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BQN: Busy-Quiet Net Enabled by Motion

Band-Pass Module for Action Recognition
Guoxi Huang and Adrian G. Bors, Senior Member, IEEE

Department of Computer Science, University of York, York YO10 5GH, UK

Abstract—A rich video data representation can be realized by
means of spatio-temporal frequency analysis. In this research
study we show that a video can be disentangled, following
the learning of video characteristics according to their spatio-
temporal properties, into two complementary information com-
ponents, dubbed Busy and Quiet. The Busy information char-
acterizes the boundaries of moving regions, moving objects, or
regions of change in movement. Meanwhile, the Quiet informa-
tion encodes global smooth spatio-temporal structures defined by
substantial redundancy. We design a trainable Motion Band-Pass
Module (MBPM) for separating Busy and Quiet-defined informa-
tion, in raw video data. We model a Busy-Quiet Net (BQN) by
embedding the MBPM into a two-pathway CNN architecture.
The efficiency of BQN is determined by avoiding redundancy
in the feature spaces defined by the two pathways. While
one pathway processes the Busy features, the other processes
Quiet features at lower spatio-temporal resolutions reducing both
memory and computational costs. Through experiments we show
that the proposed MBPM can be used as a plug-in module in
various CNN backbone architectures, significantly boosting their
performance. The proposed BQN is shown to outperform many
recent video models on Something-Something V1, Kinetics400,
UCF101 and HMDB51 datasets. The code for the implementation
is available1.

Index Terms—Motion Band-Pass Module, Busy-Quiet Net,
Spatio-temporal video processing, Action Recognition.

I. INTRODUCTION

Video action recognition is a fundamental problem in

video understanding, having many real-world applications,

including autonomous driving technology, video surveillance,

drone movement control, robotics, human-computer interac-

tion, augmented reality and gaming, among others. Over the

last decade, video action recognition has attracted significant

research interest while its fast development was empowered

by deep learning [1] and the availability of large-scale labeled

video datasets [2], [3]. Downstream tasks such as video

retrieval and robot control also benefit from advances in video

action recognition.

The Convolution Neural Network (CNN) architectures [4],

[5], [6], [7], provide excellent results in image classifica-

tion, but cannot be directly applied for video processing

and classification. A straight forward manner to use CNNs

for processing videos was to expand the convolution kernels

from 2D to 3D [8], [9], [10], [11]. Starting with the Inflated

3D ConvNet (I3D) [10], research efforts in video processing

and classification have been directed towards designing new

3D architectures. However, 3D CNNs require significantly

1https://github.com/guoxih/busy-quiet-net

more computation resources than 2D CNNs. Some recent

works [12], [13], [14], [15], [16], [17] would increase the

efficiency of 3D CNNs by reducing the redundancy in the

model parameters. Nevertheless, these works ignore the fact

that videos contains substantial redundancy in the spatio-

temporal space, which results in the inefficient processing by

existing systems. Meanwhile, the 3D CNN performance [10]

can be further improved by simply replacing raw time-series

of RGB frame inputs with motion representations, such as for

example the TV-L1 flow [18].

Video data processing can also benefit from being decom-

posed into different streams of information which would be al-

located the appropriate computational resources for processing

each data stream. Busy information describes fast-changing

motion happening at the boundaries of moving regions. Such

regions are crucial both for defining movement as well as for

action recognition. Meanwhile, the Quiet information contains

substantial redundancy, as for example when having continu-

ous background textures. In order to efficiently process video

data, we propose to disentangle a video stream, or just a clip,

into Busy and Quiet components. Subsequently, we process

efficiently the Busy and Quiet components separately, by al-

locating high-complexity processing for the Busy information

while low-complexity processing would be used for the Quiet

information.

This research study proposes a lightweight, end-to-end

trainable motion feature extraction mechanism called the

Motion Band-Pass Module (MBPM), which distills motion

information conveyed within a specific spatio-temporal fre-

quency bandwidth. The distillation is optimized with respect

to relevant movements following the training with the videos

from a given dataset. As illustrated in Figure 1, by applying

MBPM to a video, selecting the representative frames whilst

retaining and compressing the essential motion representation.

Our experiments demonstrate that by simply replacing the

RGB frame input with the motion representation extracted

by MBPM, the performance of existing video models can

be significantly boosted. Secondly, we design a two-pathway

multi-scale architecture, called the Busy-Quiet Net (BQN),

whose processing pipeline is shown in Figure 2. The Busy

pathway is responsible for processing the information distilled

by MBPM, representing fast changing spatio-temporal data.

The other pathway, called Quiet, is devised for processing

the information encoded by the global smoothing spatio-

temporal network structures. In order to fuse the information

from different pathways, we also employ Band-Pass Lateral

Connection (BPLC) modules, facilitating the exchange of
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Fig. 1: The Motion Band-Pass Module (MBPM) disentangles a short frame sequence into Busy and Quiet components. For

every three consecutive RGB frames, the MBPM generates a single-frame output, substantially reducing the redundancy.

information between the layers of Busy and Quiet pathways.

Through experiments we demonstrate that BPLC modules

represent the key factor to the overall model optimization

success.

Compared with the frame summarization approaches [19],

[20], MBPM retains the strict temporal order of the frame se-

quences, which is considered essential for long-term temporal

relation modeling. Compared with optical flow-based motion

representation methods [18], [21], [22], [23], [24], the motion

representation captured by MBPM has a smaller temporal

size and can be employed on the fly. Meanwhile, efficient

video models such as Octave Convolution [25], bL-Net [26]

and SlowFast networks [27] would only reduce the input

redundancy along either the spatial or temporal dimensions.

Instead, the proposed BQN reduces the redundancy in the joint

spatio-temporal space.

The contributions of this paper can be summarized as

follows:

• A novel Motion Band-Pass Module (MBPM) is proposed

for Busy and Quiet motion information distillation. The

motion cues extracted by the MBPM significantly reduces

temporal redundancy.

• We design a two-pathway Busy-Quiet Net (BQN) that

separately processes the Busy and Quiet information

in videos. After separating the Busy information using

MBPM, we further decrease redundancy by downsam-

pling the Quiet information.

