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Abstract Topographic sensory representations often do not scale proportionally to the size of 

their input regions, with some expanded and others contracted. In vision, the foveal representation 

is magnified cortically, as are the fingertips in touch. What principles drive this allocation, and how 

should receptor density, for example, the high innervation of the fovea or the fingertips, and stim-

ulus statistics, for example, the higher contact frequencies on the fingertips, contribute? Building on 

work in efficient coding, we address this problem using linear models that optimally decorrelate the 

sensory signals. We introduce a sensory bottleneck to impose constraints on resource allocation and 

derive the optimal neural allocation. We find that bottleneck width is a crucial factor in resource allo-

cation, inducing either expansion or contraction. Both receptor density and stimulus statistics affect 

allocation and jointly determine convergence for wider bottlenecks. Furthermore, we show a close 

match between the predicted and empirical cortical allocations in a well- studied model system, the 

star- nosed mole. Overall, our results suggest that the strength of cortical magnification depends on 

resource limits.

Editor's evaluation
The article develops a mathematical approach to study the allocation of cortical area to sensory 

representations in the presence of resource constraints. The theory is applied to study sensory 

representations in the somatosensory system. This problem is largely unexplored, the results are 

novel, and can be of interest to experimental and theoretical neuroscientists.

Introduction
In many sensory systems, receptors are arranged spatially on a sensory sheet. The distribution of 

receptors is typically not uniform, but instead, densities can vary considerably. For example, in vision, 

cones are an order of magnitude more dense in the fovea than in the periphery (Goodchild et al., 

1996; Wells- Gray et al., 2016). In the somatosensory system, mechanoreceptors are denser in the 

fingertips than the rest of the hand (Johansson and Vallbo, 1979). Alongside the density of receptors, 

the statistics of the input stimuli can also vary. For example, the fingertips are much more likely to 

make contact with objects than the palm (Gonzalez et al., 2014). Subsequent sensory areas are typi-

cally arranged topographically, such that neighbouring neurons map to nearby sensory input regions, 

for example, retinotopy in vision and somatotopy in touch. However, the size of individual cortical 

regions is often not proportional to the true physical size of the respective sensory input regions and, 

instead, representations might expand (often called magnification) or contract. For example, both the 

fovea and the fingertips exhibit expanded representations in early visual and somatosensory cortices, 

respectively, compared to their physical size (Azzopardi and Cowey, 1993; Engel et al., 1997; Sereno 
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et al., 1995; Martuzzi et al., 2014). What determines this cortical magnification? For somatotopy, 

it has been proposed that cortical topography might directly reflect the density of sensory recep-

tors (Catani, 2017). On the other hand, receptor density alone is a poor predictor of magnification 

(Corniani and Saal, 2020) and work on plasticity has established that cortical regions can expand and 

contract dynamically depending on their usage, suggesting that expansion and contraction might 

be driven by the statistics of the sensory stimuli themselves (Coq and Xerri, 1998; Merzenich and 

Jenkins, 1993; Xerri et al., 1996).

Here, we tackle this problem from a normative viewpoint, employing efficient coding theory, which 

has been widely used to model and predict sensory processing. Efficient coding theory includes a 

number of different approaches such as sparse coding, redundancy reduction and predictive coding, 

depending on the constraints of the proposed problem (Chalk et al., 2018). Here, we focus on effi-

cient coding via redundancy reduction (Barlow, 1961), which suggests that neural populations are 

tuned to maximize the information present in the sensory input signals by removing redundant infor-

mation (Atick, 1992; Atick and Redlich, 1990; Attneave, 1954; Graham and Field, 2009; Chechik 

et al., 2006). Efficient coding models have been most prominent in vision (Kersten, 1987; Karklin 

and Simoncelli, 2011; Atick, 1992; Atick and Redlich, 1990; Doi et al., 2012; Olshausen and Field, 

1996; Olshausen and Field, 1997; Olshausen and Field, 2004; Bell and Sejnowski, 1997) and 

audition (Smith and Lewicki, 2006; Lewicki, 2002). This prior work has mostly focused on predicting 

the response properties and receptive field structure of individual neurons. In contrast, here we ask 

how receptive fields—independent of their precise structure—should tile the sensory sheet when the 

receptors themselves differ in density and activation levels.

Some aspects of magnification in topographic representations have been qualitatively reproduced 

using self- organizing maps (Ritter et al., 1992). However, these models generally lack a clear cost 

function and the magnification factor can be determined exactly only in rare cases, while a general 

expression is lacking (Ritter and Schulten, 1986). Assuming a uniform density of output neurons, 

cortical maps may be optimizing for the spread of incoming information to be equally distributed over 

these neurons (Plumbley, 1999).

In contrast to receptor density, there has been some work on how populations of neurons should 

encode non- uniform stimulus statistics using Fisher information (Ganguli and Simoncelli, 2010; 

Ganguli and Simoncelli, 2014; Ganguli and Simoncelli, 2016; Yerxa et al., 2020). This approach 

aims to approximate mutual information and is used to calculate optimal encoding in a neural popu-

lation (Yarrow et  al., 2012) however, its use is restricted to specific conditions and assumptions 

(Berens et  al., 2011; Bethge et  al., 2002). Rather than receptive fields uniformly tiling the input 

space, the optimal population should be heterogeneous, with receptive fields placed more densely 

over high- probability inputs, at detriment to low- probability regions (Ganguli and Simoncelli, 2014). 

Our approach differs from this prior work: rather than maximizing information between the neural 

population and the stimulus itself, we instead consider information between the neural population 

and an initial population of receptor neurons. This places a limit on the total amount of information 

that can be represented.

The need for information maximization is often motivated by resource constraints. These can take 

the form of an explicit bottleneck, where the number of receptor neurons is greater than the number 

of output neurons. This is the case in the early visual system, where photoreceptors in the retina are 

much more numerous than the retinal ganglion cells to which they project (Wells- Gray et al., 2016; 

Goodchild et al., 1996). Other sensory systems might lack such explicit bottlenecks, but still place 

limits on the amount of information that is represented at a higher- order processing stage.

How then should resource allocation change for different- sized bottlenecks, given varying densities 

of receptors and different stimulus statistics? Here, we derive optimal neural allocations for different 

bottlenecks, while systematically varying receptor density and stimulus statistics. A preliminary version 

of these results restricted to the effects of receptor density in a 1D space was previously presented as 

a conference paper (Edmondson et al., 2019).

Results
We restrict ourselves to linear models and only consider second- order statistics of the sensory signals, 

such that redundancy reduction simplifies to decorrelation (for examples from the visual literature, see 

Hancock et al., 1992; Simoncelli and Olshausen, 2001; Doi and Lewicki, 2005). We also introduce a 
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sensory bottleneck, such that the number of output neurons is smaller than the number of receptors. 

Specifically,  r = Wx , where  r  is the  m - dimensional output vector,  x  is the  n - dimensional input vector 

(with  n > m ) containing sensory receptor responses, and  W   contains the receptive field. Assuming a 

low- noise regime, optimal decorrelation can be achieved if  W   takes the following form:

 W = Λ
−

1
2 Φ

T,  (1)

where  Λ  and  Φ  contain the (top  m ) eigenvalues and eigenvectors, respectively, of the covariance 

matrix  Σ = XTX .

In the specific setup we consider here, receptors are placed in non- uniform densities across the 

sensory sheet, with some regions having a higher density than others. For example, in Figure 1B, 

the digit tip is tiled more densely than the rest of the finger. The covariance of receptor activation 

decreases with distance (see Figure 1C). Thus, directly neighbouring units in denser regions covary 

more strongly than those from less dense regions. The activation level of receptors can also vary 

between regions, which is modelled through scaling the covariance function (see Appendix 1 for 

further details). We initially focus on negative exponential covariance functions, for which the eigen-

values and the resulting allocation can be calculated analytically. The covariance between receptors xi 

and xj for two regions R1 and R2, differing in density and activation, can thus be expressed as

 Σ
(R1)
ij = e−γ |xi−xj | and Σ

(R2)
ij = ae−dγ |xi−xj |,  (2)

Figure 1. Illustration of the resource allocation problem and solution outline. (A) Abstract problem setup. When two regions vary in their receptor 

densities and activation, how should a shared resource be allocated between them when that resource is limited, as in a sensory ‘bottleneck’? The 

allocation between the two regions may vary depending on the width of the bottleneck, for example, for narrow bottlenecks it might be most efficient 

to allocate all resources to the higher density region 2. (B) Application of the problem to the tactile system. The density of touch receptors differs across 

regions of the hand (e.g. fingertip, shown in orange, versus finger phalanx, yellow). Different finger regions make contact with objects at different rates 

(dark blue versus light blue shading, darker colours indicating higher contact rates). (C) Sensory inputs are correlated according to a covariance function 

that decays with distance between receptors on the sensory sheet. This function is evaluated at different receptor distances depending on the density of 

sensory receptors (orange versus yellow dots at the bottom). Regions with higher probability of activation exhibit greater variance (dark versus light blue 

curves). (D) Decorrelation of sensory inputs in the presence of a bottleneck is achieved by calculating and retaining the eigenvectors and eigenvalues of 

the receptor covariance matrix. Here, this matrix is approximated as a block matrix, which allows calculating the eigenvalues for each region individually 

(dark blue versus light blue box). (E) The combined set of eigenvalues from all regions is then sorted; the region where each successive eigenvalue in 

the combined sorted set originates from determines where that output neuron’s receptive field will fall. (F) Counting which input regions successive 

eigenvalues belong to results in the allocation breakdown for different bottlenecks. For certain forms of the covariance function, this allocation can be 

calculated analytically.
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where  a  denotes the receptor activation ratio and  d  the receptor density ratio between both regions. 

It can be seen that changing the density affects the decay of the covariance function and thereby 

‘stretches’ the space, while changing the activation scales the function.

We approximate the regions as separate, such that no receptors are activated from both regions 

simultaneously. The covariance matrix across all receptors then forms a block matrix, where the cova-

riance between separate regions is zero (Figure 1D):

 

Σ=





Σ
(R1) 0
0 Σ

(R2)





  

(3)

Thus, eigenvalues can be calculated separately from the covariance matrices of each region (inset 

panels in Figure 1D), and for negative exponential covariance functions, this can be done analytically 

(see ‘Methods’ for mathematical derivations):

 
R1 : λ

(R1)
l,m = 2γ

π2L−2(l2 + m2) + γ2 and R2 : λ
(R2)
n,o = 2γa

√

d
π2L−2(n2 + o2) + γ2   

(4)

Finally, the resulting eigenvalues are ordered by magnitude for both regions combined (grey line in 

Figure 1E). A bottleneck is introduced by restricting the total number of output neurons. This is done 

by selecting from the combined set of ordered eigenvalues until the limit is reached. The proportion 

of eigenvalues originating from each input region determines its allocation for the chosen bottleneck 

width (see red dashed line in Figure 1E and F).

In the following, we will present results for the common case of 2D sensory sheets, while results for 

1D receptor arrangements are summarized in Appendix 6. For ease of analysis, all cases discussed will 

assume two sensory input regions of equal size, which are differing in receptor density, input statistics, 

or both. In all our examples, receptors in the low- density (baseline) region are always spaced on a grid 

with a distance of 1.

Resource limits determine the amount of magnification
First, we investigated resource allocation in bottlenecks for heterogeneous density of receptors and 

heterogeneous stimulus statistics separately, whilst keeping the other factor uniform across the input 

regions.

