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Continual Variational Autoencoder Learning via

Online Cooperative Memorization

Fei Ye and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK
{fy689,adrian.bors}@york.ac.uk

Abstract. Due to their inference, data representation and reconstruc-
tion properties, Variational Autoencoders (VAE) have been successfully
used in continual learning classification tasks. However, their ability to
generate images with specifications corresponding to the classes and
databases learned during Continual Learning (CL) is not well under-
stood and catastrophic forgetting remains a significant challenge. In this
paper, we firstly analyze the forgetting behaviour of VAEs by developing
a new theoretical framework that formulates CL as a dynamic optimal
transport problem. This framework proves approximate bounds to the
data likelihood without requiring the task information and explains how
the prior knowledge is lost during the training process. We then propose a
novel memory buffering approach, namely the Online Cooperative Mem-
orization (OCM) framework, which consists of a Short-Term Memory
(STM) that continually stores recent samples to provide future informa-
tion for the model, and a Long-Term Memory (LTM) aiming to preserve
a wide diversity of samples. The proposed OCM transfers certain sam-
ples from STM to LTM according to the information diversity selection
criterion without requiring any supervised signals. The OCM framework
is then combined with a dynamic VAE expansion mixture network for
further enhancing its performance.

Keywords: VAE, Continual learning, Lifelong generative modelling

1 Introduction

One desired capability for an artificial intelligence system is to continually learn
novel concepts without forgetting the knowledge learnt in the past. However,
existing artificial systems are far away from such capabilities, characteristic of
living organisms. A deep learning model which can recover the training data from
a low-dimensional latent code space is the Variational Autoencoder (VAE) [25].
VAEs have been widely used in image synthesis [60, 62], semi-supervised learning
[1, 63] and for image-to-image translation [38]. However, similar to other deep
learning systems, VAEs suffer from degenerated performance when it is trained
successively with new tasks, which is a result of catastrophic forgetting [42].

Existing works to relieve VAE’s forgetting can be summarized as two cate-
gories. The first would usually train a generator [2, 44, 49], or store a few past
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learnt samples [39] in a memory buffer which replays old samples together with
learning new tasks to optimize the model. The methods from the second category
would focus on dynamically adding new VAE components into a mixture model
to adapt to the data distribution shift [35, 45] in which prior knowledge is pre-
served in the frozen network parameters and structures. These approaches have
been extended for the case when the model is trained on non-stationary data
streams without knowing the task information, a mechanism called Task Free
Continual Learning (TFCL) [4, 5]. However, the theoretical analysis for VAE’s
forgetting behaviour under TFCL has not been studied before.

In recent years, some studies have provided the theoretical analysis for contin-
ual learning from different perspectives including the NP-hard problem [27], risk
bound [58, 64], Teacher-Student framework [34, 57] and game theory [43]. How-
ever, all these approaches require strong assumptions such as clearly defining the
task identities, which is not applicable when the task information is missing. In
this paper, we bridge this gap by developing a new theoretical framework which
formulates TFCL as a dynamic optimal transport (OT) problem, and derives
the approximate bounds on the data likelihood. The motivation behind OT is
twofold : 1) OT models evaluate distances between pairs of probability density
functions [8] and can be used for deriving the approximate bound to the data
likelihood (See Section 4); 2) OT can be estimated by employing sampling [18],
which is suitable for analysis and verification. The proposed theoretical analysis
also highlights that the sample diversity in the memory used for training is cru-
cial for overcoming forgetting and would not require the category information.

Another contribution of this study, inspired by the above mentioned theoret-
ical analysis, is to develop a new memorization approach aiming to store diverse
samples for training a VAE through the TFCL. Other approaches have pro-
posed diversifying the information for memorization by evaluating the similarity
on the gradient information [3] or by assigning balanced samples to memory
buffers according to their categories’ information [6, 13]. However, most of these
prior approaches require to access supervised signals, which are not available in
unsupervised learning. Additionally, these approaches do not have theoretical
guarantees and also ignore the data stream future information in the sample
selection. Knowing both the past and future information was shown to improve
time series prediction [22] and would be helpful for the sample selection.

In this paper, we address the aforementioned problems by : 1) Proposing a
new learning paradigm called Online Cooperative Memorization (OCM) which
consists of three components: a Long-Term Memory (LTM), a Short-Term Mem-
ory (STM) and a model (Learner). OCM implements a memorization mechanism
which transfers the temporary information from the STM to LTM, according to
a certain criterion. 2) A kernel-based information importance criterion for eval-
uating the similarity among the data stored in the STM for selecting diverse
characteristic samples for LTM, without requiring a class label. The kernel eval-
uation of the similarity of a pair of data samples [15], defined as an inner product
of the latent representations of each pair of the data stored in the memory, is
shown to be efficient. This procedure ensures achieving an appropriate diversifi-
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cation among the samples stored in the LTM. We summarize our contributions
as follows : 1) Our work is the first to provide theory insights for the forget-
ting behaviour of VAE under TFCL. 2) We propose the Online Cooperative
Memorization (OCM) that can be used in any VAE variant with minimal mod-
ification and can also be extended to a dynamic expansion mixture approach to
further enhance performance. 3) We propose a new sample selection approach
for dynamically transferring selected samples from the STM to LTM without
requiring any supervised signal. To our best knowledge, this is the first work to
explore the kernel-based distance for the sample selection under TFCL. 4) The
proposed sample selection approach can be used in both supervised and unsu-
pervised learning without modifying the selection strategy.