• Extensive experiments demonstrate the superiority of

the proposed BQN over a wide range of models

on four standard video benchmark datasets: Kinet-

ics400 [10], Something-Something V1 [3], UCF101 [28]

and HMDB51 [29].

The rest of the paper is organized as in the following. The

related works are outlined in Section II. The proposed Motion

Band-Pass Module (MBPM) and its training is described

in Section III. The Busy-Quiet Net (BQN) is presented in

Section IV. The experimental results are provided in Section V

while the conclusions of this study are drawn in Section VI.

II. RELATED WORK

A. Spatio-temporal Networks

Following the unprecedented breakthrough of 2D CNNs

on image classification tasks [4], [5], [6], [30], [31], [32],

early work [33] attempted to directly apply 2D CNNs to

video action recognition tasks by simply fusing frame-wise

prediction, while the temporal information of videos was

not exploited. In order to enable 2D CNNs with spatio-

temporal modeling abilities, Simonyan and Zisserman [34]

proposed a representative two-stream architecture, in which the

spatial stream processes raw RGB frames as input, while the

temporal stream models motion-relevant features by taking the

optical flow as input. Long Short-Term Memory (LSTM) [35]

embedded with 2D CNNs was designed for learning temporal

relations between frames in various studies [10], [36], [37],

[38], [39], [40]. However, 2D CNN+LSTM [10] empirically

shows lower performance than two-stream processing architec-

tures. One possible explanation could be that the learning of

temporal relationships by 2D CNN+LSTM [10] architecture

is only being operated on the high-level 2D CNNs features,

ignoring the importance of low-level temporal information.

Given the progress in GPU performance, other methods [8],

[9], [10], [11], tend to exploit the computationally intensive

3D convolution which allows simultaneous spatio-temporal

data processing. Meanwhile, some studies focus on improving

the efficiency of 3D CNN, such as the Pseudo-3D Residual

Net (P3D) [14], R(2+1)D networks [16], Separable 3D (S3D)

CNN [17], Temporal Shift Module (TSM) [13], Channel-

Separated Convolutional Network (CSN) [15] and Expand 3D

(X3D) [12]. Non-local Net [41] and its variants [42], [43]

introduce self-attention mechanisms to CNNs in order to learn

long-range spatio-temporal dependencies. This research study

is complementary to these approaches and our Busy-Quiet

Net (BQN) can benefit from the efficiency of these CNNs

by simply adopting any of them as its backbone.

B. Motion Representation

Optical flow as a short-term motion representation has been

widely used as an input modality in two-stream-based archi-

tectures [23], [34], [44] for boosting performance in action
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recognition. Flow Net series [22], [45] and AutoFlow [46]

improve the optical flow estimation by using deep learning.

However, optical flow estimation is inefficient with respect

to the memory storage and computation. To estimate the

optical flow on the fly, ActionFlowNet [47] and Hidden Two-

Stream Net [48] attempt to integrate optical flow estimation

and action recognition into an end-to-end training framework.

More recently, Optical Flow guided Feature (OFF) [49],

TVNet [21], Flow-of-Flow [50], EMV [51], [52] and other

methods employing fast motion feature learning have been

proposed. Some motion representations such as Squeezed

Image and Dynamic Image summarize both the static and

dynamic visual information of videos by utilizing Temporal

Squeeze Pooling [53] and Approximate Rank Pooling [19],

respectively. These methods work well provided that no severe

camera shaking or movement occurs. Otherwise, the resulted

squeezed images are blurred, resulting in poor discrimination

between the moving objects and background. Compared to

these approaches, our MBPM produces higher accuracy while

requiring less computation. Moreover, the proposed MBPM is

like a basic component, which can be embedded into various

video architectures.

C. Reducing Information Redundancy

Enabled by deep learning, Big-Little Net (bL-Net) [26]

adopts a downsampling strategy operating at block level aim-

ing to reduce the spatial redundancy of its feature maps. Then

it uses two branches to separately process the feature maps

with different resolutions. Chen et al. [25] replaced normal

convolution operations with an Octave Convolution operation

decomposing the video information into low-frequency and

high-frequency components, while capturing additional global

information. For action recognition, the Big-Little-Video-Net

bLVNet [54] extends the idea of bL-Net [26] to the temporal

dimension. SlowFast networks [27] introduce two pathways,

and decompose the input into the Slow and Fast components

along the temporal dimension for efficient temporal modeling.

However, the generalization of SlowFast to existing CNN

architectures is poor, as it requires specifically customized

CNNs as backbones.

Different from existing methods, which only reduce feature

redundancy either in spatial or in temporal dimension, the

proposed BQN reduces the feature redundancy in the joint

spatio-temporal space. We introduce a predefined trainable

filter module, MBPM, to disentangle the video into Busy and

Quiet components. In opposition to SlowFast, the BQN ar-

chitecture provides excellent generalization when considering

any CNN as its backbone.

III. MOTION BAND-PASS MODULE (MBPM)

Action recognition methods in videos aim to characterize

the movement of persons and that of the moving regions that

make up the scene as well as their interactions. Particularly,

the regions from the boundaries of the moving regions defining

both their shape and movement characteristics are essential

for video representation. The movement of a moving object

or region is defined by how their regions of transition or

boundaries are changing over time. On the other hand, the

interior of rigidly moving objects, as well as the background

of their content, contains information which is rather constant

in time, unless the recording camera is moving or there are

changes in scene illumination. In this study we develop a

mechanism for separating the information from regions critical

to defining the movement in video, which are called Busy,

from the regions which do not change much and are redundant

in successions of frames, called Quiet. On one hand such

a separation would enable a better characterization of the

movement leading to better classification. On the other hand

we aim to allocate appropriate computational resources for

the efficient computation of the Busy and Quiet regions from

videos.