Heterogeneous density
For two regions with different receptor densities, we found that the higher density region could either 

expand or contract relative to its input density, depending on the width of the bottleneck. Specifically, 

for narrow bottlenecks (smaller than approximately 10% of input neurons), the higher density region 

is either exclusively represented or its representation is expanded compared to a proportional density 

allocation (see example in Figure 2A). Mathematically, this can be explained by a multiplicative scaling 

of the eigenvalue function for the higher density region (see illustration in Figure 2—figure supple-

ment 3A). In contrast, for intermediate bottlenecks, low- density regions expand their representation, 

beyond what is expected for a proportional mapping (see dashed red line in Figure 2A denoting 

proportional allocation), leading to a contraction of the high- density region. For negative exponen-

tial covariance functions, this allocation converges to a fixed ratio at wider bottlenecks of  1/(1 +
√

d) , 
where  d  is the density ratio between both regions (dashed yellow line in Figure 2A; see ‘Methods’ 

for derivation), as neurons are allocated to either region at a fixed ratio (see inset in Figure 2—figure 

supplement 3A). Finally, for wide bottlenecks, all information arising from the low- density region 

has now been captured, and any additional output neurons will therefore be allocated to the high- 

density region only. The over- representation of the low- density region thus decays back to the orig-

inal density ratio. The overall nonlinear effect of bottleneck width is present regardless of the ratio 

between the densities (see Figure 2B). The spatial extent of the correlations over the sensory sheet 

(controlled by the decay constant γ in the covariance function, see ‘Methods’) determines allocation 

at narrow bottlenecks, and how fast the allocation converges, but does not affect the convergence 

limit itself (Figure 2C). As γ increases, and therefore spatial correlations decrease, the convergence 

limit is approached only at increasingly wider bottlenecks. The extent of magnification thus heavily 
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depends on the correlational structure of the stimuli for narrower bottlenecks, while receptor densities 

are more important for wider bottlenecks.

Heterogeneous statistics
Aside from receptor densities, the stimulus statistics can also vary over the input space, leading to 

differences in receptor activation levels between the regions and their associated response vari-

ance. Overall, allocations for heterogeneous receptor activation are similar to those found with 

Figure 2. Optimal resource allocation for heterogeneous receptor densities or input statistics leads to complex trade- offs. (A) Illustration of 

resource allocation for heterogeneous receptor density but homogeneous stimulus statistics over all bottleneck sizes. Orange denotes the lower 

density region and blue the higher density region, with a ratio of 1:3. Dotted lines show proportional representation according to receptor numbers 

(red) and convergence of the optimal allocation in the limit (yellow). Arrows indicate contraction (up) and expansion (down) of the higher density 

region representation. Inset demonstrates change in density between the regions. (B) Bottleneck allocation boundaries for different density ratios 

(given as low:high). The area below each line corresponds to the low- density representation, while the area above corresponds to the high- density 

representation, as in (A). (C) Effect of changing the extent of the spatial correlations (parameterized by the decay value γ, see ‘Methods’ for details 

and Figure 2—figure supplement 1 for an illustration of the covariance function for different values of γ). Density ratio is set at 1:3 for all γ. Increasing 

γ leads to expansion of the higher density region for a larger initial portion of the bottleneck. (D–F) Same as in row above but for homogeneous 

density and heterogeneous receptor activation ratios. (D) Illustrative example with the blue region having higher receptor activation. Note that the 

representation of the higher activation region is expanded for all bottleneck widths. Inset demonstrates difference in activation between the regions. 

Larger, brighter coloured points indicate higher activation for that region compared to the other. (E) Allocation boundaries for different activation ratios. 

The representation of the higher activation regions is expanded for all bottlenecks. As activation ratio increases, the highly active region allocation 

is expanded for wider bottlenecks. (F) Changing the extent of spatial correlations (γ) has larger effects when the activation ratio is heterogeneous 

(set at 1:3 for all γ) compared to heterogeneous density (C). See Figure 2—figure supplement 2 for an equivalent figure considering 1D receptor 

arrangements.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Effect of different values of γ on the covariance function decay.

Figure supplement 2. Resource allocation for heterogeneous receptor densities and variations in input statistics in 1D.

Figure supplement 3. Illustration of eigenvalue sorting and resulting allocation.

Figure supplement 4. Limit on information rather than number of neurons.
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heterogeneous density. However, while the allocations are again a nonlinear function of bottleneck 

width, the representations are solely expanded for the higher activation region for all bottleneck 

widths (see example in Figure 2D). The extent of this expansion depends on the width of the bottle-

neck and is again more extreme for narrower bottlenecks (see Figure 2E). The convergence limit is 

 1/(1 + a) , where  a  is the activation ratio, implying that the level of expansion and contraction in inter-

mediate bottlenecks is more extreme than in the heterogeneous density case (see difference between 

red and yellow dashed lines in Figure 2A and D). Finally, the effect of spatial correlations is also more 

pronounced (Figure 2F).

In the cases described above, the bottleneck was constrained by the number of output neurons. 

Alternatively, the limiting factor might be set as the amount of information (total variance) captured. 

Doing so results in allocation curves that retain the nonlinear behaviour described here (see Figure 2—

figure supplement 4 for illustrations). An additional consideration is the robustness of the results 

regarding small perturbations of the calculated eigenvalues. As allocation depends on the ranks of 

the eigenvalues only, low levels of noise are unlikely to affect the outcome for narrow bottlenecks, 

especially since eigenvalues are decaying rather steeply in this regime. On the other hand, allocation 

in wider bottlenecks is determined from small tail eigenvalues which are much more sensitive to noise 

(which is also evident when comparing the analytical solution to numerical ones). Allocation can there-

fore be expected to be somewhat less robust in those regimes.

In summary, we find that representations of different input regions can contract or expand, 

depending on the bottleneck width. This effect plays out similarly for differences in receptor density 

and receptor activation, however, with some crucial differences. Finally, for narrow bottlenecks, the 

spatial extent of the correlations across the sensory sheet becomes an important driver.

Figure 3. Interactions between heterogeneous statistics and density. (A) Allocations with both heterogeneous density and activation ratios. Expansion 

and contraction for a baseline region where relative density and activation is varied over the other region. All ratios given are baseline:other region. 

Left: fixed density ratio of 1:2, while activation ratio is varied between 7:1 and 1:7 (see colourbar). Purple dashed line indicates allocation proportional 

to density ratio. Right: fixed activation ratio of 1:2, while density ratio is varied between 7:1 and 1:7. The coloured markers indicate whether the baseline 

region is expanded (dark blue squares), contracted (white circles), or both (light blue stars) across all bottlenecks. (B) Possible expansion/contraction 

regimes for the baseline region based on combinations of density and activation ratios. Colours as shown by the markers in (A). Grey dashed lines show 

all possible allocation regimes for an example with either fixed density ratio (horizontal, corresponding plot in A, left) or activation ratio (vertical, A, 

right). When activation is fixed and density is varied, the allocations can be either expanded/both or contracted/both across the full bottleneck width. In 

contrast, when the density ratio is fixed and activation is varied, the allocation of a region could be any of the three regimes. The green ellipse highlights 

parameter combinations where activation and density ratios are correlated. See Figure 3—figure supplement 1 for a comparison of how receptor 

density and activation interact between 1D and 2D receptor arrangements.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison between 1D and 2D results for heterogeneous activation and density.
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Interplay between stimulus statistics and receptor density
In sensory systems, such as in touch, both the density and input statistics vary across regions and will 

therefore jointly determine the resulting allocation. As a consequence, the convergence for interme-

diate bottlenecks will depend on both density and activation ratios, and can be calculated as 
 

1
(1+a

√

d) 
, 

where  a  is the activation and  d  is the density ratio (see ‘Methods’ for derivation).

At narrow bottlenecks, the spread of possible allocations is much wider for varying the activation 

ratio (see left panel of Figure 3A) compared to varying the density ratio. Thus, for 2D sensory sheets, 

the activation ratio more strongly determines the possible allocation than does the density ratio. 

Specifically, this means that the allocation regime, that is, whether the allocation expands, contracts, 

or exhibits both behaviours across all bottleneck widths, is more dependent on relative receptor acti-

vation than densities (Figure 3B).

Finally, it is likely that regions with higher receptor densities will also show greater activation than 

lower density regions. For example, in touch, the regions on the hand with the highest receptor densi-

ties also are the most likely to make contact with objects (Gonzalez et al., 2014). In these cases, both 

effects reinforce each other and drive the resulting allocation further from proportional allocation (see 

orange lines in Figure 3A and green ellipse in Figure 3B).

Resource limits determine the strength of plasticity under changes in 
stimulus statistics
Over most of the lifetime of an organism, the resources available for processing sensory information 

and the density of sensory receptors should be relatively constant. The stimulus statistics, on the other 

hand, can and will change, for example, when encountering a new environment or learning new skills. 

These changes in stimulus statistics should then affect sensory representations, mediated by a variety 

of plasticity mechanisms. For example, increased stimulation of a digit will lead to an expansion of that 

digit’s representation in somatosensory cortex (Jenkins et al., 1990).

We asked how representations should adapt under the efficient coding framework and whether 

resource limits would affect the resulting changes. To answer this question, we calculated optimal allo-

cations for different bottleneck widths, receptor densities, and stimulus statistics. We then introduced 

a change in stimulus statistics and re- calculated the resulting allocations (see illustration in Figure 4A). 

As expected, we found that when increasing the receptor activation over a region (e.g. by increasing 

Figure 4. Re- allocation to account for changes in stimulus statistics. (A) Top left: illustration of problem setup. 

Increased stimulation is applied to the middle digit (yellow symbols), leading to changes in optimal allocations. 

Top right: optimal allocations for baseline (blue) and stimulation (yellow) conditions across all bottleneck widths. 

Stimulation of the middle finger increases its representation, but the relative magnitude of the effect depends 

on the bottleneck width. Bottom: changes in allocation of the middle digit for two bottleneck widths (indicated 

by dashed lines above). The increase is proportionally larger for the narrow compared to the wide bottleneck. 

(B) Change in allocation when receptor activation for an input region increases (left half) or decreases (right half). 

Drastic changes in cortical allocation are observed for narrow bottlenecks (green lines), while wider bottlenecks 

(red and purple lines) induce only moderate change. Solid lines denote equal receptor density across both regions, 

while dashed lines show examples with varying density.
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stimulation of the region), more neurons would be allocated to this region than to the other. Interest-

ingly, however, this effect was dependent on the width of the bottleneck. The largest effects are seen 

for smaller bottlenecks and then diminish as the bottleneck size increases. Figure 4B demonstrates 

such allocation changes for three different bottleneck widths for a range of receptor densities and 

activation ratios. This suggests that plasticity should be relatively stronger under extreme resource 

constraints than in cases where limits on the information are generous.

Generalization to other covariance functions
The results above relate to negative exponential covariance functions, where allocations can be solved 

analytically and it is unclear whether these findings generalize to other monotonically decreasing cova-

riance functions and are therefore robust. Specifically, negative exponential covariances are relatively 

‘rough’ and allocations might conceivably depend on the smoothness of the covariance function. To 

test directly how optimal allocations depend systematically on the smoothness of the covariance func-

tion, we numerically calculated allocations for three covariance functions of the Matérn class, whose 

smoothness depends on a single parameter ν. The negative exponential considered so far is a special 

case of the Matérn class when  ν = 1/2  and we also considered  ν = 3/2  and  ν = 5/2  (see ‘Methods’). As 

ν increases, the decay function becomes smoother, yielding larger correlations at short distances and 

smaller ones at farther distances (see Figure 5A).

We numerically calculated allocations for different density and activation ratios in 1D (Figure 5B). 

We focused on smaller bottleneck widths, where solutions are numerically stable, and observed a 

close match between the numerical and analytical solutions for the negative exponential covariance 

function (see dashed lines in Figure 5B).

This analysis yielded two main findings. First, allocation curves are qualitatively similar across all 

tested covariance functions in that regions with higher density, activation, or both are systematically 

over- represented. Furthermore, this effect is more extreme at smaller bottleneck widths. Second, the 

resulting allocations depend systematically on the smoothness of the covariance function, such that 

smoother covariances yield less extreme differences in allocation. This effect is most obvious when 

considering the convergence points at larger bottlenecks: smoother covariance functions induce a 

more uniform allocation (closer to a 50:50 split) than does the negative exponential (Figure 5C). We 

also noticed that the convergence points appeared to follow a simple function, namely, 
 

1
1+ 6√ad 

 for 

 ν = 5/2 , 
 

1
1+ 4√ad 

 for  ν = 3/2  (see dashed lines in Figure 5C), and 
 

1
1+

√

ad 
 for  ν = 1/2  (which is the result 

obtained analytically, see Appendix 6).

