trajectory and assistance tracking performance 
of the robot from Level-C to Level-B. 

TABLE II 

CONTROL PERFORMANCE UNDER THE ET-AHTPC UNDER LEVEL SWITCHING 

 Axis 

Position RMSE (*10-2 rad) Torque RMSE (*10-2 Nm) 

Case I: B to C Case II: C to B Case I: B to C Case II: C to B 

B C C B B C C B 

X 1.46 1.93 2.01 1.60 4.34 6.05 5.82 3.97 

Y 1.23 1.78 1.82 1.31 3.67 5.19 5.02 3.21 

Z 0.75 0.86 0.91 0.83 2.59 3.81 3.69 2.46 

 

For further validation of the ET-AHTPC’s adaptivity and 
robustness towards different users, four healthy subjects were 

recruited to participate in the following experiments, and their 

basic information is presented in Table III. From Fig.11, the 

robotic assistive torques compared to the standard are within 

the range of 20.09%-58.85% for different rehabilitation levels. 

The robotic assistance is generally reduced by nearly 40% from 

Level-A to Level-C, and the larger movement freedom could 

maximize the patient’s voluntary participation based on his/her 

rehabilitation state. As shown in Table IV, though the allowable 

deviation range of the position and torque are both increased 

from Level-A to Level C, the errors of all subjects are limited 

to an acceptable range to guarantee the movement safety. The 

maximum position and torque tracking RSME of four subjects 

are 0.0210 rad and 0.0663 Nm respectively, which also verifies 

the robustness of the proposed ET-AHTPC towards different 

subjects. 

To confirm the ET-AHTPC’s synchronous torque-position 

adjustment capacity, a comparison is conducted with relevant 

studies [33-35]. As seen from Table V, the position tracking 

performance in [33] is better than the ET-AHTPC, but the 

former only achieved single control of the position or torque in 

a training mode. Compared with [33-35], ET-AHTPC displays 

more stable and accurate performance for synchronous 

position-torque control even at different training levels. From 

Fig. 12, the distribution of the assistive torque changes 

smoothly with the trajectory in the whole motion space even 

across levels. It is proved that the proposed controller can 

realize smooth and synchronous adjustment of the robot’s 
position and torque, so as to provide more naturally adaptable 

assistance for patients.  
 

TABLE III 

INFORMATION OF THE PARTICIPATED HEALTHY SUBJECTS 

Subjects Gender Age Height (cm) Weight (kg) 

Subject 1 (S1) Female 28 168 61 

Subject 2 (S2) Male 24 178 73 

Subject 3 (S3) Male 25 174 65 

Subject 4 (S4) Female 23 162 52 

 
Fig. 11. The adjustable position/torque control performance of the 

proposed ET-AHTPC for the robotic ankle rehabilitation with four 
subjects at different levels. (a) includes the trajectory tracking results of 

Level-A/B/C; (b) presents the proportion of robotic assistive torque 
relative to the standard torque of human ankle in different levels. 

TABLE IV 

CONTROL PERFORMANCE UNDER THE PROPOSED ET-AHTPC WITH 

DIFFERENT SUBJECTS  

Subjects 
Position RSME (*10-2 rad) Torque RSME (*10-2 Nm) 
Level-A Level-B Level-C Level-A Level-B Level-C 

S1 0.93 1.53 1.82 2.88 4.58 5.37 

S2 1.26 1.39 1.98 3.09 3.70 5.28 

S3 0.87 1.64 2.10 3.37 4.34 6.63 

S4 1.18 2.03 2.04 2.93 3.77 6.11 

Mean 1.06 1.65 1.98 3.07 4.10 4.71 



 

 
Fig. 12. The synchronous performance of position/torque adjustment of 
the ET-AHTPC in the whole robot-assisted rehabilitation space. 