In the following we introduce the Motion Band-Pass Mod-

ule (MBPM), as a trainable 3D band-pass filter, which can

distill the video information conveyed within a specific spatio-

temporal frequency bandwidth, into Busy and Quiet informa-

tion channels [55]. A video clip can be defined as a function

of three arguments, I(t)(x, y), where x, y indicate the spatial

dimensions, while t = 1, . . . , T is the temporal dimension for

a total of T frames. The value of I(t)(x, y) corresponds to the

RGB pixel at position (x, y) in the t-th video frame. When

considering multi-channel video, we repeat the same procedure

for each feature channel, which for the first processing layer

corresponds to the color components. For the frequency band

processing, we consider a filter based on the time differentials

of the Laplacian of Gaussian (LoG), applied in the spatial

frame data. The output Γ of the frequency band-selection filter

is given by:

Γ(x, y, t) =
∂2

∂t2

[

I
(t)(x, y) ∗ LoGσ(x, y)

]

,

≈
∑

t−1≤i≤t+1

h(i) · [I(i)(x, y) ∗ LoGσ(x, y)],

where h(i) =

{

2
3 if i = t,

− 1
3 otherwise,

(1)

for t = 1, . . . , T and ‘∗’ represents the convolution operation.

Meanwhile, LoGσ(x, y) is a two-dimensional Laplacian of

Gaussian with the scale parameter σ :

LoGσ(x, y) = ▽
2Gσ(x, y) = −

e−
x
2+y

2

2σ2

πσ4

[

1−
x2 + y2

2σ2

]

.

(2)

In Eq. (1), the second derivative with respect to t is numeri-

cally approximated by finite differences, literally implemented

by the function h(i). The scale parameter σ of LoGσ(x, y)
determines what information would be disentangled and con-

sequently plays a crucial role in defining the Busy information.

LoGσ(x, y) with a larger σ captures smoother textures of

videos, and is therefore more robust to noise. On the other

hand, a smaller σ would reliably capture some high frequency

information characterizing fast moving objects. In Section V-D

we provide an ablation study for choosing σ.

From Eq. (1) and (2) we can observe that the 3D filtering

function is fully-differentiable. In order to make the 3D band-

pass filtering compatible with CNNs, we approximate it with
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Fig. 2: The Busy-Quiet Net (BQN) is made up of two parallel pathways: Busy and Quiet. ‘lc’ indicates the Band-Pass Lateral

Connection, which is bi-directional in this diagram. The backbone networks from the two pathways respectively take as inputs

two complementary video data components, namely Busy and Quiet, disentangled by the MBPM. The outputs of the two

pathways are eventually fused, and the final prediction is obtained by averaging the prediction scores across multiple segments.

two sequential channel-wise2 convolutional layers [56], as

shown in Figure 1. The Motion Band-Pass Module (MBPM)

is a discrete approximation implementing Γ from Eq. (1) as :

Γ ≈ MBPM(I) = H3×1×1
s×1×1 (LoG

1×k×k
σ (I)), (3)

where LoG1×k×k
σ is referred to as a spatial channel-wise

convolutional layer [56], with a k× k kernel, each channel of

which is initialized with a Laplacian of Gaussian distribution

of scale σ. The sum of kernel values is normalized to 1.

Meanwhile, H3×1×1
s×1×1 is referred to as a temporal channel-wise

convolutional layer with a temporal stride s. In each channel,

the kernel H3×1×1
s×1×1 is initialized with [− 1

3 ,
2
3 ,−

1
3 ], defining a

high-pass filter. In order to adjust to the specifics of the motion

characteristics from videos, the kernel parameters of MBPM

are fine-tuned through training on a video dataset. We embed

the MBPM in the CNN training process to form an end-to-end

training pipeline, which is optimized with the classification

loss. The training will result in an optimized MBPM, defined

by the characteristics of real videos.

IV. BUSY-QUIET NET (BQN)

The BQN architecture, illustrated in Figure 2, contains two

different processing pathways: one for the Busy information

and another for the Quiet information. Splitting the processing

into two different processing pathways is justified by the fact

that computational resources should be allocated differently,

according to the characteristics of the information to be

processed. The separation of the pathways is enabled by the

MBPM, whose construction was explained in the previous

section. Meanwhile, the Busy and Quiet pathways are bridged

by multiple Band-Pass Lateral Connections (“lc” in Figure 2).

These lateral connections enable information fusion between

the two processing pathways at various processing stages.

2Also referred to as “depth-wise”. We use the term “channel-wise” to avoid
confusions with the network depth.

A. The Busy pathway

The Busy pathway is designed to learn essential fine-

grained movement features, such as those characterizing the

transitions of distinct regions of movement. It takes as input

the information filtered by the MBPM, corresponding to a

specific spatio-temporal frequency band, selected following

the training of MBPM. The stride of H3×1×1
s×1×1 from Eq. (3)

is set in the experiments to s = 3, which means that for every

three consecutive RGB frames, MBPM generates an one-

frame output. The MBPM output preserves the temporal order

within the video while significantly reducing the redundant

temporal information. For extracting more distinct moving

object textures or transitional movement variation patterns, we

would consider larger input regions for the Busy pathway.

B. The Quiet pathway

The Quiet pathway focuses on processing Quiet informa-

tion, representing the characteristics of large regions of move-

ment, such as the movement happening in the plain-textured

background regions or from the inner regions of large moving

objects. Such information is usually repeating itself from frame

to frame and contains a lot of redundant information. These

regions would require reduced computational processing for

video characterization, while they significance for the video

classification should not be over-weighted. The input to the

Quiet pathway is considered as the complementary to the

MBPM output, given by:

2D-DownSamp (Avg3×1×1
3×1×1(I)− Γ), (4)

where Avg3×1×1
3×1×1 is the temporal average pooling, considering

a stride of 3 in the experiments, and Γ defines the Busy

information for I , according to Eq. (3). We also perform

bilinear downsampling in the spatial domain, along x and

y coordinates (i.e. 2D-DownSamp), to reduce the redundant

spatial information shared by neighboring locations in the
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Fig. 3: Diagrams of various lateral connection (LC) designs. Bilinear interpolation is used for resizing the feature maps when

xi
c and xi

f do not have the same spatial size. i refers to the index of the residual block. Wφ and W1 denote the weights of

the linear transformations.