In summary, monotonically decreasing covariance functions result in qualitatively similar alloca-

tions to the negative exponential studied earlier. However, precise allocations and convergence are 

Figure 5. Allocations for other monotonically decreasing covariance functions. (A) Three covariance functions of different smoothness taken from the 

Matérn class, differing in the parameter ν (see ‘Methods’). (B) Examples of numerically determined allocation for the covariance functions shown in (A) 

for two scenarios. Left: density ratio 1:2, equal activation. Right: density ratio 1:6, activation ratio 1:3. The red dashed line shows the analytic solution for 

the negative exponential covariance ( ν = 1/2 ). (C) Estimated allocations at convergence for different density ratios (horizontal axis) and a fixed activation 

ratio of 1:2. Solid lines denote numerical convergence, and dashed lines refer to fitted functions (see main text).



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  9 of 30

determined by the correlational structure: smoother covariance functions lead to less extreme differ-

ences in allocation.

Predicting cortical magnification in the star-nosed mole
Finally, we investigated to what extent the procedure outlined in the previous sections might predict 

actual resource allocation in the brain. While our model is relatively simple (see ‘Discussion’), decor-

relation has been found to be a strong driver in early sensory processing, including in vision (Atick 

and Redlich, 1992; Graham et al., 2006; Vinje and Gallant, 2000), audition (Clemens et al., 2011; 

Smith and Lewicki, 2006), and touch (Ly et al., 2012), and one might therefore expect the approach 

to at least yield qualitatively valid predictions. As currently available empirical data makes it difficult 

to test the impact of different bottleneck widths on the resulting allocation directly (see ‘Discussion’), 

we instead focused on another predicted outcome of the proposed model: the precise interaction 

between receptor density and receptor activation in driving resource allocation that we presented 

earlier. We picked the star- nosed mole as our model system because stimulus statistics, receptor 

densities, and cortical allocations have been precisely quantified. Moreover, the star- nosed mole 

displays considerable variation in all these parameters, presenting a good opportunity to put the 

model to the test.

The star- nosed mole is a mostly underground dwelling creature relying on active tactile sensing 

while foraging for prey (Catania and Kaas, 1997; Catania, 2020). This process is facilitated by two 

sets of 11 appendages arranged in a star- like pattern that make up the mole’s nose (Figure 6A). 

Individual rays are tiled with tactile receptors known as Eimer’s organs that detect prey, which is then 

funnelled towards the mouth (Catania and Kaas, 1997; Sawyer and Catania, 2016). The density of 

fibres innervating the Eimer’s organs differs across the rays, with rays closer to the mouth exhibiting 

higher densities (Figure 6B). The rays also vary in size and location with respect to the mouth. This 

affects their usage as the rays closest to the mouth encounter tactile stimuli much more frequently 

than other rays (Figure 6C). In the cortex, a clear topographic representation of the rays can be found 

(Catania and Kaas, 1997). However, the extent of the cortical ray representations is not proportional 

to the physical size of the rays. Ray 11, which sits closest to the mouth, is cortically magnified several 

fold and is considered the tactile equivalent of the visual fovea (Catania and Remple, 2004).

Previous work by Catania and Kaas, 1997 found that cortical sizes are correlated more strongly 

with the different patterns of activation across the rays, rather than their innervation densities. Using 

Figure 6. Resource allocation in the star- nosed mole. (A) Star- nosed moles have two sets of 11 tactile rays used for detecting and capturing prey. (B) 

Fibre innervation densities for each ray. (C) Typical usage percentages for each ray during foraging. Higher usage corresponds to greater average 

activation of receptors located on the corresponding ray. Typically prey is funnelled from distal rays towards ray 11, which is located next to the mouth. 

Ray outlines adapted from Catania et al., 2011. (D) Left: explained variance ( R2 ) between model predictions and cortical allocation for three different 

models: restricted to receptor density only (purple), restricted to receptor activation only (green), and a full model (pink) that incorporates accurate 

values for both factors. Results confirm previous findings that ray usage is a better predictor of cortical allocation than receptor densities alone. 

Additionally, we show that including both of these factors provides a marginal improvement to the fit, with the highest  R2  (86%). Right: predicted 

versus empirical cortical allocations for all rays. When including both density and activation parameters, the model provides a good fit to empirical 

measurements. Scatter plots for all models are available in Figure 6—figure supplement 1B. (A) reproduced from Figure 1C in Catania et al., 2011, 

copyright Kenneth Catania.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional figures for the star- nosed mole.
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the empirical data quantifying receptor densities and stimulus statistics from this study, we investi-

gated whether the efficient coding model could predict typical cortical representation sizes for each 

ray (see ‘Methods’ for details) and whether innervation densities or usage would lead to more accu-

rate allocation predictions. As the bottleneck size between periphery and cortex is unknown for the 

star- nosed mole, we calculated the optimal allocations over all possible bottleneck sizes. Using the 

model described above, we calculated allocations considering three different scenarios. The first, 

‘density only’, included accurate afferent densities, but with activations set to the mean over all 

rays. The second model, ‘usage only’, included accurate activation ratios but mean receptor densi-

ties. Finally, the ‘full model’ included accurate values for both factors. We found that the empirical 

cortical representation sizes are most accurately predicted by the models that include receptor acti-

vation—the ‘receptor usage only’ and ‘full models’ (Figure  6D)—suggesting the star- nosed mole 

could be employing an efficient coding strategy based on decorrelation in the neural representation 

of somatosensory inputs.

Discussion
We examined efficient population coding under limited numbers of output neurons in cases of non- 

uniform input receptor densities and stimulus statistics. Instead of focusing on the precise structure of 

the receptive field, we asked which coarse region of the sensory sheet the receptive field would fall 

on. We showed that the resulting allocations are nonlinear and depend crucially on the width of the 

bottleneck, rather than being proportional to the receptor densities or statistics. Specifically, narrow 

bottlenecks tend to favour expansion of a single region, whereas for larger bottlenecks, allocations 

converge to a constant ratio between the regions that is closer to a proportional representation. 

Whether, across all possible bottlenecks, allocations are always expanded, contracted, or show both 

expansion and contraction depends on the relative density and activation ratios, but receptor acti-

vation plays a bigger role. When allocation changes due to novel stimulus statistics, a larger fraction 

of output neurons will switch their receptive field to another region for narrow compared to wide 

bottlenecks. Finally, we demonstrated that in the star- nosed mole a model that includes both accurate 

innervation densities and contact statistics provides a better fit to the sizes of somatosensory cortical 

regions than considering each of these factors alone.

Comparison with previous approaches
A key feature of efficient coding population models is the non- uniform allocation of output neurons, 

whereby stimuli occurring at higher probabilities are represented by a greater number of neurons. A 

common approach is to use Fisher Information as a proxy for mutual information, enabling the calcu-

lation of optimal output neuron density and tuning curve placement given a distribution of sensory 

stimuli (Ganguli and Simoncelli, 2010; Ganguli and Simoncelli, 2014; Ganguli and Simoncelli, 2016; 

Yerxa et al., 2020). However, these approaches maximize information between the output popu-

lation and the stimulus distribution itself, such that allocating additional neurons to a given region 

of the input space will always lead to an increase in the overall amount of information represented. 

In contrast, our approach assumes a finite number of input receptors in each region. We are thus 

asking a different question than previous research: once information about a sensory stimulus has 

been captured in a limited population of receptors, what is the most efficient way of representing this 

information? This framing implies that once all information from a given region has been fully captured 

in the output population, our method does not allocate further neurons to that region. Therefore, this 

also places a limit on the total size of the output population as this cannot exceed the total number 

of input receptors.

There has also been prior work on how bottlenecks affect sensory representations, though mostly 

focused on how different levels of compression affect receptive field structure. For example, Doi and 

Lewicki, 2014 predicted receptive fields of retinal ganglion cells at different eccentricities of the retina, 

which are subject to different convergence ratios. More recently, such direct effects on representa-

tions have also been studied in deep neural networks (Lindsey et al., 2019). Finally, some approaches 

employ a different cost function than the mean- squared reconstruction error inherent to the prin-

cipal component analysis (PCA) method used here. For example, the Information Bottleneck method 

(Tishby et al., 2000; Tishby and Zaslavsky, 2015) aims to find a low- dimensional representation that 
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preserves information about a specific output variable, while compressing information available in the 

input. It is quite likely that the choice of cost function would affect the resulting allocations, a question 

that future research should pursue.

Implications for sensory processing
The quantitative comparison of the model results with the cortical somatosensory representation 

in the star- nosed mole provided limited evidence that one of the model predictions—namely, that 

receptor density and activation statistics should jointly determine cortical organization—is borne out 

in a biological model system. Further direct tests of the theory are hampered by the lack of reliable 

quantitative empirical data. Nevertheless, the model makes a number of qualitative predictions that 

can be directly compared to available data or tested in future experiments.

First, there is additional evidence that both receptor density and stimulus statistics drive allocation 

in neural populations. Similar to the star- nosed model, the primate somatosensory system also exhibits 

non- uniform distributions of both stimulus statistics and receptor density. Both of these factors are 

also broadly correlated, for example, receptor densities are higher on the fingertips, which are also 

more likely to be in contact with objects (Gonzalez et al., 2014). Importantly, while receptor densities 

alone can explain some of the magnification observed in the cortical somatosensory homunculus, 

they cannot account for this effect fully (Corniani and Saal, 2020). Indeed, evidence from non- human 

primates shows that cortical magnification also critically depends on experience (Xerri et al., 1996; 

Xerri et al., 1999). Similar results have recently been obtained from the brainstem in mice (Lehnert 

et al., 2021). Empirically reported differences in sizes of receptive fields between the digit tips and 

the palm have also been recreated from typical contact across the hand during grasping (Bhand 

et al., 2011), suggesting an influence of statistics of hand use. Both mechanoreceptor densities (e.g. 

Verendeev et al., 2015) and hand use statistics (Fragaszy and Crast, 2016) differ across primates, 

forming the basis for a potential cross- species study. The model presented here demonstrates how 

both effects can be treated within a single framework driven by information maximization.

Second, it appears that allocation in sensory systems with severely constrained resources is qual-

itatively in agreement with model predictions. As our results demonstrated, magnification should 

be more extreme the tighter the bottleneck. The best characterized and most clearly established 

bottleneck in sensory processing is likely the optical nerve in vision. Given that the optic nerve serves 

as a narrow bottleneck (approximately 12–27%; assuming 0.71–1.54 million retinal ganglion cells with 

80% Midget cells [Curcio and Allen, 1990; Perry et al., 1984] and 4.6 million cones [Curcio et al., 

1990]), and that the fovea contains a much higher density of cone receptors than the periphery (Wells- 

Gray et al., 2016; Curcio et al., 1990), the model would predict a large over- representation of the 

fovea, agreeing with experimental observations (see Edmondson et al., 2019, for further qualitative 

evidence). In order to further test the proposed model, comparisons could be made between indi-

viduals to study variations within a population. Specifically, it would be expected that optic nerves 

containing a high number of fibres would devote proportionally fewer of them to the fovea than 

optic nerves containing smaller numbers of fibres (assuming equal receptor densities and numbers 

in the retina). These comparisons could be extended across species, taking advantage of the fact 

that photoreceptor densities and optic nerve fibre counts differ across many primate species (Finlay 

et  al., 2008). Along these lines, recent computational work has shown that the amount of neural 

resources allocated to the optic nerve can be expected to affect the structure of the receptive field 

itself (Lindsey et al., 2019). Finally, the extent of cortical areas can be controlled by experimental 

interventions in animals (Huffman et al., 1999), which would constitute a direct manipulation of the 

bottleneck.

Re-allocation during development, learning, and ageing
Changing receptor densities, stimulus statistics, or resource limits over the life span of an organism 

should lead to a dynamic re- allocation of the available resources. The most common case will be 

changes in stimulus statistics as both receptor densities and resources should be relatively stable. In 

such cases, representations should adapt to the new statistics. For example in touch, changing the 

nature of tactile inputs affects cortical representations (Coq and Xerri, 1998; Merzenich and Jenkins, 

1993; Xerri et al., 1996). Increasing statistics of contact over a region typically leads to expansion of 
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that region in the cortex. Our method suggests that the precise level of expansion would be depen-

dent on the bottleneck width with larger effects observed for narrower bottleneck sizes.