2 Related work

Continual learning. One of the most popular approaches is to use a regularization
loss within the optimization procedure [14, 21, 23, 26, 36, 41, 47, 52, 56], where the
network parameters which are important to the past learnt data are re-weighted
when learning a new task, in order to attempt to preserve past knowledge. Other
approaches would employ a small buffer to store a few past data [3, 10, 53] or
would train a generator as a generative replay network that provides pseudo
data samples for the future task learning [2, 44, 45, 49, 57–59, 66, 69]. However,
these approaches can not guarantee the optimal performance on the past task
since stored or generated samples can not represent the true underlying data
distributions [64]. This issue can be solved by storing the information of past
samples into the network’s parameters which are then frozen when learning novel
tasks [35, 64, 65, 67, 68].
Task free continual learning. Recent works have driven the attention to a more
challenging scenario where task boundaries are unknown. Most approaches would
focus on the sample selection approach that stores certain samples into a buffer
to train the model. This approach was firstly investigated in [5] for training a
classifier under TFCL and for training both classifiers and VAEs [4] using a new
retrieving mechanism selecting called the Maximal Interfered Retrieval (MIR).
The Gradient Sample Selection (GSS) [3] formulates the sample selection as a
constrained optimization reduction. More recently, a Learner-Evaluator frame-
work, called the Continual Prototype Evolution (CoPE) [13] stores the same
number of samples for each class in the memory to enforce the balance replay.
Different from these approaches, the proposed OCM does not require any su-
pervised signals for the sample selection in both supervised and unsupervised
learning.

Another approach for TFCL is based on the dynamic expansion mechanism
[35], called the Continual Neural Dirichlet Process Mixture (CN-DPM), which
introduces Dirichlet processes for the expansion of VAE components. This ex-
pansion mechanism was combined with the generative replay into the Continual
Unsupervised Representation Learning (CURL) [45], for learning the shared and
task-specific representations, befitting on the clustering task.
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Optimal Transport (OT). The OT aims to search for a minimal effort solution to
transfer the mass from one distribution to another. OT has been recently applied
in the domain adaptation problems [12, 16] and was also used in auto-encoders to
provide a flexible training loss for the VAE [54]. However, these models require to
fully access all samples at all times, and are failing to capture the underlying data
distributions under TFCL. In this paper, we formulate TFCL as the dynamic
optimal transport problem which provides a new perspective for the forgetting
behaviour of VAEs. To our best knowledge, this paper is the first work to employ
OT for forgetting analysis under TFCL.

3 Preliminary

In this section, we firstly introduce the background of VAEs. Then we explain
how TFCL can be seen as a dynamic optimal transport problem.

3.1 The Variational Autoencoder

The VAE [25] aims to jointly optimize the observed variable x and their corre-
sponding encoded latent variables z within an unified optimization framework
by maximizing the marginal log-likelihood log pθ(x) =

∫
pθ(x | z)p(z) dz. This

integral involves the Normal prior distribution p(z), which is intractable to op-
timize since it requires access to all z. The VAE maximizes the Evidence Lower
Bound (ELBO) on log pθ(x), while the distribution pθ(z |x) is approximated by
a variational distribution qω(z |x) :

LELBO(x; θ, ω) :=Ez∼qω(z |x) [log pθ(x | z)]−KL [qω(z |x) || p(z)] , (1)

where pθ(x | z) is the decoder parameterized by θ and LELBO(x; θ, ω) is a lower
bound to log pθ(x). KL(·) represents the Kullback–Leibler (KL) divergence.
Eq. (1) can be further extended when considering multiple samples, as the Im-
portance Weighted Autoencoder (IWVAE) [9] :

Lm
IW (x; θ, ω) := Ez1,··· ,zm∼qω(z |x)

[
log

1

m

m∑

i=1

wi

]
, (2)

where wi = pθ(x, zi)/qω(zi |x) and m is the number of importance samples.
Since we have Lm

IW (x; θ, ω) > LELBO(x; θ, ω) for m > 1 [9], Eq. (2) can be used
as the estimator for the data likelihood [50].