Quiet information. In Section V-G1, we explore the Quiet

information significance on the overall performance of BQN.

C. Band-Pass Lateral Connection (BPLC)

We also propose to include a novel Band-Pass Lateral

Connection (BPLC) module, which has an MBPM embedded,

in the BQN. The BPLCs, which are placed between the Busy

and Quiet processing pathways, provide a mechanism for

information exchange, enabling an optimal fusion of the two

video information components Busy and Quiet correspond-

ing to different frequency bands. Different from the lateral

connections in other approaches [27], [44], [57], [58], the

BPLC, enabled by MBPM, performs feature fusion and feature

selection simultaneously, resulting in higher performance than

other lateral connection designs, according to the experimental

results. We denote the two inputs of BPLC from the i-th

residual blocks in the Busy and Quiet pathways, as xi
f and xi

c,

respectively. For simplifying the notation, we assume that xi
f

and xi
c are of the same size. When their sizes are different, we

adopt bilinear interpolation to match them in size. The outputs

yi
f and yi

c for the Busy and Quiet, respectively, are given by

yi
f =

{

BN(MBPM(xi
c)) + xi

f if mod(i, 2) = 0,

xi
f otherwise,

yi
c =

{

xi
c if mod(i, 2) = 0,

BN(φ(xi
f )) + xi

c otherwise,

i = 1, 2, . . . , B

(5)

where BN indicates Batch Normalization [59], with the

weights initialized to zero and B represents the number of

residual blocks in the backbone network (considered as the

network with residual block designs in experiments). φ(·) is a

linear transformation that can be implemented as a 1× 1× 1
convolution, or alternatively, when the channel number is

very large, as a bottleneck Multi-layer Perceptron (MLP) for

reducing computation. ‘mod’ represents modulo and controls

the feature fusion direction between the two pathways. When

mod(i, 2) = 0, the selected features from the Quiet pathway

are fused to the Busy pathway. Otherwise, the features from

the Busy pathway are fused to the Quiet pathway. For the

MBPM in BPLC, the convolutional stride of H3×1×1
s×1×1 from

Eq. (3) is set to s = 1, maintaining the same temporal size.

The fusion direction of BPLC reverses alternatively back

and forth, as indicated in Figure 2, providing better commu-

nication for the two pathways than the unidirectional lateral

connections in [27], [58] whose information fusion direction

is fixed, always fusing the information from a certain pathway

to the other. By default, we place a BPLC between the two

pathways right after each pair of residual blocks. The MBPM

embedded in BPLC acts as a soft feature selection gate, where

only busy information from the Quiet pathway is allowed

to flow to the Busy pathway during the information fusion

process. This design gives the best performance according to

our experiments. The exploration of various designs of lateral

connections is analyzed in Section V-G3.

V. EXPERIMENTS

In this section, we first introduce the datasets used and

implementation details. Then, we conduct ablation studies to

investigate the efficiency and effectiveness while evaluating

the parameters for the proposed methodology. Finally, we

compare with the state-of-the-art. While the MBPM can be

embedded in various deep backbones, in the experiments we

consider ResNet50 (R50) with TSM [13], X3D-M [12], Mo-

bileNetV2 [56], and ConvNeXt [60] as the backbones of our

models. When not specified otherwise, we consider TSM R50

as the default backbone network. Aside from X3D-M [12], the

backbone networks are pretrained on ImageNet [61].

A. Datasets

We evaluate our approach on challenging human activi-

ties datasets, including Something-Something V1 [3], Kinet-

ics400 [10], UCF101 [28] and HMDB51 [29]. Most videos

from Kinetics400 (K400), UCF101 and HMDB51 can be ac-

curately classified by only considering their background scene

information, while the temporal relation between frames is

not really that important. Meanwhile, in Something-Something

(SS) V1, many action categories are more vaguely defined

and characterized by symmetrical movements (e.g. “Pulling

something from left to right” and “Pulling something from

right to left”). Discriminating these symmetric actions re-

quires models with strong temporal modeling ability. Since

Something-Something is widely used for evaluating temporal
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modeling effectiveness, we consider this dataset as central

when investigating the proposed Busy-Quiet Net (BQN).

B. Training

For training, we utilize the dense sampling strategy [41] for

Kinetics400. Meanwhile, for the other datasets, we consider

the uniform sampling strategy as shown in Figure 2, where a

video is equally divided into N segments, and 3 consecutive

frames in each segment are randomly sampled, resulting in

a video clip of length T = 3N . Unless specified otherwise,

a default video clip is composed of N = 8 segments with

a spatial frame size of 2242. We train our models on multi-

ple GPUs (NVIDIA Tesla V100), using Stochastic Gradient

Descent (SGD) with momentum 0.9 and cosine learning rate

schedule. In order to prevent overfitting, we add a dropout

layer before the classification layer of each pathway in the

BQN model. Following the experimental settings from [13],

[23], the learning rate and weight decay parameters for the

classification layers are 5 times those for the convolutional

layers. Meanwhile, we only apply L2 regularization to the

weights in the convolutional and classification layers to avoid

overfitting.

1) Hyperparameters for the models using ResNet as back-

bone: For Kinetics400 [10], the initial learning rate, batch

size, total epochs, weight decay and dropout ratio are set to

0.08, 512 (8 samples per GPU), 100, 2e-4 and 0.5, respectively.

For Something-Something V1 [3], these hyperparameters are

set to 0.12, 256, 50, 8e-4 and 0.8, respectively. We use

linear warm-up [62] for the first 7 epochs to overcome early

optimization difficulty. When fine-tuning on UCF101 [28] and

HMDB51 [29], the models used initially on Kinetics, we

freeze all batch normalization layers [59] except for the first

one to avoid overfitting, following the recipe in [23]. The

initial learning rate, batch size, total epochs, weight decay and

dropout ratio are set to 0.001, 64 (4 samples per GPU), 10,

1e-4 and 0.8, respectively.