For the other cases, changes in fibre numbers during development and ageing might be inter-

preted as a change in resources. For example, the optic nerve undergoes a period of rapid fibre loss 

early during development (Sefton et al., 1985; Provis et al., 1985). Similarly, fibre counts in the optic 

nerve decrease during ageing (Dolman et al., 1980; Jonas et al., 1990; Sandell and Peters, 2001). 

In this case, the model would predict a decrease in the size of peripheral representation in the bottle-

neck compared to the fovea. It is also possible that the receptor densities themselves may change. In 

touch, ageing leads to reductions in the densities of receptors in older adults (García- Piqueras et al., 

2019). In such cases, we have effectively increased the bottleneck width relative to our receptor popu-

lation, which again should lead to the re- allocation of resources.

Expansion and contraction along the sensory hierarchy
Magnification of specific sensory input regions can be observed throughout the sensory hierarchy, 

from the brainstem and thalamus up to cortical sensory areas. Often, the amount of expansion and 

contraction differs between areas. For example, the magnification of the fovea increases along the 

visual pathway from V1 to V4 (Harvey and Dumoulin, 2006). Which of these representations might 

be best addressed by the model presented here? The main component of the model is decorrelation, 

which has been shown to be a driving principle for efficient coding in settings where noise is low 

(Chalk et al., 2018). This is generally the case in low- level sensory processing, for example, in touch 

(Goodwin and Wheat, 2004). Our results might therefore best match early sensory processing up 

to perhaps low- level cortical representations. Beyond this, it is likely that noise will be much higher 

(Shadlen and Newsome, 1998) and for efficient codes to shift away from decorrelation (Hermund-

stad et al., 2014). Furthermore, while distinct bottlenecks, whether on the number of neurons or the 

amount of information, are common in low- level processing, it is less clear whether such restrictions 

constrain cortical processing. Whether and how such different regimes should affect neural allocations 

remains an open question.

Perceptual consequences
Does the allocation of output neurons lead to testable perceptual consequences? While we do not 

model neurons’ receptive fields directly, allocating more neurons to a given region would increase 

perceptual spatial acuity for that region. Indeed, cortical magnification and perceptual acuity are 

correlated in both vision (Duncan and Boynton, 2003) and touch (Duncan and Boynton, 2007). At 

the same time, the absolute limits on spatial acuity are determined by the density of receptors in 

each input region. A naive allocation scheme that assigns output neurons proportional to the density 

of receptors would therefore result in perceptual spatial acuity proportional to receptor distance. 

Instead, as our results have shown, the allocation should not be proportional in most cases. Specif-

ically, for narrow bottlenecks we would expect relatively higher spatial acuity for regions with high 

receptor density than might be expected from a proportional allocation. Conversely, for wider bottle-

necks this relationship should be reversed and spatial acuity should be better than expected for lower 

density regions. In agreement with these results, it has been found that in vision spatial resolution 

declines faster than expected with increasing eccentricity, suggesting a narrow bottleneck in the optic 

nerve (Anderson et al., 1991).

A second consequence is that spatial acuity should be better in regions with higher activation 

probability even when receptor densities are equal. Indeed, spatial discrimination in touch improves 

with training or even just passive stimulation (Van Boven et al., 2000; Godde et al., 2000), up to a 

limit that is presumably related to receptor density (Wong et al., 2013; Peters et al., 2009). Assuming 

a fixed resource limit, training may offer improvements to some digits to the detriment of others. 

Whether this is indeed the case has to our knowledge not yet been empirically tested.

Finally, previous work has shown that non- uniform tuning curves across a population will lead to 

characteristic biases in perceptual tasks (Wei and Stocker, 2015). While the original formulation 

assumed that this heterogeneous allocation of output neurons was driven by stimulus statistics alone, 

we have shown here that it can also be a consequence of receptor densities. Thus, perceptual biases 

might also be expected to arise from neural populations that efficiently represent sensory inputs 

sampled by non- uniform receptor populations.
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Limitations and future work
We considered simple linear models based on decorrelation and demonstrated that even such seem-

ingly straightforward models exhibit surprising complexity in how they manage trade- offs in resource 

allocation under constraints. Specifically, we found that output neurons were not generally allocated 

proportionally to input neurons or according to some other fixed rule. It therefore stands to reason 

that similarly complex trade- offs would manifest in more complex models, even though the precise 

allocations might differ. Nevertheless, since PCA is widely employed for decorrelation and dimension-

ality reduction, and therefore incorporated into many other algorithms, our results immediately gener-

alize to several other methods. For example, it is straightforward to extend the model with additional 

constraints (e.g. response sparsity or power constraints) that would not affect the resulting alloca-

tions (see ‘Methods’ for details), and therefore the model presented here already covers a number of 

related models. This includes independent component analysis, which considers higher- order rather 

than second- order statistics, but relies on a whitened signal, which in the undercomplete (bottle-

neck) case is obtained via PCA (Hyvärinen and Oja, 2000). Similarly, some models that do incorpo-

rate sensory noise and maximize reconstruction accuracy also use an undercomplete set of principal 

components to reduce the dimensionality of the sensory signal (Doi and Lewicki, 2014). In both of 

these examples, the resulting receptive field structure will differ, but their allocation—where on the 

sensory sheet they will fall—will be governed by the same principles described earlier. However, we 

did not consider nonlinear models and previous work has demonstrated that response nonlinearities 

can make important contributions to decorrelation (Pitkow and Meister, 2012). Additionally, the 

precise structure and origin of noise in nonlinear models have been demonstrated to affect efficient 

coding strategies (Brinkman et al., 2016) and might therefore also influence the resulting allocations. 

Future work should explore resource allocation in such complex models.

We considered allocations for monotonically decreasing covariance functions. Choosing a negative 

exponential function and assuming that activations are uncorrelated across different input regions 

allowed us to derive an analytical solution. How justified are these assumptions? Many sensory systems 

will likely obey the intuitive notion that receptor correlations decrease with distance; however, there 

are notable exceptions, for example, in the auditory system (Terashima and Okada, 2012). In touch, 

the sensory system we are mainly concerned with here, contact might often be made with several 

fingers (for humans) or rays (for the star- nosed mole) simultaneously, which would induce far- ranging 

non- monotonic correlations. Unfortunately there is little quantified evidence on the strength of these 

correlations, rendering their importance unclear. At least for the star- nosed mole, their prey is often 

small compared to the size of the rays, which move mostly independently, so cross- ray correlations 

might be low. Furthermore, the receptive fields of neurons in early somatosensory cortex of both 

humans and star- nosed moles are strongly localized to a single appendage and lie within cortical 

sub- regions that are clearly delineated from others (Sur et al., 1980; Nelson et al., 1980; Catania 

and Kaas, 1995). If long- range non- monotonic correlations were strong, we would expect to find 

many multi- appendage receptive fields and blurry region boundaries. As this is not the case, it there-

fore stands to reason that either these correlations are not very strong or that there is some other 

process, perhaps during development, that prevents these correlations affecting the final allocation. 

Either way, our assumption of monotonically decreasing covariance functions appears to be a good 

first- order match. Still, the question of how to arrive at robust allocations for more complex covari-

ance functions is an important one that should be considered in future research. While it is possible 

in principle to solve the allocation problem numerically for arbitrary covariance functions, in practice 

we noticed that the presence of small numerical errors can affect the sorting process and caution is 

therefore warranted, especially when considering non- monotonic functions.

Methods
Our main goal was to derive a method for efficiently allocating output neurons to one of several input 

regions with different correlational response structure in the presence of constraints on the number 

of output neurons or amount of information being transmitted. In the following, we focus on the 

main rationale and equations, while specific proofs can be found in Appendix 1–6. First, we outline 

the framework for combined whitening and dimensionality reduction that is employed. Next, we 

demonstrate how this framework can be applied to multiple input regions with different statistics and 



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  14 of 30

densities of receptors, and how calculation of the eigenvalues of region- specific covariance matrices 

solves the problem of resource allocation. Finally, we demonstrate how the problem can be solved 

analytically for a certain choice of covariance function. The Python code implementing the equations 

that can be used to recreate the figures in this article is available on GitHub (Edmondson, 2021).

Combined whitening and dimensionality reduction
We assume that receptors are arranged on a 2D sensory sheet. Correlations in the inputs occur as 

receptors that are nearby in space have more similar responses. Restricting ourselves to such second- 

order statistics and assuming that noise is negligible, information is maximized in such a setup by 

decorrelating the sensory inputs. Here, we decorrelate using a simple linear model. To model the 

bottleneck, we restrict the number of outputs to  m  <  n , where  n  is the total number of receptors.

If the inputs are represented as a matrix  X  of dimensions  n × z  (where  z  is the number of sensory 

input patterns), then our goal is to find an  m × n  dimensional matrix  W   such that  WX  is uncorrelated:

 XTWTWX = I.  (5)

This is achieved by setting  W = Σ
−

1
2 , where  Σ = XTX . Solutions can then be expressed in terms of the 

diagonal matrix of eigenvalues,  Λ , and eigenvectors,  Φ , of the covariance matrix  Σ :

 W = PΛ−
1
2 Φ

T.  (6)

Whitening filters are not uniquely determined and optimal decorrelation is obtained with any orthog-

onal matrix  P . Setting  P = I  (plain whitening/PCA) leads to the form shown in the main results section 

(Equation 1). Localized receptive fields are obtained by setting  P = Φ , which is known as zero- phase 

component analysis. In cases with a bottleneck, the solution involves solving an Orthogonal Procrustes 

problem (Doi and Lewicki, 2014) to find  P∗ , an  m - dimensional orthogonal matrix (where  m  is the 

size of the bottleneck) which minimizes the reconstruction error of the inputs and a set of ideal local 

receptive fields  Wopt :

 
P∗ = min

P

∥

∥

∥
Wopt − PΛ−

1
2 Φ

T
∥

∥

∥

2

F
,
  

(7)

where  ∥·∥F  denotes the Frobenius norm, and  Λ  and  Φ  are as above but retaining only those compo-

nents with the  m  largest eigenvalues. As the optimally whitened solution is independent of  P , addi-

tional constraints on the solution can be enforced. For example, power constraints are often added, 

which either limit the total variance or equalize the variance across output neurons, and additional 

sparsity constraints can be placed on the output neuron’s activity or their receptive field weights (Doi 

et al., 2012; Doi and Lewicki, 2014). For example, to optimize the sparsity of the weight matrix, one 

would define an appropriate cost function (such as the  L1  norm of the weight matrix), then iteratively 

calculate the gradient with respect to  W  , take an update step to arrive at a new  Wopt , and determine 

 P  as described in Equation 7 (see Doi and Lewicki, 2014, for further details). Importantly for our 

problem, such additional constraints will affect the precise receptive field structure (through  P ), but 

not the eigenvalues and eigenvectors included in  Λ  and  Φ , respectively. As we will see in the following 

section, our solution relies on the eigenvalues only, and we can therefore solve the allocation problem 

irrespective of the precise receptive field structure or additional constraints on the solution.

Extension to multiple input regions
For our specific problem, we are interested in the case of multiple input regions with different correla-

tional structure (i.e. due to differing receptor density or activation). To simplify the derivations, we 

approximate different input regions as independent, such that the overall covariance matrix will be a 

block diagonal matrix. The covariance  Σ  for two input regions, R1 and R2, can then be expressed as 

follows:

 

Σ=





Σ
(R1) 0
0 Σ

(R2)





  

(8)



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  15 of 30

This assumption turns out to be a reasonable approximation when region sizes are relatively big and 

correlations typically do not extend far across the sensory sheet (see Edmondson et al., 2019, for a 

comparison between block and non- block region covariance matrices in 1D). Furthermore, in many 

sensory systems, the borders between regions of differing density tend to be relatively narrow. For 

example, in touch, the digits of the hand are spatially separated, and regions of differing densities, 

for example, between the digit tips and proximal phalanges, neighbour along the short rather than 

long axis of the digit. In the star- nosed mole, rays of different innervation densities are separated and 

neighbour only along their connection to the rest of the nose. However, the block matrix approxi-

mation might be problematic in cases with many very small adjacent regions with strong, far- ranging 

correlations.

The eigenvalues and eigenvectors of a block diagonal covariance matrix also follow the block diag-

onal form and can be calculated from the individual region covariances alone by a simple application 

of the Cauchy interlacing theorem. Thus, the corresponding eigenvalues and eigenvectors are

 

Λ=





Λ
(R1) 0
0 Λ

(R2)



 and Φ =





Φ
(R1) 0
0 Φ

(R2)



 .
  