3.2 Formulate TFCL as a dynamic OT problem

Learning setting. Let DS be a training set over the image space X ∈ R
d with

d dimensions, we assume that there are N training steps {t1, · · · , tN}, for the
part-by-part learning of DS , defined as DS =

⋃tN
i=1 X

i
b, where Xi

b ∩Xj
b = ∅ for

i ̸= j. In each training step ti, a model only observes a small batch of images Xi
b

drawn from DS , without accessing all the prior batches {X1
b , · · · ,Xi−1

b }. Once
all training steps are finished, we evaluate the model on a testing dataset DT by
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using two main criteria (negative log-likelihood estimation and reconstruction
quality). In the following, we introduce several definitions and notations.

Definition 1. (Memory.) Let Mi represent a memory data buffer updated at the
step ti and Pmi

represent the probabilistic representation of the samples drawn
from Mi. Let Px represent the probabilistic measure defined by the samples drawn
from DS.

Definition 2. (Model.) Let hi be a VAE model trained on Mi at ti. Let Pz be
a prior distribution (Normal distribution) on the latent variable space Z.

Definition 3. (Decoder.) Let Gi : Z → X be a generator (decoder in the hi

model trained at ti). Gi(z) = pθ(x | z) in hi is implemented as the Gaussian
decoder N (G⋆

i (z), σ
2Id), where G⋆

i is a deterministic generator, σ > 0 represents
a small random variation for ensuring randomness, and Id is the unit vector
of dimension d. Let PGi

represent the probabilistic measure formed by samples
drawn through the sampling process, x ∼ pθ(x | z), z ∼ Pz of hi.

In the generative modelling, we usually consider two probabilistic measures
Px and PGi

over two distinct spaces, denoted as Ωx and ΩGi
, respectively. Let

T : ΩGi
→ Ωx be a transport map if satisfying T#PGi

= Px that transforms
PGi

into Px. For a given arbitrary measurable cost function L, the optimal
transportation problem can be defined by Monge’s formulation, expressed by :

T∗ =argmin
T

∫

ΩGi

L(x,T(x)) dPGi
(x) , s.t.T#PGi

= Px . (3)

According to the optimal transport theory [12], the above problem is solved by
the Kantorovitch formulation [24] :

W
⋆
L(Px,PGi

) = infPx×Gi
E(xr,xg)∼Px×Gi

[L(xr,xg)] , (4)

where Px×Gi
represents the set of all probabilistic couplings on Ωx × ΩGi

with
marginals Px and PGi

. Xr and Xg are the samples drawn from Px×Gi
. Different

from the traditional OT problem, WL(Px,PGi
) would be changed over time

(when i increases) because the model is trained on the dynamically evolved
memory Mi. We call Eq. (4) as the dynamic OT problem where the optimal
solution is evolved each training time ti. Eq. (4) has an upper bound when Gi

is the Gaussian decoder [8, 54] :

W
⋆
L(Px,PGi

) ≤ infqω(z) EPx
Eqω(z |x)[L(x,Gi(z))] , (5)

where qω(z) is the marginal distribution of qω(z |x) satisfying qω(z) = p(z). We

implement L(x,Gi(z)) = ∥x−Gi(z)∥2 as the squared Euclidean cost function
in which WL(·) is the squared 2-Wasserstein distance [8].

4 Theoretical framework

ELBO is an important indicator of the VAE’s performance and is used as its
main optimization function [11]. In the following, we provide a new perspective
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for analyzing the forgetfulness behaviour of VAEs during the continuous learning
of several batches of data by formulating the ELBO’s variation as a learning and
forgetting process. The code and Supplemental Materials (SM) are available at
https://github.com/dtuzi123/OVAE.

4.1 Analysis of forgetting in a single model

Firstly, we derive an upper bound to ELBO of the target domain Px, based on
the dynamic OT problem (Eq. (5)).

Theorem 1. For a VAE model hi trained at ti, where pθ(x | z) = N (Gi(z), σ
2Id)

is the Gaussian decoder and σ = 1/
√
2, we have :

infqω(z)=p(z) EPx
[LELBO(x; θ, ω)] ≤ −1

2
log π −W⋆

L(Px,PGi
) , (6)

The detailed proof is provided in Appendix-A from Supplemental Materials
(SM). Based on the results from Theorem 1, we derive a bound that explains
the forgetting process of VAEs.

Theorem 2. Let Pmi
and Px be the source and target domains. From Eq. (6),

we derive the bound on the ELBO between Pmi
and Px at the training step ti :

EPx
[LELBO(x; θ, ω)] ≤ EPmi

[LELBO(x; θ, ω)]

+ 2W⋆
L(Pmi

,PGi
)−W⋆

L(Px,Pmi
) + F̃(PGi

,Pmi
) ,

(7)

where F̃(PGi
,Pmi

) is expressed as :

F̃(PGi
,Pmi

) = EPmi
[DKL(qω(z |x) || p(z))]

+
∣∣∣EPmi

Eqω(z |x)[−L(x,Gi(z))]−W⋆
L(Pmi

,PGi
)
∣∣∣ .