2) Hyperparameters for models using X3D-M [12] as back-

bone: For Kinetics400, the initial learning rate, batch size,

total epochs, weight decay and dropout ratio are set to 0.4,

256 (16 samples per GPU), 256, 5e-5 and 0.5, respectively.

For Something-Something V1, the models are trained from

scratch using the following hyperparameters: learning rate

0.2, batch size 256, total epochs 100, weight decay 5e-5 and

dropout ratio 0.5. When fine-tuning the models on Kinetics,

the initial learning rate, batch size, total epochs, weight decay

and dropout ratio are set to 0.12, 256 (16 samples per GPU),

60, 4e-4 and 0.8, respectively.

3) Hyperparameters for models using ConvNeXt [60] as

backbone: For Kinetics400, the initial learning rate, batch size,

total epochs, weight decay are set to 0.004, 64 (2 samples per

GPU), 15, 1e-4, respectively. We do not add any dropout layer

to the model in this case.

C. Testing

During testing, we sample a single clip per video with

center cropping for efficient inference [13]. When pursuing

high accuracy, we consider sampling multiple clips&crops

from the video and then averaging the prediction scores of

multiple spacetime “views” (spatial crops × temporal clips)

as it was used in [27].

D. Ablation Studies for MBPM

In this section, we conduct ablation studies on multiple

datasets to evaluate the best settings for the MBPM, which is

described in Section III. We show top-1 and top-5 prediction

accuracy (%), and also assess the computational complexity

measured in GFLOPs for a single crop & single clip.

The scale σ from Eq. (2) and the kernel size of the

spatial channel-wise convolution LoG1×k×k
σ have a significant

impact on the performance of MBPM, when embedded in

the network. We vary the scale σ and the kernel size, while

evaluating the prediction accuracy, to search for the optimal
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TABLE I: MBPM vs. other motion representation methods,

when training on UCF101, SS V1 and K400 datasets and con-

sidering ResNet50 [4] as backbone. The additional parameters

for the backbone network and the computational complexity

(in FLOPs) required by each method are reported. † denotes

our reimplementation.

Rep. Method
Efficiency Metrics

UCF101 SS V1 K400
FLOPs #Param.

RGB (baseline) - - 87.1 46.5 71.2
RGB Diff. [23] - - 87.0 46.6 71.4
TV-L1 Flow [18] - - 88.5 37.4 55.7

DI† [19] - - 86.2 43.4 68.3
FlowNetC† [22] 444G 39.2M 87.3 26.3 -
FlowNetS† [22] 356G 38.7M 86.8 23.4 -
TVNet† [21] 3.3G 0.2K 88.6 45.2 58.5
PA [24] 2.8G 1.1K 89.5 45.1 57.3
(2+1)D Conv 0.3G 0.2K 86.7 46.6 70.8

MBPM 0.3G 0.2K 90.3 48.0 72.3

TABLE II: Restults on the SS V1 database when considering

different CNNs as backbones. ResNet50 and MobileNetV2

have TSM [13] embedded.

CNN backbone Modality Pretrain Seg. (N ) Accuracy

ResNet50 [4]

RGB

ImageNet 8

46.5
RGB+Flow 49.8

MBPM 48.0
RGB+MBPM 50.3

MobileNetV2 [56]
RGB

ImageNet 8
38.7

MBPM 39.8

X3D-M [12]
RGB

None 16
45.5

MBPM 46.9

settings. Meanwhile, in order to highlight the importance of the

MBPM training, we compare the performance when using the

trained MBPM with that of an untrained MBPM, whose kernel

weights are fixed and not optimized with the classification loss.

The results on SS V1 database are shown in Figure 4(a). We

summarize two facts: 1) the most appropriate value for σ in

MBPM changes as its kernel size changes; 2) optimizing the

parameters for MBPM with the classification loss generally

produces higher prediction accuracy. In our preliminary work,

we have verified that different datasets share the same optimal

settings of MBPM. We search for the optimal settings of the

scale σ and kernel size k × k of MBPM on UCF101 dataset.

The results are provided in Figure 4(b). We observe that

the experimental results vary greatly under different settings.

Nevertheless, the optimal scale found is σ = 1.1 when setting

the kernel size as 9 × 9, and this is the same as that for the

Something-Something V1 dataset. Furthermore, we try a larger

kernel of 11 × 11, but then the results show a performance

drop. We speculate that this is due to insufficient training. In

the following experiments, we set MBPM in the Busy pathway

as trainable with the scale σ = 1.1 and the kernel size of 9×9,

unless specified otherwise.

E. Efficiency and Effectiveness of the MBPM

We draw an apple-to-apple comparison between the pro-

posed MBPM and other motion representation methods [18],

[19], [21], [22], [23], [24]. The motion representations pro-

duced by these methods are used as inputs to the backbone

network and the comparison results are shown in Table I.

We follow the experimental settings from [24] for a fair

comparison. The backbone network used for all methods is

ResNet50 [4]. We use the computer code provided by the

original authors for these methods to generate the input for the

network. For any of these motion representations, we divide

the representation of a video into 8 segments and randomly

select one frame from each segment. Following the practices

used in the Temporal Segment Network (TSN) [23] and the

Persistent Appearance Network (PAN) [24], the output activa-

tion of 8 segments is averaged for the final prediction score.

In our reimplementation, the approach from [19] generates

one dynamic image for every 6 consecutive RGB frames,

which consumes the same number of RGB frames as Persistent

Appearance [24]. Our MBPM generates one representative

frame for every 3 consecutive RGB frames. As for TVNet [21]

and TV-L1 Flow [18], the backbone network input is formed

by stacking 5 frames of the estimated flow along the chan-

nel dimension which requires 6 RGB frames. All models

are pretrained on ImageNet. For Something-Something V1

and Kinetics400, we use the hyperparameters specified in

Section V-B to train all models. For UCF101, we set the

initial learning rate, batch size, total epochs, weight decay and

dropout ratio to 0.01, 64 (4 samples per GPU), 80, 1e-4 and

0.5, respectively.