(9)

Due to the imposed bottleneck, only the  m  largest eigenvalues from the combined set  Λ  will be 

retained. If receptive fields are localized such that they are constrained to fall within a single input 

region, then an eigenvalue selected from  Λ(R1)  indicates that the receptive field of the corresponding 

output neuron will fall onto region R1, and analogously for R2. This fact holds independent of the 

structure of  P  that is chosen in Equation 7 because in order to preserve decorrelation a given region 

cannot contain more output neurons than eigenvalues retained from this region. In the following, we 

show how the eigenvalues can be calculated analytically for certain covariance functions.

Calculation of eigenvalues for negative exponential covariance 
functions
We model the covariance between receptors as a negative exponential function. The covariance 

matrix is then calculated as a function of distance between pairs of receptors (see Figure 1C). We will 

first go through the calculation of eigenvalues for the baseline region R1, and then continue with the 

derivation for R2, which exhibits different receptor density, receptor activation, or both.

For region R1 the covariance between receptors is calculated as

 Σ
(R1)
ij = e−γ |xi−xj |,  (10)

where xi and xj are the locations of the ith and jth receptors, and γ is the decay constant.

The corresponding eigenvalues for an exponential covariance function in the continuous domain 

can be calculated analytically. The eigenvalue–eigenvector problem is expressed as an integral homo-

geneous equation, such that for R1 we get

 λkφk(x) =
´ L

0 e−γ |x−y|φk(y)dy,  (11)

where  φk(x)  is the kth eigenfunction and  λk  its corresponding eigenvalue. The domain length  L  is the 

input region size for one of the dimensions.

It can be shown that solutions to this problem can be related to the Laplacian operator (see 

Appendix 2 and Appendix 3 for proofs), such that

 
λk = 2γ

µk+γ2 ,
  (12)

where  µk  are the eigenvalues of the Laplacian operator.

The general solution for the Laplacian eigenvalue problem for a 2D rectangle with Dirichlet 

boundary conditions is (Strauss, 2007)

 
µk = µl,m = l2π2

L2
1

+ m2
π

2

L2
2

, l, m = 1, 2, ...,
  

(13)

where L1 and L2 are the sizes of the domain for each dimension.
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To calculate the covariance for R2, we need to take into account the potentially different receptor 

density and response variance for this region. Denoting the ratio of the response variances between 

both regions by  a , and the ratio of receptor densities by  d , the covariance for R2 can be expressed as

 Σ
(R2)
ij = ae−dγ |xi−xj |.  (14)

It can be seen that  a  scales the overall covariance matrix (see also Figure 1C), while  d  changes the 

spatial extent of the correlations and thereby implicitly accounts for the different receptor density.

The calculation of the eigenvalues for R2 proceeds analogously. The eigenvalue–eigenvector 

problem is given as

 
λkφk(x) =

ˆ L
√

d

0
ae−dγ |x−y|

φk(y)dy
  

(15)

Since the receptor density ratio  d  causes an implicit stretching of the space for the higher density 

region, the region length  L  needs to be adjusted in order to keep the effective size of the region 

constant. In 2D, each axis is therefore scaled by  
√

d , resulting in an upper integration limit of  L
√

d .

Allocation in the bottleneck
Given a sensory system with limited representational capacity, different regions may be allocated 

different amounts of resources. Here, we calculate the allocations over different bottleneck widths 

for two regions, while the extension to multiple regions is given in Appendix 5. In the following, we 

assume 2D square regions of equal size for ease of analysis (see Appendix 6 for the equivalent solution 

in 1D). A single variable  L  is therefore used to denote the lengths of the squares. Following Equation 

12, the eigenvalues for regions R1 and R2 can now be calculated as

 
R1 : λ

(R1)
l,m = 2γ

π2L−2(l2 + m2) + γ2   
(16)

 
R2 : λ

(R2)
n,o = 2γa

√

d
π2L−2(n2 + o2) + γ2   

(17)

where  l, m  and  n, o ∈ N  enumerate different eigenvalues for regions R1 and R2, respectively.

In order to calculate how many output neurons are allocated to R1 and R2 for different bottle-

neck widths, we will need to establish an ordering of the eigenvalues, such that for each pair  (l, m)  
we can determine the sorted rank of the eigenvalues. In contrast to the 1D case (see Appendix 6), 

there is no natural ordering of the eigenvalues in two dimensions; however, a close approximation 

can be obtained by calculating the number of lattice points enclosed by a quarter circle with radius 

 p = l2 + m2
  (see Appendix 4 for full details). Denoting this function as  N(p)  and setting  p(R1) = l2 + m2

  

and  p(R2) = n2 + o2
 , we can then calculate the number of eigenvalues allocated to R1 as a function of 

the number of neurons allocated to R2, by setting  λ(R1) = λ(R2)  and solving for  p(R2)
 . This yields

 
p(R2) = a

√

dp(R1) + L2
γ

2a
√

d − L2
γ

2

π2 .
  

(18)

As we allocate more neurons to region R1, the ratio 
 
N(p(R1))

N(p(R2))  simplifies to 
 
limR1→∞

N(p(R1))
N(p(R2)) = a

√

d
 
. The 

fraction of neurons allocated to each region therefore depends on the size of the bottleneck and 

converges to 
 

1
1+a

√

d 
 and 

 
a
√

d
1+a

√

d 
 for R1 and R2, respectively.

Alternative covariance functions
To test generalization to other covariance functions that decrease monotonically with receptor 

distance, we tested a number of functions from the Matérn class, in which the parameter ν controls 

the smoothness of the function. The negative exponential covariance function we employed in 

previous sections is equivalent to a Matérn function with  ν = 1/2 . Larger values of ν lead to progres-

sively higher correlations for smaller distances and lower correlations for larger distances. Specifically, 

we tested a Matérn function with  ν = 3/2 :

 
Σ

ν=3/2
ij =

(

1 + γ

√

3|xi − xj|
)

e−γ

√

3|xi−xj |,
  

(19)
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and with  ν = 52 :

 
Σ

ν=5/2
ij =

(

1 + γ

√

5|xi − xj| + γ
25|xi−xj |2

3

)

e−γ

√

5|xi−xj |
  

(20)

For simplicity and to obtain numerically stable solutions, all calculations were performed for 1D 

regions only. For all cases tests, the baseline region contained 500 receptors, while the number of 

receptors for the other region was determined by the density ratio. Eigenvalues were calculated from 

the covariance matrix using the eigh method of the numpy Python package (Harris et al., 2006). 

Comparing the numerically obtained allocation for the negative exponential covariance function with 

its analytical solutions showed a close match for most bottleneck widths. However, numerical errors 

increased for wider bottlenecks, where eigenvalues became very small and their decay flattened out, 

affecting the sorting process. For the analyses here, we therefore restricted ourselves to bottleneck 

widths where a close match between the numerical and analytical solutions could be obtained. This 

range was sufficient to demonstrate allocation at narrow bottlenecks and estimate the convergence 

point for larger ones.

Calculations for star-nosed mole
The 11 rays were approximated as 2D square regions with areas set to their reported sizes (Sawyer 

and Catania, 2016). Receptor densities for each ray were calculated as the sensory fibre innervation 

per mm2 (Catania and Kaas, 1997). Approximations of receptor activation on each ray were calcu-

lated from empirical data of prey foraging interactions recorded by Catania and Kaas, 1997. Contact 

statistics were converted to receptor activation probabilities with receptors following a Bernoulli 

distribution. Finally, activation variance was calculated as the variance of the Bernoulli distribution 

(see Appendix 1). The decay rate γ of the negative exponential covariance function was determined 

for each ray using a model of the typical extent of receptor activation during interaction with prey 

stimuli of varying sizes. Each ray interacts with varying prey sizes at different frequencies. For example, 

ray 11 is typically contacted by smaller stimuli more often than other rays. A 2D model of the rays was 

used to simulate average responses to each stimulus size. Each model ray was tiled with receptors, 

and circular stimuli of different sizes were then randomly placed over the ray. The radii and frequen-

cies of each stimulus size were based on the prey model (Catania and Kaas, 1997). A ray receptor 

was marked as active if its coordinate position was within the bounds of the stimuli. Response cova-

riance between receptors was then calculated and an exponential function was fit to find the γ decay 

parameter. See Table 1 for the full set of parameters. The code implementing the receptor model 

is available on GitHub (Edmondson, 2021). To determine allocations, eigenvalues associated with 

each ray were calculated analytically, resulting in allocations for each ray at all bottleneck widths. 

Three models were compared: first, a ‘density- only’ model, which includes accurate receptor density 

ratios, but receptor activation ratio remains uniform across all rays; second, an ‘activation- only’ model, 

which includes heterogeneous receptor activation ratios, but uniform receptor density ratios across all 

rays; finally, the ‘full model’ combines both accurate densities and receptor activation ratios. Model 

allocations for each ray were compared to the cortical allocation empirical data from Catania and 

Kaas, 1997. As the bottleneck size for the star- nosed mole is unknown, the root- mean- square error 

(RMSE) was calculated for each model at all bottleneck widths. The bottleneck resulting in the lowest 

error was then selected for each. Allocations for rays at each bottleneck can be found in Figure 6—

figure supplement 1A. For the ‘activation- only’ and ‘full’ models, the lowest RMSE values were for 

bottleneck widths of between 37 and 45%; for the ‘density- only’ model, the RMSE was similar over all 

bottlenecks widths (see Figure 6—figure supplement 1C). We also tested a ‘baseline model’ where 

Table 1. Model parameters for the star- nosed mole.

Ray 1 2 3 4 5 6 7 8 9 10 11

Size 1.14 1.21 1.21 1.17 1.08 1.02 1.00 1.13 1.05 0.87 1.10

Density 45.78 47.14 45.82 45.69 45.2 46.91 43.3 44.01 44.26 47.92 50.46

Activation 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.04 0.08 0.11

γ 0.99 1.00 1.02 1.01 1.00 1.01 0.99 1.04 1.10 1.16 1.27
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densities and activation were randomly selected for each ray within the possible range of parameters. 

The aim was to determine how much explained variance within the cortical allocations was due to the 

selection of the best- fitting bottleneck and how much was due to the specific density and activation 

parameters. A total of 20 random models were run, and the average  R2  was –0.09 (see Figure 6—

figure supplement 1D).

Acknowledgements
This work was supported by the Wellcome Trust (209998/Z/17/Z) and the European Union Horizon 

2020 programme as part of the Human Brain Project (HBP- SGA2, 785907).

Additional information

Funding

Funder Grant reference number Author

Wellcome Trust 209998/Z/17/Z Hannes P Saal 

European Commission HBP-SGA2 785907 Alejandro Jiménez 
Rodríguez

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication. For the purpose of Open Access, the 
authors have applied a CC BY public copyright license to any Author Accepted 
Manuscript version arising from this submission.

Author contributions

Laura R Edmondson, Conceptualization, Software, Formal analysis, Investigation, Visualization, Meth-

odology, Writing – original draft, Writing – review and editing; Alejandro Jiménez Rodríguez, Formal 

analysis, Validation, Methodology, Writing – original draft, Writing – review and editing; Hannes P 

Saal, Conceptualization, Supervision, Methodology, Writing – review and editing

Author ORCIDs
Laura R Edmondson    http://orcid.org/0000-0001-9886-1121
Hannes P Saal    http://orcid.org/0000-0002-7544-0196

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.70777.sa1

Author response https://doi.org/10.7554/eLife.70777.sa2

Additional files

Supplementary files
•  Transparent reporting form 

Data availability

No data was generated for this study. All equations and model parameters are included in the 

manuscript and supporting files. Additionally, code implementing the model equations has been 

made available on Github at https://github.com/lauraredmondson/expansion_contraction_sensory_ 

bottlenecks, (copy archived at swh:1:rev:dd6de7c05ae9443d034361b042b053b4f40717f5) (see also 

Methods section in manuscript).