(8)

Remark. The detailed proof is provided in Appendix-B from SM. We have sev-
eral observations from Theorem 2 : 1) Improving the performance on the source
domain (ELBO on Pmi

) would not lead to increasing ELBO on the target do-
main Px because the right hand side (RHS) of Eq. (7) involves the negative term,
−W⋆

L(Px,Pmi
). 2) Since RHS of Eq. (7) is upper bounded to ELBO on Px, a

large W⋆
L(Px,Pmi

) decreases RHS of Eq. (7) and therefore leads to the degener-
ated performance, measured by ELBO, on Px, corresponding to forgetting the
knowledge at the training step ti. This is usually caused by the memory Mi that
fails to capture all information of Px during the initial training process (when i
is small) or after the training (i = tN ).
The effect of the memory diversity. In practice, Px is divided into several sepa-
rate distributions (target domains) {Px1 , · · · ,Pxn} where each Pxj is the char-
acteristic distribution of a data category. Under this setting we analyze the
forgetting behaviour in the class-incremental scenario.

Lemma 1. Let {Px1 , · · · ,Pxn} and Pmi
be the target domains and source do-

main, respectively. The bound on ELBO between the source and target domain
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is derived as :∑n

j=1
EP

x
j
[LELBO(x; θ, ω)] ≤

∑n

j=1

{
2W⋆

L(Pmi
,PGi

)

+ EPmi
[LELBO(x; θ, ω)]−W⋆

L(Pxj ,Pmi
)
}
+ nF̃(PGi

,Pmi
) .

(9)

Proof. We sum up the bounds between Pxj and Pmi
, where j = 1, · · · , n and

prove Lemma 1.
Remark. We have several observations from Lemma 1 : 1) To maximize ELBO on
target domains {Px1 , · · · ,Pxn}, W⋆

L(Pxj ,Pmi
), j = 1, · · · , n must be minimized,

corresponding to the diverse samples replayed from Pmi
. 2) We also provide

new insights into the backward transfer [39] by using Eq. (9). When a memory
Mi prefers to store samples from a few recent data distributions {Pxn−1 ,Pxn},
the model would lead to negative backward transfer on past target domains
{Px1 , · · · ,Pxn−2}. Data diversity in memory can relieve this negative effect.

4.2 Forgetting analysis of the expanding VAE mixture model

In this section, we extend the forgetting analysis from a single VAE model to
the Dynamic Expansion Model (DEM).

Definition 4. Let H = {h1, · · · , hk} be a dynamic expansion model trained at
ti, which has built k components during the learning, where each hi is a VAE
model. Let q = {q1, · · · , qk} represent the training steps that each component
converged on. For instance, hi converged on Mqi at tqi , is not updated in the
following training steps. Then PGqi

and Pmqi
represent the generator distribu-

tion and the distribution of samples drawn from Mqi .

Lemma 2. Let {Px1 , · · · ,Pxn} be a set of n target domains. From Definition 4,
the bound on the ELBO for the dynamic expansion model is derived as :

∑n

j=1
EP

x
j
[LELBO(x; θ, ω)] ≤

∑n

i=1
F⋆(Pxi) , (10)

where F⋆(Pxi) is the selection function, defined as :

F⋆(Pxi) = max
j=1,··· ,k

{
EPmqj

[LELBO(x; θ, ω)]

+ 2W⋆
L(Pmqj

,PGqj
)−W⋆

L(Pxi ,Pmqj
) + F̃(PGqj

,Pmqj
)
}
.

(11)

The proof is provided in Appendix-C from SM. To compare with a single
model (Lemma 1), DEM would provide a maximum upper bound to the Left
Hand Side (LHS) of Eq. (10) due to the selection process, Eq. (11). Additionally,
DEM can relieve the negative backward transfer by preserving prior knowledge
into the frozen components.

4.3 Mixture expansion with the task information

Although the proposed theoretical framework is only used for TFCL, it can
be extended for the case where task labels are known. We also apply the pro-
posed theoretical framework for analyzing the forgetting behaviour of existing
approaches (See details in Appendix-F from SM).
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Definition 5. ( Learning setting.) Let T = {T1, · · · , Tc} represent a set of task
labels where c is the number of tasks and we consider that each i-th task is
associated with a testing dataset DT

i and a training dataset DS
i . Let Pxi and

Px̂i represent the empirical distributions for DS
i and DT

i , respectively. Since the
task label is given, a mixture model starts to learn the first task and then either
builds a new component or selects an existing component to learn a new task
after the task switch. When a certain component is selected to learn a new task,
the Generative Replay Mechanism (GRM) is used to relieve forgetting.