According to the results from Table I, the proposed MBPM

outperforms all other motion representation methods by big

margins, while its computation requirements are nearly negli-

gible. These results strongly demonstrate the high efficiency

and effectiveness of the MBPM. The MBPM is essentially a

(2+1)D channel-wise convolution with the special band-pass

filtering initialization. In order to confirm that the advantages

of MBPM come from the concept of motion band-bass fil-

tering, we compare the MBPM with a randomly initialized

(2+1)D channel-wise convolution. According to the results

from the bottom of Table I, we can observe that the model

with a randomly initialized (2+1)D Conv shows far lower

accuracy than the model with the MBPM, which indicates the

significance of the proposed motion band bass filtering.

F. Generalization to different CNNs used as backbones

The proposed MBPM is a generic plug-and-play unit. The

performance of existing video models could be boosted by

simply placing an MBPM after their input layers. In the

previous section we have considered ResNet50 [4] as the

backbone network. In Table II we provide the results when em-

ploying other backbone networks, such as MobileNetV2 [56]

and X3D-M [12]. The results indicate steady performance

improvements for the resulting networks, after embedding our

MBPM. Moreover, we consider different input modalities, and

the two-stream fusion of “RGB+MBPM” has higher accuracy
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than the fusion of “RGB+Flow,” according to the results in

Table II.

G. Ablation Studies for Busy-Quiet Net (BQN)

1) BQN vs. Quiet+Busy: In order to evaluate the architec-

ture effectiveness, we compare the proposed BQN with the

simple fusion (Quiet+Busy), which mimics the two-stream

model [34], by averaging the predictions of the two pathways

trained separately. The results from Table III indicate that

TABLE III: Complementarity between Quiet and Busy infor-

mation. “Quiet” and “Busy” refer to the fact that the Quiet

and Busy pathways are trained individually.

Model Top-1 (%) Top-5 (%) GFLOPs

Quiet 46.5 75.3 32.8
Busy 48.0 76.8 32.8
Quiet+Busy 50.3 79.0 65.7
BQN 51.6 80.5 65.9

the simple fusion of two individual pathways (Quiet+Busy)

generates higher top-1 accuracy (50.3%) than the individ-

ual pathways, which indicates that the features learned by

the Quiet and Busy pathways are complementary. BQN has

51.6% top-1 accuracy, which is 1.3% better than the fusion,

Quiet+Busy. The high-performance gain strongly demonstrates

the advantages of the proposed BQN architecture.

2) Fusion strategies: In the following we evaluate the per-

formance according to the location in the BQN architecture for

fusing Busy and Quiet pathways. Table IV shows the results of

TABLE IV: Fusion Strategies. The fully-connected (fc) layers

of the two pathways share their parameters

Fusion Method Position Top-1 (%) Top-5 (%)

Averaging before fc 50.9 79.8
Averaging after fc 51.6 80.5
Max after fc 50.1 78.7
Concatenation before fc 51.3 80.2

different fusion strategies. We observe that the average fusion

gives the best result among the listed approaches, while the

concatenation fusion is second only to the averaging. Besides,

placing the average fusion layer after the fully-connected (fc)

layer is better than placing it before.

3) Effectiveness of the BPLC: We can set a maximum of

up to 16 BPLCs in the BQN architecture when using TSM

R50 [13] as the backbone. ResNet50 [4] contains four stages,

named res2, res3, res4, res5, respectively. These stages are

composed of 3, 4, 6, 3 residual blocks, respectively. For the

BPLCs in the stages res2, res3 and res4, we set the spatial

kernel size of MBPM as 7× 7, and the scale σ = 0.9. As for

stage res5, whose feature size is relatively small, the kernel

size is therefore set to 3×3. Table V, illustrates that by adding

BPLCs to all processing stages leads to improved performance.

From Table VI, we can observe that the model performance

improves gradually as the number of BPLCs increases. The

substantial performance gains demonstrate the importance of

using BPLCs for BQN.

TABLE V: Adding BPLCs to various processing stages of

ResNet50 backbone. In each stage, we set one BPLC after its

first residual block.

Stages No. of BPLC Top-1 (%) Top-5 (%)

res2 1 49.8 79.1
res2,res3 2 50.1 78.7
res2,res3,res4 3 50.2 79.0
res2,res3,res4,res5 4 50.2 79.2

TABLE VI: The effect of the number of BPLCs.

No. of BPLCs Top-1 (%) Top-5 (%) GFLOPs

0 49.6 78.9 65.7
4 50.2 79.2 65.8
8 50.7 79.7 65.8
16 51.6 80.5 65.9

4) Lateral Connection (LC) Designs: In order to illustrate

the rationality of the proposed BPLC design, we compare

it with other LC designs. Various LC designs are illustrated

in Figure 3, where LC-I and LC-II are unidirectional, and

LC-III is bidirectional. The results from Table VII indicate

that the bidirectional design LC-III has higher accuracy than

the unidirectional designs LC-I and LC-II. Among the listed

designs, the proposed BPLC, which reverses the information

fusion direction back and forth alternatively, provides the

highest accuracy. We also compare the BPLC with LC-V that

does not contain an MBPM. As a result, LC-V shows lower

accuracy than the BPLC, which demonstrates the importance

of embedding MBPM in the BPLC.

TABLE VII: Various LC designs. 16 LCs are set in the BQN.

Design Top-1 (%) Top-5 (%)

LC-I 50.9 79.8
LC-II 50.9 79.7
LC-III 51.5 80.2
BPLC 51.6 80.5
LC-V 51.3 79.9

TABLE VIII: Effect of the spatio-temporal input size. The

input size is formatted as width2 × time.

Input size
for Quiet

Input size
for Busy

Top-1 (%) Top-5 (%) GFLOPs

224
2 × 8 224

2 × 8 51.6 80.5 65.9

192
2 × 8 224

2 × 8 51.5 79.9 58.0

160
2 × 8 224

2 × 8 51.3 80.1 50.5

128
2 × 8 224

2 × 8 50.7 79.2 44.4

224
2 × 8 256

2 × 8 51.8 80.5 77.1

192
2 × 8 256

2 × 8 51.7 80.2 68.3

160
2 × 8 256

2 × 8 51.7 80.5 60.7

128
2 × 8 256

2 × 8 51.3 79.4 54.6

160
2 × 6 256

2 × 8 49.6 78.3 55.5

224
2 × 4 224

2 × 8 48.7 77.1 49.4

5) Spatial-temporal input size: In BQN, the Busy pathway

takes as input the MBPM output, which has the same spatial
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TABLE IX: Results on Something-Something V1. † denotes our reimplementation. “N/A” indicates the numbers are not

available.