References
Anderson SJ, Mullen KT, Hess RF. 1991. Human peripheral spatial resolution for achromatic and chromatic 

stimuli: limits imposed by optical and retinal factors. The Journal of Physiology 442:47–64. DOI: https://doi. 
org/10.1113/jphysiol.1991.sp018781, PMID: 1798037

Atick JJ, Redlich AN. 1990. Towards a theory of early visual processing. Neural Computation 2:308–320. DOI: 
https://doi.org/10.1162/neco.1990.2.3.308



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  19 of 30

Atick JJ. 1992. Could information theory provide an ecological theory of sensory processing? Network 3:213–

251. DOI: https://doi.org/10.1088/0954-898X_3_2_009

Atick JJ, Redlich AN. 1992. What does the retina know about natural scenes? Neural Computation 4:196–210. 

DOI: https://doi.org/10.1162/neco.1992.4.2.196

Attneave F. 1954. Some informational aspects of visual perception. Psychological Review 61:183–193. DOI: 

https://doi.org/10.1037/h0054663

Azzopardi P, Cowey A. 1993. Preferential representation of the fovea in the primary visual cortex. Nature 

361:719–721. DOI: https://doi.org/10.1038/361719a0, PMID: 7680108

Barlow HB. 1961. Possible principles underlying the transformation of sensory messages. Sensory 

Communication 1:217–234. DOI: https://doi.org/10.7551/mitpress/9780262518420.003.0013

Bell AJ, Sejnowski TJ. 1997. The “independent components” of natural scenes are edge filters. Vision Research 

37:3327–3338. DOI: https://doi.org/10.1016/s0042-6989(97)00121-1, PMID: 9425547

Berens P, Ecker AS, Gerwinn S, Tolias AS, Bethge M. 2011. Reassessing optimal neural population codes with 

neurometric functions. PNAS 108:4423–4428. DOI: https://doi.org/10.1073/pnas.1015904108, PMID: 

21368193

Bethge M, Rotermund D, Pawelzik K. 2002. Optimal short- term population coding: when fisher information fails. 

Neural Computation 14:2317–2351. DOI: https://doi.org/10.1162/08997660260293247, PMID: 12396565

Bhand M, Mudur R, Suresh B, Saxe A, Ng AY. 2011. Unsupervised learning models of primary cortical receptive 

fields and receptive field plasticity. Advances in Neural Information Processing Systems. .

Brinkman BAW, Weber AI, Rieke F, Shea- Brown E. 2016. How do efficient coding strategies depend on origins 

of noise in neural circuits? PLOS Computational Biology 12:e1005150. DOI: https://doi.org/10.1371/journal. 

pcbi.1005150, PMID: 27741248

Catani M. 2017. A little man of some importance. Brain 140:3055–3061. DOI: https://doi.org/10.1093/brain/ 

awx270, PMID: 29088352

Catania KC, Kaas JH. 1995. Organization of the somatosensory cortex of the star- nosed mole. The Journal of 

Comparative Neurology 351:549–567. DOI: https://doi.org/10.1002/cne.903510406, PMID: 7721983

Catania KC, Kaas JH. 1997. Somatosensory fovea in the star- nosed mole. Journal of Comparative Neurology 

387:215–233.

Catania KC, Remple FE. 2004. Tactile foveation in the star- nosed mole. Brain, Behavior and Evolution 63:1–12. 

DOI: https://doi.org/10.1159/000073755, PMID: 15249650

Catania KC, Leitch DB, Gauthier D. 2011. A star in the brainstem reveals the first step of cortical magnification. 

PLOS ONE 6:e22406. DOI: https://doi.org/10.1371/journal.pone.0022406, PMID: 21811600

Catania KC. 2020. All in the family - touch versus olfaction in moles. Anatomical Record 303:65–76. DOI: https:// 

doi.org/10.1002/ar.24057, PMID: 30614659

Chalk M, Marre O, Tkačik G. 2018. Toward a unified theory of efficient, predictive, and sparse coding. PNAS 

115:186–191. DOI: https://doi.org/10.1073/pnas.1711114115, PMID: 29259111

Chechik G, Anderson MJ, Bar- Yosef O, Young ED, Tishby N, Nelken I. 2006. Reduction of information 

redundancy in the ascending auditory pathway. Neuron 51:359–368. DOI: https://doi.org/10.1016/j.neuron. 

2006.06.030, PMID: 16880130

Clemens J, Kutzki O, Ronacher B, Schreiber S, Wohlgemuth S. 2011. Efficient transformation of an auditory 

population code in a small sensory system. PNAS 108:13812–13817. DOI: https://doi.org/10.1073/pnas. 

1104506108, PMID: 21825132

Coq JO, Xerri C. 1998. Environmental enrichment alters organizational features of the forepaw representation in 

the primary somatosensory cortex of adult rats. Experimental Brain Research 121:191–204. DOI: https://doi. 

org/10.1007/s002210050452, PMID: 9696389

Corniani G, Saal HP. 2020. Tactile innervation densities across the whole body. Journal of Neurophysiology 

124:1229–1240. DOI: https://doi.org/10.1152/jn.00313.2020, PMID: 32965159

Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. The Journal of Comparative Neurology 

300:5–25. DOI: https://doi.org/10.1002/cne.903000103, PMID: 2229487

Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. The Journal of 

Comparative Neurology 292:497–523. DOI: https://doi.org/10.1002/cne.902920402, PMID: 2324310

Doi E, Lewicki MS. 2005. Relations between the Statistical Regularities of Natural Images and the Response 

Properties of the Early Visual System. Japanese Cognitive Science Society, SIG P&P.

Doi E, Gauthier JL, Field GD, Shlens J, Sher A, Greschner M, Machado TA, Jepson LH, Mathieson K, 

Gunning DE, Litke AM, Paninski L, Chichilnisky EJ, Simoncelli EP. 2012. Efficient coding of spatial information in 

the primate retina. The Journal of Neuroscience 32:16256–16264. DOI: https://doi.org/10.1523/JNEUROSCI. 

4036-12.2012, PMID: 23152609

Doi E., Lewicki MS. 2014. A simple model of optimal population coding for sensory systems. PLOS 

Computational Biology 10:e1003761. DOI: https://doi.org/10.1371/journal.pcbi.1003761, PMID: 25121492

Dolman CL, McCormick AQ, Drance SM. 1980. Aging of the optic nerve. Archives of Ophthalmology 98:2053–

2058. DOI: https://doi.org/10.1001/archopht.1980.01020040905024, PMID: 7436843

Duncan RO, Boynton GM. 2003. Cortical magnification within human primary visual cortex correlates with acuity 

thresholds. Neuron 38:659–671. DOI: https://doi.org/10.1016/s0896-6273(03)00265-4, PMID: 12765616

Duncan RO, Boynton GM. 2007. Tactile hyperacuity thresholds correlate with finger maps in primary 

somatosensory cortex (s1). Cerebral Cortex 17:2878–2891. DOI: https://doi.org/10.1093/cercor/bhm015, 

PMID: 17372277



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  20 of 30

Edmondson LR, Rodriguez AJ, Saal HP. 2019. Nonlinear scaling of resource allocation in sensory bottlenecks. 

Advances in Neural Information Processing Systems. 7545–7554.

Edmondson LR. 2021. Expansion_contraction_sensory_bottlenecks. 5483347. Github. https://github.com/ 

lauraredmondson/expansion_contraction_sensory_bottlenecks

Engel SA, Glover GH, Wandell BA. 1997. Retinotopic organization in human visual cortex and the spatial 

precision of functional mri. Cerebral Cortex 7:181–192. DOI: https://doi.org/10.1093/cercor/7.2.181, PMID: 

9087826

Finlay BL, Franco ECS, Yamada ES, Crowley JC, Parsons M, Muniz JAPC, Silveira LCL. 2008. Number and 

topography of cones, rods and optic nerve axons in new and old world primates. Visual Neuroscience 

25:289–299. DOI: https://doi.org/10.1017/S0952523808080371, PMID: 18598400

Fragaszy DM, Crast J. 2016. Functions of the hand in primates. Fragaszy DM (Ed). The Evolution of the Primate 

Hand. Springer. p. 313–344.

Ganguli D, Simoncelli E. 2010. Implicit encoding of prior probabilities in optimal neural populations. Advances in 

Neural Information Processing Systems 23:658–666.

Ganguli D, Simoncelli EP. 2014. Efficient sensory encoding and bayesian inference with heterogeneous neural 

populations. Neural Computation 26:2103–2134. DOI: https://doi.org/10.1162/NECO_a_00638, PMID: 

25058702

Ganguli D, Simoncelli EP. 2016. Neural and Perceptual Signatures of Efficient Sensory Coding. arXiv. https:// 

arxiv. org/ abs/ 1603. 00058

García- Piqueras J, García- Mesa Y, Cárcaba L, Feito J, Torres- Parejo I, Martín- Biedma B, Cobo J, García- Suárez O, 

Vega JA. 2019. Ageing of the somatosensory system at the periphery: age- related changes in cutaneous 

mechanoreceptors. Journal of Anatomy 234:839–852. DOI: https://doi.org/10.1111/joa.12983, PMID: 

30924930

Godde B, Stauffenberg B, Spengler F, Dinse HR. 2000. Tactile coactivation- induced changes in spatial 

discrimination performance. The Journal of Neuroscience 20:1597–1604. DOI: https://doi.org/10.1523/ 

JNEUROSCI.20-04-01597.2000, PMID: 10662849

Gonzalez F, Gosselin F, Bachta W. 2014. Analysis of hand contact areas and interaction capabilities during 

manipulation and exploration. IEEE Transactions on Haptics 7:415–429. DOI: https://doi.org/10.1109/TOH. 

2014.2321395, PMID: 25532147

Goodchild AK, Ghosh KK, Martin PR. 1996. Comparison of photoreceptor spatial density and ganglion cell 

morphology in the retina of human, macaque monkey, cat, and the marmoset callithrix jacchus. The Journal of 

Comparative Neurology 366:55–75. DOI: https://doi.org/10.1002/(SICI)1096-9861(19960226)366:1<55::AID-

CNE5>3.0.CO;2-J, PMID: 8866846

Goodwin AW, Wheat HE. 2004. Sensory signals in neural populations underlying tactile perception and 

manipulation. Annual Review of Neuroscience 27:53–77. DOI: https://doi.org/10.1146/annurev.neuro.26. 

041002.131032, PMID: 15217326

Graham DJ, Chandler DM, Field DJ. 2006. Can the theory of “whitening” explain the center- surround properties 

of retinal ganglion cell receptive fields? Vision Research 46:2901–2913. DOI: https://doi.org/10.1016/j.visres. 

2006.03.008, PMID: 16782164

Graham D, Field D. 2009. Natural images: coding efficiency. Encyclopedia of Neuroscience 6:19–27.

Hancock PJB, Baddeley RJ, Smith LS. 1992. The principal components of natural images. Network 3:61–70. DOI: 

https://doi.org/10.1088/0954-898X_3_1_008

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, 

Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, 

Gérard- Marchant P, et al. 2006. Array programming with numpy. Nature 585:357–362. DOI: https://doi.org/10. 

1038/s41586-020-2649-2, PMID: 32939066

Harvey BM, Dumoulin SO. 2006. The relationship between cortical magnification factor and population 

receptive field size in human visual cortex: constancies in cortical architecture. Journal of Neuroscience 

31:13604–13612. DOI: https://doi.org/10.1523/JNEUROSCI.2572-11.2011, PMID: 21940451

Hermundstad AM, Briguglio JJ, Conte MM, Victor JD, Balasubramanian V, Tkačik G. 2014. Variance predicts 

salience in central sensory processing. eLife 3, e03722. DOI: https://doi.org/10.7554/eLife.03722, PMID: 

25396297

Huffman KJ, Molnár Z, Van Dellen A, Kahn DM, Blakemore C, Krubitzer L. 1999. Formation of cortical fields on a 

reduced cortical sheet. The Journal of Neuroscience 19:9939–9952 PMID: 10559402. 