Definition 6. (Generative replay.) Let Pj

x̃
represent the distribution of samples

drawn from the generating process of hj. Let ft : X → T be the true labelling
function that returns the task label for the data sample. If the i-th task is trained
by hj, let Px̃(i,m) be the distribution of samples drawn from the process x ∼
P
j

x̃
if ft(x) = i, where m represents that Px̃(i,0) is evolved to Px̃(i,m) through m

generative replay processes [58]. Let Px̃(i,0) and Px̃(i,−1) represent Pxi and Px̂i

for simplicity.

Theorem 3. Let A = {a1, · · · , an} be a set where each ai represents the index

of the component that has trained only once. Let Ã = {ã1, · · · , ãn} be a set of
task labels where each ãi represents the index of the task learned by the ai-th
component. Let B = {b1, · · · , bk−n} be a set where each bi represents the index

of the component that is trained more than once. Let b̃i = {b̃1i , · · · , b̃mi } be a set

of task labels for the bi-th component. Let cji represent the number of generative

replay processes for the b̃ji -th task, achieved by the bi-th component. Let PGi

represent the generator distribution of the i-th component. We derive the bound
for a mixture model with k components trained on c tasks as :

|A|∑

i=1

{
EP

x̂
ãi
[LELBO(x; θ, ω)]

}
+

|B|∑

i=1

{ |̃bi|∑

q=1

{
EP

x̂

b̃
q
i

[LELBO(x; θ, ω)]
}}

≤ RS +RM

(12)
where | · | denotes the cardinal of a set. RS is estimated by components that are
trained only once, defined as :

RS =
∑|A|

i=1

{
2W⋆

L(Pxãi ,PGai ) + +F̃(PGaiPxãi )

+ EP
x
ãi
[LELBO(x; θ, ω)]−W⋆

L(Px̂ãi ,Pxãi )
}
.

(13)

RM is estimated by components that are trained on more than one task, as :

RM =
∑|B|

i=1

{∑|̃bi|

q=1

{
EP

x̃

(b̃
q
i
,c

q
i
)
[LELBO(x; θ, ω)] +

∑c
q

i

s=0

{
2W⋆

L(Px̃
(b̃

q
i
,s) ,PGbi )

+ F̃(PGbi ,P
x̃
(b̃

q
i
,s))−W⋆

L(Px̂
(b̃

q
i
,s−1) ,P

x̃
(b̃

q
i
,s))
}}}

. (14)

Remark. The detailed proof is provided in Appendix-D from SM. Theorem 3 has
the following observations : 1) If the number of components k is equal to the
number of tasks, then RM = 0 and there is no forgetting. When the number of
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components decreases, forgetting happens because the last term in the RHS of
Eq. (14) is increased, leading to a decrease in the RHS of Eq. (12) (corresponding
to the decrease of ELBO on all target domains). 2) If k = 1, then RS is about
only the last task, then RM is increased significantly since the accumulated

errors
∑c

q

i

s=0{W⋆
L(Px̂

(b̃
q
i
,s−1) ,P

x̃
(b̃

q
i
,s))} in Eq. (14) increases. Learning early tasks

would lead to more forgetting than when learning the recent tasks for k = 1
because early tasks would have more accumulated errors (cqi in RM is large as i
increases (See Appendix-D from SM)).

5 Methodology

Previous approaches have proposed to learn a diverse memory according to the
category information. However, these approaches do not provide a theoretical
guarantee for the accumulated memory’s diversity. To our best knowledge, this
paper is the first to provide a theoretical forgetting analysis and guarantees for
existing TFCL models (See details in Appendix-F of SM). Additionally, the pro-
posed theoretical framework demonstrates that the diversity of memory content
can be achieved without knowing the category information (Lemma 1). Based
on the conclusion of Lemma 1, we introduce a new memory approach which con-
sists of three modules: LTM, STM and the Learner. The proposed approach does
not require any task information or supervised signals for unsupervised learn-
ing. Firstly, we introduce the proposed OCM with the Learner implemented as
a single VAE, and then we extend this into a dynamic expansion mechanism.

5.1 Online Cooperative Memorization (OCM)

Notations. Let Ml
i = {xl

i,j}
nl
i

j=1 and Me
i = {xe

i,u}
ne
i

u=1 represent the samples

stored in the LTM and STM, respectively, at the training step ti while nl
i and

ne
i represent the number of samples. Let Me

Max represent the maximum number
of samples which can be stored in Me

i .
The training procedure, presented in Fig. 1, consists of three main stages, as

described in the following.
Stage 1 : Learning. At the training step ti, STM stores a new batch of samples
Xb

i into Me
i , while the model, consisting of a single VAE, is trained to update

both Me
i and Ml

i using Eq. (1). Once the training is finished, we perform the
next step.
Stage 2: Evaluation. We perform this step if and only if ne

i ≥ Me
Max in order

to reduce the computational cost. The main goal of this stage is to evaluate the
correlation between stored samples from STM and LTM. Firstly, we treat each