Method pre-train Backbone Frames×Crops×Clips FLOPs #Param.
Top-1 Top-5
(%) (%)

NL I3D GCN [63]

ImageNet

3D R50 32×3×2 303G×3×2 62.2M 46.1 76.8
ECOEnLite RGB+Flow [64] Inc+3D R18 (92+552)×1×1 N/A 300M 49.5 -
TSN [23] R50 8×1×1 33G×1×1 - 19.7 46.6
TRNRGB+Flow [65] BNInception (8+48)×1×1 N/A 36.6M 42.0 -
TSMEn [13] R50 (16+8)×1×1 98G×1×1 48.6M 49.7 78.5
TSMRGB+Flow [13] R50 (16+96)×1×1 N/A 48.6M 52.6 81.9
TEA [66] R50 16×3×10 70G×3×10 24.4M 52.3 81.9
TDN [67] R101 16×1 132G×1 - 55.3 83.3
SmallBig [68] - 16×3×2 105G×3×2 - 50.0 79.8
bLVNet-TAM [54] bLR50 8×1×2 12G×1×2 25M 46.4 76.6
PANFull [24] TSM R50 40×1×2 67.7G×1×2 - 50.5 79.2
PANEn [24] TSM R50 (40+40)×1×2 134G×1×2 - 53.4 81.1
PANEn [24] TSM R101 (40+40)×1×2 251G×1×2 - 55.3 82.8
ir-CSN [15]

None
3D R101 32×1×10 73.8G×1×10 22.1M 48.4 -

ir-CSN [15] 3D R152 32×1×10 96.7G×1×10 - 49.3 -

TSM R50 [13]

ImageNet

R50 16×1×1 65G×1×1 24.3M 47.2 77.1
BQN TSM R50 24×1×1 60G×1×1 47.4M 51.7 80.5
BQN TSM R50 24×3×2 60G×3×2 47.4M 53.3 82.0
BQN TSM R50 48×3×2 121G×3×2 47.4M 54.3 82.0
BQN TSM R101 48×3×2 231G×3×2 85.4M 54.9 81.7

X3D-M† [12] None - 16×3×2 6.4G×3×2 3.3M 46.7 75.5
BQN None X3D-M 48×3×2 9.7G×3×2 6.6M 50.6 79.2
BQN K400 X3D-M 48×3×2 9.7G×3×2 6.6M 53.7 81.8

BQNEn

ImageNet TSM R101
(48+48)×3×2 241G×3×2 92M 57.1 84.2

+ K400 +X3D-M

TABLE X: Comparison results on Kinetics400. We report the

inference cost of multiple “views” (spatial crops × temporal

clips). † denotes our reimplementation.

Method Backbone
Frames
× views

FLOPs
Top-1
(%)

Top-5
(%)

bLVNet-TAM [54] bLR50 16×9 561G 72.0 90.6
TSM [13] R50 16×30 2580G 74.7 -
STM [69] R50 16×30 2010G 73.7 91.6
X3D-M† [12] - 16×30 186G 75.1 92.2
TDN [67] R101 16×30 3960G 78.5 93.9

SlowFast4×16 [27] 3D R50 32×30 1083G 75.6 92.1
ip-CSN [15] 3D R101 32×30 2490G 76.8 92.5
SmallBigNet [68] R101 32×12 6552G 77.4 93.3

PANFull TSM R50 40×2 176G 74.4 91.6
I3DRGB [10] Inc. V1 64×N/A N/A 71.1 89.3
Oct-I3D [25] - N/A×N/A N/A 74.6 -
NL I3D [41] 3D R101 128×30 10770G 77.7 93.3
ConvNeXt-B [60] - 8×3 367G 75.5 92.4

BQN TSM R50 48×10 1210G 76.8 92.4
BQN TSM R50 72×10 1820G 77.3 93.2
BQN X3D-M 48×30 291G 77.1 92.5
BQN ConvNeXt-B 24×3 706G 78.0 93.4

size as the raw video clip, while the temporal size is one-third

of the length of the raw video clip. Meanwhile, the Quiet

pathway takes as input the complementary component of the

MBPM output, expressed through Eq. (4). The results from

TABLE XI: Results on HMDB51 and UCF101. We report

the mean class accuracy (%) over the three official splits.

Method Backbone HMDB51 UCF101

Codebook-VLAD [70] - 59.8 -
StNet [71] R50 - 93.5
TSM [13] R50 73.5 95.9
STM [69] R50 72.2 96.2
TEA [66] R50 73.3 96.9
DI Four-Stream [19] ResNeXt101 72.5 95.5
TVNet [21] BNInception 71.0 94.5
TSNRGB+Flow [23] BNInception 68.5 94.0
I3DRGB+Flow [10] 3D Inception 80.7 98.0
PANFull [24] TSM R50 77.0 96.5

BQN TSM R50 77.6 97.6

Table VIII show that with the same temporal size of 8 for the

inputs, the spatial size combination of 1602 and 2562 for the

Quiet and Busy, respectively, has slightly better top-1 accuracy

(+0.1%) than the combination of 2242 and 2242 but saves 5.2

GFLOPs in computational cost. We also attempt to reduce the

temporal input size of the Quiet pathway. However, this would

result in a performance drop. One possible explanation is that

due to the temporal average pooling in the Quiet pathway, the

input’s temporal size is already reduced to one-third of the raw

video clip. An even smaller temporal size could fail to preserve

the correct temporal order of the video, and therefore would
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harm the temporal relation modeling.

H. Comparison with the State-of-the-Art

We compare BQN with current state-of-the-art methods on

the four datasets. In BQN, the Quiet and Busy pathways’

spatial input size is set to 1602 and 2562, respectively.