Hyvärinen A, Oja E. 2000. Independent component analysis: algorithms and applications. Neural Networks 

13:411–430. DOI: https://doi.org/10.1016/s0893-6080(00)00026-5, PMID: 10946390

Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guíc- Robles E. 1990. Functional reorganization of primary 

somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. Journal of 

Neurophysiology 63:82–104. DOI: https://doi.org/10.1152/jn.1990.63.1.82, PMID: 2299388

Johansson RS, Vallbo AB. 1979. Tactile sensibility in the human hand: relative and absolute densities of four 

types of mechanoreceptive units in glabrous skin. The Journal of Physiology 286:283–300. DOI: https://doi. 

org/10.1113/jphysiol.1979.sp012619, PMID: 439026

Jonas JB, Müller- Bergh JA, Schlötzer- Schrehardt UM, Naumann GO. 1990. Histomorphometry of the human 

optic nerve. Investigative Ophthalmology & Visual Science 31:736–744 PMID: 2335441. 

Karklin Y, Simoncelli EP. 2011. Efficient coding of natural images with a population of noisy linear- nonlinear 

neurons. Advances in Neural Information Processing Systems. 999–1007.



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  21 of 30

Kersten D. 1987. Predictability and redundancy of natural images. Journal of the Optical Society of America. A, 

Optics and Image Science 4:2395–2400. DOI: https://doi.org/10.1364/josaa.4.002395, PMID: 3430226

Lehnert BP, Santiago C, Huey EL, Emanuel AJ, Renauld S, Africawala N, Alkislar I, Zheng Y, Bai L, 

Koutsioumpa C, Hong JT, Magee AR, Harvey CD, Ginty DD. 2021. Mechanoreceptor Synapses in the 

Brainstem Shape the Central Representation of Touch. bioRxiv. DOI: https://doi.org/10.1101/2021.02.02. 

429463

Lewicki MS. 2002. Efficient coding of natural sounds. Nature Neuroscience 5:356–363. DOI: https://doi.org/10. 

1038/nn831, PMID: 11896400

Lindsey J, Ocko SA, Ganguli S, Deny S. 2019. A Unified Theory Of Early Visual Representations From Retina To 

Cortex Through Anatomically Constrained Deep CNNs. bioRxiv. DOI: https://doi.org/10.1101/511535

Ly C, Middleton JW, Doiron B. 2012. Cellular and circuit mechanisms maintain low spike co- variability and 

enhance population coding in somatosensory cortex. Frontiers in Computational Neuroscience 6:7. DOI: 

https://doi.org/10.3389/fncom.2012.00007, PMID: 22408615

Martuzzi R, van der Zwaag W, Farthouat J, Gruetter R, Blanke O. 2014. Human finger somatotopy in areas 3b, 1, 

and 2: a 7t fmri study using a natural stimulus. Human Brain Mapping 35:213–226. DOI: https://doi.org/10. 

1002/hbm.22172, PMID: 22965769

Merzenich MM, Jenkins WM. 1993. Reorganization of cortical representations of the hand following alterations 

of skin inputs induced by nerve injury, skin island transfers, and experience. Journal of Hand Therapy 6:89–104. 

DOI: https://doi.org/10.1016/s0894-1130(12)80290-0, PMID: 8393727

Nelson RJ, Sur M, Felleman DJ, Kaas JH. 1980. Representations of the body surface in postcentral parietal 

cortex of macaca fascicularis. The Journal of Comparative Neurology 192:611–643. DOI: https://doi.org/10. 

1002/cne.901920402, PMID: 7419747

Olshausen BA, Field DJ. 1996. Wavelet- like receptive fields emerge from a network that learns sparse codes for 

natural images. Nature 381:607–609 PMID: 8637596. 

Olshausen BA, Field DJ. 1997. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision 

Research 37:3311–3325. DOI: https://doi.org/10.1016/s0042-6989(97)00169-7, PMID: 9425546

Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. Current Opinion in Neurobiology 14:481–487. 

DOI: https://doi.org/10.1016/j.conb.2004.07.007, PMID: 15321069

Perry VH, Oehler R, Cowey A. 1984. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in 

the macaque monkey. Neuroscience 12:1101–1123. DOI: https://doi.org/10.1016/0306-4522(84)90006-x, 

PMID: 6483193

Peters RM, Hackeman E, Goldreich D. 2009. Diminutive digits discern delicate details: fingertip size and the sex 

difference in tactile spatial acuity. The Journal of Neuroscience 29:15756–15761. DOI: https://doi.org/10.1523/ 

JNEUROSCI.3684-09.2009, PMID: 20016091

Pitkow X, Meister M. 2012. Decorrelation and efficient coding by retinal ganglion cells. Nature Neuroscience 

15:628–635. DOI: https://doi.org/10.1038/nn.3064, PMID: 22406548

Plumbley MD. 1999. Do cortical maps adapt to optimize information density? Network 10:41–58. DOI: https:// 

doi.org/10.1088/0954-898X/10/1/003, PMID: 10372761

Provis JM, van Driel D, Billson FA, Russell P. 1985. Human fetal optic nerve: overproduction and elimination of 

retinal axons during development. The Journal of Comparative Neurology 238:92–100. DOI: https://doi.org/ 

10.1002/cne.902380108, PMID: 4044906

Ritter H, Schulten K. 1986. On the stationary state of kohonen’s self- organizing sensory mapping. Biological 

Cybernetics 54:99–106. DOI: https://doi.org/10.1007/BF00320480

Ritter H, Martinetz T, Schulten K. 1992. Neural Computation and Self- Organizing Maps: An Introduction. 

Addison- Wesley.

Sandell JH, Peters A. 2001. Effects of age on nerve fibers in the rhesus monkey optic nerve. The Journal of 

Comparative Neurology 429:541–553. DOI: https://doi.org/10.1002/1096-9861(20010122)429:4<541::aid-

cne3>3.0.co;2-5, PMID: 11135234

Sawyer EK, Catania KC. 2016. Somatosensory organ topography across the star of the star- nosed mole 

(condylura cristata). The Journal of Comparative Neurology 524:917–929. DOI: https://doi.org/10.1002/cne. 

23943, PMID: 26659700

Sefton AJ, Horsburgh GM, Lam K. 1985. The development of the optic nerve in rodents. Australian and New 

Zealand Journal of Ophthalmology 13:135–145. DOI: https://doi.org/10.1111/j.1442-9071.1985.tb00414.x, 

PMID: 4052262

Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB. 1995. Borders of 

multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893. 

DOI: https://doi.org/10.1126/science.7754376, PMID: 7754376

Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity, 

computation, and information coding. The Journal of Neuroscience 18:3870–3896. DOI: https://doi.org/10. 

1523/JNEUROSCI.18-10-03870.1998, PMID: 9570816

Simmons GF. 2016. Differential Equations with Applications and Historical Notes. CRC Press.

Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annual Review of 

Neuroscience 24:1193–1216. DOI: https://doi.org/10.1146/annurev.neuro.24.1.1193

Smith EC, Lewicki MS. 2006. Efficient auditory coding. Nature 439:978–982. DOI: https://doi.org/10.1038/ 

nature04485, PMID: 16495999

Strauss WA. 2007. Partial Differential Equations: An Introduction. John Wiley & Sons.



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  22 of 30

Sur M, Merzenich MM, Kaas JH. 1980. Magnification, receptive- field area, and “hypercolumn” size in areas 3b 
and 1 of somatosensory cortex in owl monkeys. Journal of Neurophysiology 44:295–311. DOI: https://doi.org/ 
10.1152/jn.1980.44.2.295, PMID: 7411189

Terashima H, Okada M. 2012. The Topographic Unsupervised Learning of Natural Sounds in the Auditory 
Cortex, Advances in Neural Information Processing Systems. Curran Associates, Inc.

Tishby N, Pereira FC, Bialek W. 2000. The Information Bottleneck Method. arXiv. https:// arxiv. org/ abs/ physics/ 
0004057

Tishby N, Zaslavsky N. 2015. Deep learning and the information bottleneck principle. 2015 IEEE Information 
Theory Workshop (ITW). . DOI: https://doi.org/10.1109/ITW.2015.7133169

Van Boven RW, Hamilton RH, Kauffman T, Keenan JP, Pascual- Leone A. 2000. Tactile spatial resolution in blind 
braille readers. Neurology 54:2230–2236. DOI: https://doi.org/10.1212/wnl.54.12.2230, PMID: 10881245

Verendeev A, Thomas C, McFarlin SC, Hopkins WD, Phillips KA, Sherwood CC. 2015. Comparative analysis of 
meissner’s corpuscles in the fingertips of primates. Journal of Anatomy 227:72–80. DOI: https://doi.org/10. 
1111/joa.12327, PMID: 26053332

Vinje WE, Gallant JL. 2000. Sparse coding and decorrelation in primary visual cortex during natural vision. 
Science 287:1273–1276. DOI: https://doi.org/10.1126/science.287.5456.1273, PMID: 10678835

Wei XX, Stocker AA. 2015. A bayesian observer model constrained by efficient coding can explain “anti- 
bayesian” percepts. Nature Neuroscience 18:1509–1517. DOI: https://doi.org/10.1038/nn.4105, PMID: 
26343249

Wells- Gray EM, Choi SS, Bries A, Doble N. 2016. Variation in rod and cone density from the fovea to the 
mid- periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy. Eye 30:1135–
1143. DOI: https://doi.org/10.1038/eye.2016.107, PMID: 27229708

Wong M, Peters RM, Goldreich D. 2013. A physical constraint on perceptual learning: tactile spatial acuity 
improves with training to A limit set by finger size. The Journal of Neuroscience 33:9345–9352. DOI: https:// 
doi.org/10.1523/JNEUROSCI.0514-13.2013, PMID: 23719803

Xerri C, Coq JO, Merzenich MM, Jenkins WM. 1996. Experience- induced plasticity of cutaneous maps in the 
primary somatosensory cortex of adult monkeys and rats. Journal of Physiology, Paris 90:277–287. DOI: 
https://doi.org/10.1016/s0928-4257(97)81438-6, PMID: 9116682

Xerri C, Merzenich MM, Jenkins W, Santucci S. 1999. Representational plasticity in cortical area 3b paralleling 
tactual- motor skill acquisition in adult monkeys. Cerebral Cortex 9:264–276. DOI: https://doi.org/10.1093/ 
cercor/9.3.264, PMID: 10355907

Yarrow S, Challis E, Seriès P. 2012. Fisher and shannon information in finite neural populations. Neural 
Computation 24:1740–1780. DOI: https://doi.org/10.1162/NECO_a_00292, PMID: 22428594

Yerxa TE, Kee E, DeWeese MR, Cooper EA. 2020. Efficient sensory coding of multidimensional stimuli. PLOS 
Computational Biology 16:e1008146. DOI: https://doi.org/10.1371/journal.pcbi.1008146, PMID: 32970679



 Research article Neuroscience

Edmondson et al. eLife 2022;11:e70777. DOI: https://doi.org/10.7554/eLife.70777  23 of 30

Appendix 1

Stimulus statistics and response variance
Decorrelation works on second- order statistics and therefore stimulus statistics would only be taken 
into account by the model if they affect the covariance matrix. One way this can happen is through 
the extent of the spatial correlations (parameter γ in the covariance function). For example, in touch 
the size distribution of stimuli that would typically make contact with a given skin region might differ, 
leading to a different correlational structure. While we calculate allocations for different values of γ, 
we keep this value fixed across different input regions, for simplicity.

A more common case is that of receptors in one region being more active than receptors in another 

region. For example, in touch, the fingertips make contact with objects much more frequently than 

does the palm. An increased probability of making contact would translate into higher receptor 

response rates. In turn, higher response rates imply higher response variance, which would be 

directly reflected in the covariance matrix as a multiplicative scaling of the covariance function. 

For example, assuming that each receptor follows a simple Bernoulli distribution (either on or off, 

with a probability of p being on), then the response variance can be calculated as  p(1 − p) = p − p2
 . 