stored sample as a node and introduce a graph relationship matrix Si ∈ R
ne
i×nl

i ,
whose elements Si(j, u) represent the correlation between two samples xe

i,j and

xl
i,u, from STM and LTM respectively. Directly evaluating each Si(j, u) in the

high-dimensional data space is intractable since it would require overloaded com-
putations [17] and auxiliary training [7, 37]. Since the model has been trained on
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Fig. 1. The training of OCM consists of three stages : (Learning.) STM continually
stores recent samples while the model is trained to adapt both LTM and STM; If STM is
full, we perform the evaluation and selection stages, otherwise, we continually perform
the learning stage. (Evaluation.) We obtain the feature vectors {ze(i,1), · · · , z

l

(i,nl
i
)
} from

inputs {xe
(i,1), · · · ,x

l

(i,nl
i
)
} by using a VAE encoder, which is used for the evaluation

of the sample similarity using the kernel from Eq. (15). This similarity information
is preserved in the graph relationship matrix Si. (Selection.) We transfer the samples
from STM to LTM using the proposed criterion Eq. (18) by means of Si from (16).

(a) Real testing samples. (b) VAE-ELBO-Random. (c) VAE-ELBO-OCM.

Fig. 2. Image reconstruction compared to real images.

both past samples from LTM and the current samples from STM, it can be used
as a discriminator. We then evaluate the distance between two samples based
on the perceptual feature space of the learned model by using the Radial Basis
Function (RBF) kernel :

K(xe
i,j ,x

l
i,u) = exp

(
−
∥∥zei,j − zli,u

∥∥2

2α2

)
, (15)

where zei,j and zli,u are feature vectors extracted from xe
i,j and xl

i,u using the
feature extractor implemented by the output layer of the encoder qω(z |x) of

the VAE model, as illustrated in Fig. 1. Si(j, u) = K(xe
i,j ,x

l
i,u) and ∥·∥2 is the

squared Euclidean distance. α is the scale hyperparameter for the kernel and we
set α = 10 to ensure that the output of K(·, ·) is within [0, 1]. Eq. (15) can be
further accelerated by the matrix operation, expressed as :

Si = Fexp

(
−(Ze

i (−Zl
i)

T
)⊙ (Ze

i (−Zl
i)

T
)/2α2

)
, (16)

where Ze
i ∈ R

ne
i×dz and Zl

i ∈ R
nl
i×dz are the feature matrices corresponding to

Me
i and Ml

i, where each row is a feature vector of dimension dz. (·)T and ⊙
are the transpose operation and Hadamard product, respectively. Fexp(·) is the
exponential function for each element in a matrix.
Stage 3: Sample selection. This stage also require satisfying Ne

i ≥ Me
Max to

avoid excessive LTM growing. The main goal of this stage is to choose samples
that are very different from those already stored in LTM. We achieve this by
calculating the average similarity scores using kernels between each candidate
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Table 1. The estimation of log-likelihood on all testing samples by using the IWVAE
bound with 1000 importance samples.

Split MNIST Split Fashion Split MNIST-Fashion

Methods Log Memory N Log Memory N Log Memory N

VAE-ELBO-Random -150.79 3.0K 1 -280.54 3.0K 1 -247.46 3.0K 1

LIMix [64] -146.23 2.0K 30 -262.52 2.0K 30 -238.63 2.0K 30

CNDPM [35] -120.71 2.0K 30 -257.56 2.0K 30 -236.79 2.0K 30

VAE-ELBO-OCM -132.07 1.6K 1 -250.74 1.6K 1 -215.62 2.0K 1

VAE-IWVAE50-OCM -127.11 1.6K 1 -247.90 1.6K 1 -224.34 2.0K 1

Dynamic-ELBO-OCM -115.89 1.1K 5 -237.69 1.3K 10 -187.49 1.4K 10

sample xe
i,j and each sample from LTM using Si from Eq. (16) :

R
S(xe

i,j) =
1

nl
i

∑nl
i

k=1
Si(j, k) . (17)

Eq. (17) refers to the distance between xe
i,j and all samples contained in the

LTM. In order to control the size of LTM, we introduce a threshold λ for the
sample selection :

R
S(xe

i,j) > λ ⇒ Ml
i = Ml

i ∪ xe
i,j . (18)

The choice for λ influences the diversity and memory size of LTM. Empiri-
cally, according to the ablation study in Appendix H.4 from SM, λ ∈ [0.2, 0.5]
can achieve the best performance resulting in a reasonable LTM size for most
datasets. Once the selection is finished, Me

i is cleared for storing novel samples
during the next training step ti+1.

Table 2. IS and FID scores under Split
CIFAR10.