1) Results on Something-Something V1: Table IX sum-

marizes the comprehensive comparison, including the infer-

ence protocols, corresponding computational costs (FLOPs)

and the prediction accuracy. Our method surpasses all other

methods by good margins. For example, the multi-clip ac-

curacy of BQN24f
3 with TSM R50 is 7.2% higher than NL

I3D GCN32f [63] while requiring 5× fewer FLOPs. Among

the models based on ResNet50, BQN48f has the highest

top-1 accuracy (54.3%), which surpasses the second-best,

TEA16f [66], by a margin of +2%. Furthermore, our single-

clip BQN24f has higher accuracy (51.7%) than most other

multi-clip models, requiring only 60 GFLOPs. By adopting

a deeper backbone (TSM R101), BQN48f has 54.9% top-1

accuracy, higher than any other model. When using X3D-

M as the backbone, BQN achieves the ultimate efficiency,

possessing very low redundancy in both feature channel and

spatio-temporal dimensions. BQN with X3D-M processes 3×

more video frames than vanilla X3D-M, with only 50%

additional FLOPs. Compared with TSM R5016f , BQN with

X3D-M trained from scratch produces 3.4% higher top-1

accuracy with the computational complexity of 14% of TSM

R5016f . The ensemble version BQNEn achieves the state-of-

the-art top-1/5 accuracy (57.1%/84.2%).

2) Results on Kinetics400, UCF101 and HMDB51: Table X

shows the comparison results on Kinetics400. For a fair com-

parison, we only list the models with the spatial input size of

2562. BQN72f with TSM R50 achieves 77.3%/93.2% top-1/5

accuracy, which is better than the 3D CNN-based architecture,

I3D [10], by a big margin of +6.2%/3.9%. When BQN uses

TSM R50 or X3D-M as its backbone, it consistently shows

higher accuracy than SlowFast4×16. Particularly, BQN with

X3D-M has 1.5% higher top-1 accuracy than SlowFast4×16,

while requiring 3.7× fewer FLOPs. Meanwhile, BQN72f with

TSM R50 is 2.7% better than Oct-I3D [25] for top-1 accuracy.

When employing the latest ConvNeXt-B [60] as the backbone

network, the BQN model achieves 78% top-1 accuracy, which

is higher than ConvNeXt-B [60] by 2.5% and is on par

with TDN [67]. The results on two smaller datasets, UCF101

and HMDB51, are shown in Table XI, where we report the

mean class accuracy over three official splits. We pretrain our

model on Kinetics400 to avoid overfitting. The accuracy of our

method is calculated using the inference protocol (3 crops×2

clips). BQN with TSM R50 outperforms most other methods

except for I3DRGB+Flow, which uses an additional optical flow

input modality.

I. Visualization analysis

In Figures 5-(1) and (2), we visualize two complex human

activities from Kinetics 400, for the “Spinning poi” and

3The subscript 24f indicates that video clips of 24 frames are used for
experiments.

“Chopping wood”, respectively, where the top row of images

shows frames from the video sequence while underneath we

visualize the Busy stream selected by MBPM, by representing

the mapping of its output. In Figures 6-(1) and (2) we show

examples of Busy streams for complex activities characteristic

to Something-Something V1 dataset. Meanwhile, in Figures 7-

(1) and (2) we present the visualization results of the MBPM

output selection for “Biking” sequence from UCF101, and

for “Kick” from HMDB51, respectively. We can observe

from these examples that the extracted representations are

stable when jittering and other minor camera movements are

present in the videos. MBPM not only that suppresses the

stationary information and the background movement, but it

also highlights the boundaries of moving objects and regions,

which are of vital importance for action discrimination. For

example, in the “spinning poi” video, showing the movement

of an illuminating object from Figure 5-(1), MBPM highlights

well the poi’s movement rather than the movement of the

background or the performer.

In order to visually observe the differences between the

outputs of our MBPM and other motion representation

methods, we show in Figure 8 some example video frames

and their corresponding motion representations generated by

different methods . The optical flow estimated by TV-L1 [18],

displays the instantaneous velocity and direction of movement

in every position, where the color represents the direction of

movement and the brightness represents the absolute value of

instantaneous velocity in a position. In contrast, TVNet [21],

Persistent Appearance [24] and MBPM define the visual

information from the boundaries of moving regions. From the

results in Figure 8, we can observe that the textures captured

by TVNet, Persistent Appearance and MBPM do not present

obvious differences. However, MBPM has a simpler structure

and requires less computation.

In Figure 9, we visualize the kernel of the spatial con-

volution LoG1×k×k
σ of MBPM in the Busy pathway. We

can observe that kernels always present a similar shape to

a Mexican hat function either before or after training, In

Figure 10, we visualize the first channel of 64 filters in the first

layers of the BQN and the baseline (TSM ResNet50). We can

observe that the Busy and Quiet pathways’ filters have quite

distinct shapes for their kernels, indicating that the Busy and

Quiet pathways learn different types of features after training.

VI. CONCLUSION

A novel video representation learning method, decompos-

ing video streams into Busy and Quiet information streams,

is proposed in this paper for action recognition. For this

aim we propose the Motion Band-Pass Module (MBPM)

which, following training, defines different spatio-temporal

frequency bands for the Busy and Quiet information in the

video data. MBPM captures important motion cues for action

recognition, such as those characterizing regions of movement

variation or the boundaries of moving objects in video. En-

abled by MBPM, we design an efficient and effective two-

stream spatio-temporal processing architecture called Busy-

Quiet Net (BQN), to separately process Busy and Quiet video
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(1) Spinning poi

(2) Chopping wood

Fig. 5: Example videos and their corresponding MBPM outputs from Kinetics 400.

data information. The proposed two-stream video processing

network, besides disentangling the video information for better

recognition, allows for a better allocation of the computational

resources, where more processing power is used for the Busy

stream and less for the Quiet. Besides action recognition the

proposed Busy and Quiet video disentanglement can also be

used for video analysis in various applications.
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