Assuming that the likelihood of any receptor being active is generally low, the variance scales almost 

linearly with receptor activation. Differences in activation between two regions are represented by 

the activation ratio  a  throughout the article.
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Appendix 2

Relationship between PCA and Laplacian eigenvalue problem
Rationale
Let  Ω  be a region with a density of receptors ρ. In a 1D region  Ω = [0, L] , the density can be 
expressed as  ρ = N

L   or number of receptors per unit length. Assuming an exponential decay of 
correlations, the covariance between receptors  i  and  j  is

 C(i, j) = e−γ |i∆x−j∆x|,  (21)

where  ∆x = 1/ρ  is the distance between receptors. Subsampling the space by taking a fraction  N/d  
of the original receptors,  d > 1 , the covariance for positions  i, j , becomes

 C̃(i, j) = e−γ |id∆x−jd∆x| = e−dγ |i∆x−j∆x|.  (22)

Therefore, we encode the changes in receptor density in a scaling of the exponential decay rate. 
For a given distribution of receptors, there is an induced partition of the interval  [0, L] , therefore, for 
a fixed  x = i∆x , the covariance in the  jth  bin is approximately equal to the area of the exponential 
covered in that bin:

 

ˆ j∆x

(j−1)∆x
C(x, y)dy ≈ C(i∆x, j∆x)∆x,

  

Summing over all the bins, we arrive at the PCA problem:

 
∑n

j=0 C(i∆x, j∆x)φ(j∆x)∆x = λφ(i∆x).  (23)

The continuum limit is found formally as  ∆x → 0 .

Derivation
In order to find the optimal assignment for a given receptor density, we are interested in solutions 
to the following equation which can be seen as a continuous version of the traditional PCA problem 
with an exponentially decaying covariance matrix:

 λφ(x) =
´ L

0 e−γ |x−y|φ(y)dy,  (24)

where γ is the decay rate. We are interested in solutions  φ ∈ C2(R) , that is, twice differentiable 
solutions that satisfy appropriate boundary conditions.

Theorem 1 If  φ  is a solution of Equation 24, then it is an eigenfunction of the Laplacian operator 

with eigenvalues:

 µ = 2γ
λ

− γ
2.  (25)

That is, in one dimension, solutions  φ  satisfy

 −
d2

dx2 φ(x) = µφ(x).  (26)

Proof: Differentiating Equation 24 twice using the Leibniz rule we obtain

 
d
dxφ(x) = γ

λ

{

−

´ x
0 e−γ(x−y)φ(y)dy +

´ L
x eγ(x−y)φ(y)dy

}

, and
 
 
 

(27)

 
d2

dx2 φ(x) = γ

λ

{

−2φ(x) + γ
´ L

0 e−γ |x−y|φ(y)dy
}

.
  

(28)

The second term on the right- hand side can be replaced using Equation 24 obtaining the desired 
result:

 
d2

dx2 φ(x) = −
2γ
λ
φ(x) + γ2φ(x), or   (29)
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−

d2

dx2 φ(x) =
(

2γ
λ

− γ2
)

φ(x).
  

(30)

The previous is a sufficient condition on the solutions to Equation 24. A necessary condition is given 
in the following theorem:

Theorem 2 A solution to Equation 26 is also solution to Equation 24 if it satisfies the following 

boundary conditions:

 φ′(0) = γφ(0)  (31)

 φ′(L) = −γφ(L).  (32)

Proof: Assume  φ  is a solution to Equation 26. We proceed by convolving Equation 26 on both sides 
with the kernel  e−γx :

 

ˆ x

0
e−γ(x−y)

φ
′′(y)dy = µ

ˆ x

0
e−γ(x−y)

φ(y)dy.
  

(33)

Integrating by parts twice we get

 
φ
′(x) − e−γx

φ
′(0) − γφ(x) + γe−γx

φ(0) + γ
2
ˆ x

0
e−γ(x−y)

φ(y)dy = µ

ˆ x

0
e−γ(x−y)

φ(y)dy.
  

(34)

Using Equation 25 and Equation 32, we obtain

 
−φ

′(x) + γφ(x) = 2γ
λ

ˆ x

0
e−γ(x−y)

φ(y)dy.
  

(35)

Repeating the procedure with the kernel  eγx  in the interval  [x, L] , yields

 
φ
′(x) + γφ(x) = 2γ

λ

ˆ L

x
e−γ(x−y)

φ(y)dy.
  

(36)

Adding Equation 35 and Equation 36 we recover Equation 24, which finalizes the proof.

Scaling
In some instances of our problem, the exponential covariance will be scaled by the activation ratio, a. 
In general, the same reasoning applies to any linear combination of solutions; therefore, our results 
extend to that case. In particular, we have the following result:

Theorem 3 The eigenvalues of the scaled covariance matrix,  C′(x, y) = aC(x, y)  are

 λs = aλ,  (37)

where λ is an eigenvalue of the original problem.

Proof: Let  φ(x)  be a solution of Equation 24. By linearity of the integral we have

 

ˆ L

0
ae−γ |x−y|

φ(y)dy = a
ˆ L

0
e−γ |x−y|

φ(y)dy = aλφ(x)
  (38)
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Appendix 3

Solutions
In the previous section, we saw that solutions of the PCA problem (Equation 24) and the Laplacian 
eigenvalue problem (Equation 26) coincide if boundary conditions specified in Equation 32 and 
Equation 31 are met. Here, we show how these solutions relate to solutions of the boundary value 
problem of Equation 26 with  φ(0) = φ(L) = 0 , which correspond to the eigenmodes of an idealized 
vibrating string fixed at the extremes. Such modes are considerably simpler than the exact ones and, 
as we show, are sufficient for our analysis.

Eigenmodes of a vibrating string
Solving Equation 26, for  κ = √

µ,µ > 0 , using standard methods (see Simmons, 2016, p. 355 
onwards), we find the general expression for the eigenfunctions:

 φ(x) = A sin(κx) + B cos(κx),  (39)

with coefficients to be determined using the boundary conditions. The first boundary condition 
( φ(0) = 0 ) implies that  B = 0 . The second boundary condition ( φ(L) = 0 ) gives the equation  sin (κL) = 0 , 
which is satisfied for  κL = nπ , or

 µ = n2
π

2

L2 ,  (40)

where  n = 1, 2...  is the index of the eigenvalue. The value of  A  is arbitrary and is usually selected so 
the solution is normalized.

Exact eigenvalues
In order to find the exact analytical eigenvalues of Equation 24, we again assume  µ > 0  and a solution 
of the form given in Equation 39. Using the first boundary condition (Equation 31, Equation 32) we 
get the following relationship:

 A = γ
κ

B,  (41)

and with the second boundary condition, we obtain

 tanκL = κA+γB
κB−γA ;

  (42)

replacing Equation 41, we find the transcendental equation

 
tanκL = 2γκ

κ2
−γ2 ;

  (43)

whose solutions lead to the exact eigenvalues of the continuous PCA problem.

Relationship between exact and approximate eigenvalues
The main results presented in this study rely on the ordering of the eigenvalues only, rather than their 
precise magnitude. Any divergence between the exact and approximate eigenvalues is therefore 
relevant only if it affects this ordering. Furthermore, since allocation of eigenvalues to regions 
proceeds cumulatively as more eigenvalues are added, localized disturbances in a few eigenvalues 
will lead to only minor errors that are quickly corrected as more eigenvalues are added (since the 
correct allocation of eigenvalues to regions will be restored). In the following, we demonstrate that, 
comparing the ordering of the exact eigenvalues where the boundary conditions are derived from 
the integral equation (Equation 43) with that of the approximate ones (Equation 40), this order 
is altered only in a localized fashion that does not affect the analytical results of this article. To 
understand the changes in the ordering, consider the functions

 f(κ) = tanκL,  (44)

and

 
g(κ) = 2γκ

κ2
−γ2 ,

   (45)
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whose intersection gives the solutions to Equation 43. The function  g  has two hyperbolic- like 
branches, one to each side of the singularity  κ = γ . We can distinguish two cases for the said 
intersection:

1. For  |κ| ≫ γ ,  g  approaches 0 and there is clearly only one intersection with  f  , which happens to 

be increasingly close to the approximate eigenvalues. Moreover, the function is also monotonic 

in this regime. This implies that the order is preserved.

2. For  |κ| ≈ γ , that is, close to the singularity, an additional root is inserted as  f   cuts both branches 

of  g  and the order is disturbed.

Altogether, this implies that, for the cases studied in this article that consider  γ < π , only the first 
two eigenvalues might differ from the order given by the approximate solution. In general, in the 
intervals  (nπ/2, (n + 1)π/2)  there will be one root for both equations except in the one closest to the 
singularity which will contain two. Moreover, from Equation 25 we see that, for two regions with 
densities  γ  and  dγ  and Laplacian eigenvalues  κ1  and  κ2 ,  λ1 > λ2  implies  κ2 − dκ1 > (1 − d)dγ2

 . This 
inequality is satisfied by the exact eigenvalues, again, in all intervals except the one in which the 
singularity lies (as can be confirmed by expanding  f − g = 0  around the approximate eigenvalues 
and solving for κ). We have compared the exact and approximate ordering for two regions for a 
number of (manageable) cases and have found the relationship described above to hold.
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Appendix 4

Ordering in the 2D square case
For rectangle regions, the ordering can be solved by calculating the number of lattice points enclosed 
by a quarter ellipse (Strauss, 2007). Here, we use square regions and therefore the solution is the 
number of points enclosed in a quarter circle. The Gauss circle problem determines the number of 
integer lattice points which lie within a circle with radius  p ≥ 0 , with its centre at the origin:

 N(p) = #{(l, m) ∈ R|l2 + m2
≤ p2}.  (46)

The number of lattice points within the circle is approximately equal to its area. The number of points 
within a square region can be approximated by calculating the area of the upper quarter of the circle 
(positive values only):

 
N(p) = πp2

4   
(47)

The number of eigenvalues in each region is therefore the area of the intersection of the circle and 
region.

For each region we calculate the number of lattice points enclosed by a quarter circle; for R1 we set 

the radius equal to  l2 + m2  and for R2 to  n2 + o2  (the solution of Equation 18), where  l, m, n, o = 1, 2.. . 
This number is approximated as the area of the quarter circle. For values of  l2 + m2  or  n2 + o2  greater 

than the total number of eigenvalues in each dimension ( L
√

d ), the approximation diverges from the 

true ordering as the area of the quarter circle becomes larger than the area of the lattice (region). In 

this case, a correction term is added:

 

N(p)=











πp
4 − p arccos

(

k
√p

)

− k
√

p − k2, if k
√p

< 1.
πp
4 , otherwise.

  

(48)

where  p  is either  l2 + m2  or  n2 + o2  for R1 and R2 respectively, and k is the total number of eigenvalues 
in each region. Assuming a region size of  L , with each receptor spaced one unit apart,  k = L2  for R1, 
and  k = L2d  for R2.
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Appendix 5

Allocation for multiple regions in 2D
For more than two regions, density and activation ratios for each additional region are calculated 
relative to a chosen baseline region. This leads to the following general form for calculation of the 
eigenvalues of any region x:

 
Rx: λl,m = 2γa

√

dx
l2π2L−2√db + m2π2L−2√db + γ2√db  

 
 

(49)

where  a  is the region activation scaling ratio, db is the density of the baseline region, and dx the 
density of region  x.l, m ∈ N  enumerate different eigenvalues for region  x .
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Appendix 6

Allocation for the 1D case
The 1D case for changes in density has previously been addressed in Edmondson et al., 2019. Here, 
we extend this to include changes in activation. For two regions R1 and R2, we can calculate their 
eigenvalues as

 
R1 : λ

(R1)
l = 2γ

l2π2L−2 + γ2   
(50)

 
R2 : λ

(R2)
m = 2γad

m2π2L−2 + γ2  
 
 

(51)

where d is the ratio of higher and lower densities,  a  is the ratio of receptor activation, L is the length 
of the region, and  l, m ∈ N  denote successive eigenvalues for regions R1 and R2, respectively.

To calculate how many output neurons are allocated to region R2 as a function of the number of 

neurons allocated to region R1, we set  λ
(R1)
l = λ

(R2)
m   and solve for  m . This yields

 
m =

√

ad(l2π2 + L2γ2) − L2γ2

π
.
  

(52)

It becomes apparent that for  l = 1 , that is, the first neuron allocated to region R1, we have already 

assigned 
 
m =

√

ad(π2 + L2γ2) − L2γ2

π  
 neurons to region R2. As we allocate more neurons to region R1, 

the ratio  
m
l   simplifies to:  liml→∞

m
l =

√

ad . The fraction of neurons allocated to each region therefore 

depends on the size of the bottleneck and converges to 
 

1
1+

√

ad 
 and 

 

√

ad
1+

√

ad 
 for R1 and R2, respectively.
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