Methods IS FID Memory N

VAE-ELBO-Random 3.84 116.26 1.0K 1

CNDPM [35] 4.12 95.23 1.0K 30

LIMix [64] 3.02 156.46 1.0K 30

VAE-ELBO-OCM 4.13 98.76 0.5K 1

Dynamic-ELBO-OCM 4.16 92.99 0.4K 3

Table 3. The estimation of log-
likelihood on “Cross domain”
Methods Log Memory N

VAE-ELBO-Random -239.71 3.0K 1

LIMix [64] -226.63 2.0K 30

CNDPM [35] -218.15 2.0K 30

VAE-ELBO-OCM -201.31 2.0K 1

VAE-IWVAE50-OCM -204.35 2.0K 1

Dynamic-ELBO-OCM -177.29 1.5K 11

5.2 Combining OCM with expansion mechanism

According to Lemma 2 and Section 4.3, by dynamically expanding the model
with new components would lead to better performance. Moreover, the exten-
sion mechanism reduces negative transfer when each component learns different
underlying data distributions (see detailed analysis in Appendix-C of SM). This
analysis inspires us to implement the extension mechanism from two aspects.
First, we introduce an expansion criterion to detect the data distribution shift
by comparing the loss value between the previously learned and newly seen sam-
ples, which ensures a suitable network architecture. Second, to encourage each
component to learn different underlying data distributions, we clear STM and
LTM when we dynamically add a new component to the mixture model.
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The newly added component can be an independent VAE or one that shares
its parameters with existing components. In the following, we describe the lat-
ter setting. Let feωs

: X → Z ′ and feωi
: Z ′ → Z be the shared module and the

component-specific module for the encoding process, where i represents the com-
ponent index and Z ′ is the feature space. Similar to the encoding process, we have
two modules for the decoding process, fdθs : Z → X ′ and fdθi : X ′ → X , where X ′ is
the feature space. The encoding and decoding processes for the i-th component
can be implemented by qθs,i(z |x) = feωs

⊙ feωi
(x) and pθs,i(x | z) = feθs ⊙ feθi(z),

respectively, where feωs
⊙ feωi

: X → Z ′ → Z is the encoding process. The opti-
mization for the i-th component corresponds to maximizing ELBO :

Li
ELBO(x; θ, ω) := Eqωs,i

(z |x)

[
log pθs,i(x | z)

]
−KL

[
qωs,i

(z |x) || p(z)
]

(19)

where z ∼ qωs,i
(z |x) and the shared modules are only updated by using Eq. (19)

for i > 1 in order to avoid forgetting.
Criterion for dynamic expansion. When a mixture model has multiple com-
ponents, we evaluate the sample similarity from Eq. (15) by using an augmented
feature extractor that concentrates features from each component. The training
process for the new components from the dynamic expansion model is the same
as the one described in Section 5.1 where we incorporate a criterion for the model
expansion in Step 3 : (Sample selection) :

|Ri − Rlast| > λ2 ,Ri =
1

N ′

∑N ′

j=1

{ 1

K

∑K

c=1
{Lc

ELBO(xj ; θ, ω)}
}
, (20)

where xj is the j-th sample from the joint memory Me
i ∪Ml

i. N
′ = ne

i +nl
i and

Ri is the loss evaluated on all memorized samples using the mixture model at
the training step ti. Rlast is the most recent loss value. The pseudocode of the
algorithm is provided in Appendix-H from SM.

6 Experiments

6.1 Experiment setting and datasets

Datasets. For the Log-likelihood evaluation, we have the following settings:
1) Split MNIST/Fashion. Split MNIST [33] into ten parts according to the cat-
egory information and create a data stream by collecting these parts in a class-
incremental way. This is also done for Fashion database; 2) Split MNIST-Fashion.
Combine Split MNIST and Split Fashion into a data stream; 3) Cross-Domain.
Combine Split MNIST-Fashion and unsorted samples from OMNIGLOT [31].
We adapt CIFAR10 [28] and Tiny-ImageNet [32] for the generative modelling
task. Similar to Split MNIST, we divide CIFAR10 and Tiny-ImageNet into ten
parts, namely Split CIFAR10 and Split Tiny-ImageNet, respectively. The details
of dataset, hyperparameter and network architecture are provided in Appendix-
H.1 of SM.
Evaluation Criteria. We use the Inception Score (IS) [48] and Fréchet Inception
Distance (FID) [19] for the evaluation of reconstruction quality. For the density
estimation task, we estimate the real sample log-likelihood by using IWVAE
bound [9], as in Eq. (2), considering 5000 importance samples.
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Baseline. We introduce several baselines used in experiments: 1) VAE-ELBO-
OCM : We train a single VAE model with ELBO using the proposed OCM.
2) VAE-IWVAE50-OCM : We train a single VAE model with IWVAE using the
proposed OCM where the number of importance samples is 50. 3) VAE-ELBO-
Random : We train a single VAE model with a memory that randomly removes
samples when it reaches the maximum memory size. 4) Dynamic-ELBO-OCM :
We train a mixture model with ELBO using the proposed OCM. 5) CNDPM
[35] : CNDPM uses Dirichlet process for the expansion of the mixture system;
6) LIMix [64] : We assign an episodic memory with a fixed buffer size for the
LIMix model used for TFCL. The maximum number of components for various
models is set to 30 to avoid memory overload.