TABLE V 

PERFORMANCE COMPARISON OF ADVANCED FORCE/TORQUE-POSITION 

CONTROLLERS FOR REHABILITATION ROBOTS 

Reference 
Rehabilitation 

Joint 
Modes 

Position 

RMSE 

Torque 

RMSE  

[33] Wrist and forearm 

Passive 1.59% * 

Active 3.02% * 

Isometric * 21.26% 

Isotonic * 30.71% 

[34] Wrist 

Passive 2.80% 7.16% 

Active * 20.83% 

Resistive * * 

[35] Hip and knee 
Passive 5.57% 6.70% 

Active 12.57% 21.66% 

ET-

AHTPC Ankle 

Level-A 2.65% 6.14% 

Level-B 4.12% 10.25% 

Level-C 5.05% 15.70% 

V. CONCLUSION 

In this paper, a novel ET-AHTPC scheme is prosed for the 

developed ankle rehabilitation robot. Instead of conventional 

assisted-as-needed studies utilizing only position feedback or 

impedance parameter, the proposed ET-AHTPC achieves the 

online synchronous torque-position adjustment according to the 

patient’s rehabilitation state and training performance. Based 

on the Brunnstrom clinical scale, a robot-assisted rehabilitation 

index is introduced to the proposed adaptive torque controller 

and the robotic assistance can be adjusted adaptively according 

to patient’s motor ability. A novel critic NN-based event-

triggered controller effectively reduces updates of the control 

law, achieving fast-response and naturally synchronous torque-

position adjustment for practical robotic rehabilitation. As the 

rehabilitation requirement and assessment in clinical practice 

are more complicated, further studies and clinical trials of the 

ET-AHTPC will be conducted for ankle rehabilitation. 

APPENDIX 

A. Derivation of the robot dynamics  

According to the assembly relation of the three rotation axes 

of the robot, the parallel mechanism can be regarded as a 3-

DOF serial robot. Its special feature is that the three joint 

rotation axes of the serial robot intersect at one point. The 

following parameters marked by 1/2/3 are corresponding to 

X/Y/Z axis respectively. According to the D-H method, the 

homogeneous transformation matrix is used to describe the 

coordinate changes between adjacent DOF. 

The element 𝑀𝑖𝑗  and 𝐺𝑖  (𝑖 = 1,2,3; 𝑗 = 1,2,3) in the inertia 

matrix 𝑀(𝑞) and gravity vector 𝐺(𝑞) in (1) can be expressed as 

𝑀𝑖𝑗 = ∑ 𝑇𝑟𝑎𝑐𝑒(𝑈𝑘𝑗𝐽𝑘𝑈𝑘𝑖𝑇 )3𝑘=𝑚𝑎𝑥(𝑖,𝑗)   𝐺𝑖 = ∑ −𝑚𝑘g𝑈𝑘𝑖𝑟𝑘−13𝑘=𝑖    
(A1) 

where g is the gravity acceleration, 𝑚𝑖 is the mass of the joint 

of 𝑖th-axis, and 𝑟𝑖 is the coordinate of the centroid of the joint 

of 𝑖th-axis with the coordinate system of (𝑖 + 1)th-axis. 𝐽𝑖 is the 

pseudo inertia matrix of the 𝑖th-axis, and 𝑈𝑖𝑗  is related to the 

homogeneous transformation matrix. 

The element 𝐶𝑖𝑗  (𝑖 = 1,2,3; 𝑗 = 1,2,3) in the Coriolis force 

matrix 𝐶(𝑞, �̇�) in (1) is 𝐶𝑖𝑗 = ∑ ∑ 𝑇𝑟𝑎𝑐𝑒(𝜕𝑈𝑖𝑗𝜕𝑞𝑘 𝐽𝑘𝑈𝑘𝑖𝑇 )3
𝑘=𝑚𝑎𝑥(𝑖,𝑗,ℎ) �̇�𝑘   3𝑘=1  (A2) 

B. Derivation of (15) and (16)  

From (13), we have 𝑦𝑇𝛽𝑦𝑦 + Λ1Λ𝛽Λ1𝑇  = 𝑦𝑇𝛽𝑦𝑦 + �̂�𝑇α𝜏�̂�𝑇 + 12 𝑒Δ𝑇𝛽𝑒�̂�𝑇 + 12 �̂�𝑇𝛽𝑒𝑒Δ𝑇 + 𝑒Δ𝑇𝛽1𝛽𝑒𝑒Δ𝑇 
(B1) 

whereα𝜏 and 𝛽𝑒 satisfy the condition 𝛽1𝜆min[α𝜏] ≥ 14 𝜆max[𝛽𝑒], 
and 𝜆min[∙] and 𝜆max[∙] are the corresponding minimum and 

maximum eigenvalues of the matrices. Λ𝛽 is positive definite, 

thus 𝑦𝑇𝛽𝑦𝑦 + Λ1Λ𝛽Λ1𝑇 ≥ 0  in (15) is proved. Based on (7), �̂�𝑇(𝜀𝑖𝑛𝑡𝑐 + 𝜏𝑖𝑛𝑡) in (13) could be presented as (B2), and (16) is 

obtained. �̂�𝑇(𝜀𝑖𝑛𝑡𝑐 + 𝜏𝑖𝑛𝑡)= �̂�𝑇 (− 𝑠𝑇𝜏𝑖𝑛𝑡 + 𝜎‖𝑠𝑇𝜏𝑖𝑛𝑡‖ + 𝜎 𝜏𝑖𝑛𝑡 + 𝜏𝑖𝑛𝑡) 
(B2) 
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