Table 4. The classification accuracy of five indepdnent
runs for various models on three datasets.
Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04

GEM* [39] 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48

iCARL* [46] 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37

reservoir* [55] 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79

MIR* [4] 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57

GSS* [3] 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94

CoPE-CE* [13] 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52

CoPE* [13] 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69

CURL* [45] 92.59 ± 0.66 - -

CNDPM* [35] 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12

Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

Table 5. IS and FID on Ima-
geNet database.

Model IS FID

MVAE-Gau [61] 6.84 /

MVAE-Gau fixed [61] 6.30 /

MVAE-GS [61] 6.52 /

MSVI [30] 6.12 /

InfoVAE [70] 6.14 /

β-VAE [20] 5.05 /

VAE [25] 5.46 /

MAE [40] 5.87 /

VAE-ELBO-Random 3.15 145.36

VAE-ELBO-OCM 3.36 133.23

6.2 Log-likelihood evaluation

In this section, we implement each VAE model or component by using the
Bernoulli decoder. All datasets are binarized according to the setting from [9].
The results for Split MNIST, Split Fashion, Split MNIST-Fashion and Cross-
domain are provided in Tables 1 and 3, where “Memory” represents the number
of samples N l in LTM. The proposed OCM can improve the performance on the
density estimation tasks even when using a small memory size compared to the
random selection approach. Additionally, the expansion mechanism combined
with the proposed OCM can further improve the performance with a reasonable
memory use, especially when learning multiple datasets (Split MNIST-Fashion
and Cross-Domain). We also find that the use of IWVAE bound (Eq. (2)) into the
proposed OCM can also improve the performance on a single dataset. To com-
pare with the expansion models, such as LIMix and CNDPM, a single model with
OCM outperforms these models by using a few more stored samples such as 2.0K
for LTM and 0.5K for STM vs 2.0K for LIMix and CNDPM, in Cross-Domain
experiments. However, OCM with the expansion mechanism outperforms LIMix
and CNDPM by using fewer mixture components.

6.3 Evaluation of the reconstruction quality

To evaluate the reconstruction quality, we use β-VAE loss [20] where β = 0.01
for all models in order to avoid the over-regularization issue [51]. We report the
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IS and FID scores for the reconstruction quality in Table 2. We can observe that
the proposed OCM with the expansion mechanism outperforms other baselines.
The IS and FID for Tiny-ImageNet are reported in Appendix-H.3 from SM.

We also explore training a single VAE with OCM for learning ImageNet
[29] under TFCL where the batch size is 64. The maximum size for STM and
LTM is set to 512 and 2048, respectively, to avoid increasing the computational
cost. We follow the settings from [61], as described in Appendix-H.3 from SM,
after resizing all images to 64× 64 pixels. The FID and IS results are provided
in Table 5 and the results of all baselines (training on a single dataset) are
cited from [61]. The visual results are shown in Fig. 2 where we can observe
that the reconstruction of VAE-ELBO-Random is blurred when compared with
VAE-ELBO-OCM. These results show that the proposed OCM outperforms the
random selection approach in the large-scale dataset under TFCL.

6.4 Classification task

The proposed approach is mainly used in unsupervised learning. We also show
that OCM can be used in classification tasks when we train a classifier with
OCM on the labelled dataset. We adapt the setting and network architecture
from [13] with a batch size of 10 and the memory size for Split MNIST, Split
CIFAR10 and Split CIFAR100 is limited to 2K, 1K and 5K, respectively. We
report the results in Table 4 where ‘*’ means that the result is cited from [13].
The additional information about baselines and the proposed Dynamic-OCM is
provided in Appendix-H.2 of SM. The number of required parameters is provided
in Appendix-H.6 of SM. These results show that the proposed OCM outperforms
the state-of-the-art methods in the classification task using fewer parameters.

6.5 Ablation study and theoretical results

A full ablation study is performed including testing the configuration for the
threshold λ from Eq (18), STM memory size, batch size and λ2 from Eq. (20).
We also provide the empirical results for the theoretical analysis. These ablation
results and their analysis are provided in Appendix-H.4 from SM.

7 Conclusion

We introduce a new theoretical framework for providing insights into the for-
getting behaviour of deep models based on VAEs under TFCL. The theoretical
analysis demonstrates that ensuring a diversity of data in the pre-training mem-
ory is crucial for relieving forgetting in continuous learning systems. Inspired
by this result, we propose the Online Cooperative Memorization (OCM) that
does not require any supervised signals and therefore can be used in an un-
supervised fashion. The empirical results demonstrate the effectiveness of the
proposed OCM method.
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