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Aperiodic (quasicrystalline) tilings, such as Penrose’s tiling, can be built up from e.g. kites and
darts, squares and equilateral triangles, rhombi or shield shaped tiles and can have a variety of dif-
ferent symmetries. However, almost all quasicrystals occurring in soft-matter are of the dodecagonal
type. Here, we investigate a class of aperiodic tilings with hexagonal symmetry that are based on
rectangles and two types of equilateral triangles. We show how to design soft-matter systems of
particles interacting via pair potentials containing two length-scales that form aperiodic stable states
with two different examples of rectangle–triangle tilings. One of these is the bronze-mean tiling,
while the other is a generalization. Our work points to how more general (beyond dodecagonal)
quasicrystals can be designed in soft-matter.

I. INTRODUCTION

In the ‘game’ of arranging tiles in a plane, one of the
more fascinating and striking things to emerge are qua-
sicrystals (QCs), which lack the usual spatial periodic-
ity of ‘simple’ tilings. The classic example is the Pen-
rose tiling, formed e.g. of rhombi with 36◦ and 72◦ cor-
ner angles [1]. Such patterns have long been of interest
due to their aesthetic and mathematical beauty. Shecht-
man’s 1982 discovery [2], confirmed and built upon now
in a sizable body of work, shows that in nature, atoms,
molecules, nanoparticles and polymeric soft-matter are
capable of self-assembling into such structures [3–12]. A
characteristic feature of QCs, and of aperiodic tilings, is
that they have sharp Bragg peaks in their diffraction pat-
terns, or equivalently, their Fourier transforms are point
spectra. They often also have unusual (e.g. icosahedral,
ten- or twelve-fold) rotation symmetries that preclude
spatial periodicity.
Recently, Dotera et al. [13] discovered another striking

aperiodic tiling, but with six-fold rotation symmetry. It
is known as the bronze mean (BM) tiling, and is formed
from rectangles and two different sizes of equilateral tri-
angles (see Fig. 1). They also showed how particles hav-
ing a hard core and a repulsive shoulder can self-assemble
into this structure. Soft matter systems have also been
observed to form structures that can be described by a
rectangle–triangle tilings [9–12]. There is rich geometry
and beauty in the BM tiling. It is the third member of a
family of ‘metallic mean’ tilings that are associated with
the irrational roots of the quadratic x2 − mx − 1 = 0,
where m is a positive integer. The Penrose tiling [1, 14],
with five-fold symmetry, features the golden mean (GM),
1
2
(1 +

√
5) ≈ 1.618 as a characteristic ratio in the m = 1
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Figure 1. Subdivision schemes of the BM (a)–(c) and EDRT
(e)–(g) tilings. Rectangles are yellow, small triangles are pur-
ple and large triangles are green. The colored tiles that pro-
trude from the inflated tiles overlap when the larger tiles are
joined. In the BM tiling (d), the diagonal across two large
triangles (red line) is longer than the diagonals across the
small (or large) triangles and the rectangle (blue lines). In the
EDRT tiling (f), these diagonals (magenta lines) are equal.

case. The Ammann–Beenker tiling [1], with eight-fold

symmetry, has the silver mean (SM), 1+
√
2 ≈ 2.414, for

m = 2. The m = 3 bronze mean is 1
2
(3 +

√
13) ≈ 3.303,

and the BM tiling has 6-fold rotational symmetry, but
like all QCs, no spatial periodicity. The three aperiodic
tilings just mentioned all have Fourier spectra exhibit-
ing primary peaks distributed around a circle, with ten
peaks in the GM (Penrose) case, eight in the SM case
and twelve in the BM case. However, the full spectra are
dense, i.e. there are Bragg peaks arbitrarily close to any
point in Fourier k-space.

Associating the average position of thermal particles
with locations in each of these tiles provides a natural
way to describe the structure of quasicrystalline materi-
als. The (probability) density distribution ρ(x) of these
particles is a continuous field and the Fourier transform
of ρ(x) in a QC exhibits the same features: a dense set
of Bragg peaks and the same rotation symmetries.
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This provides a link to applying the methods of pattern
formation theory (PFT) to these tiling-generated struc-
tures. Here, starting from the BM tiling spectrum and
the idea that having two lengthscales can stabilize qua-
sicrystals [15], we identify relevant circles in the Fourier
spectrum and develop a soft-core particle model that has
a stable QC density profile with the BM structure. Build-
ing this bridge between tilings and PFT gives insight into
other related tilings, one of which, related to the family
of tilings introduced in Nakakura et al. [16], we present
and investigate here.

The central objects of study in PFT are usually par-
tial differential equations (PDEs), and there are many
powerful ideas, such as nonlinear mode interactions, for
understanding the emergence and stability of patterns in
a wide range of problems [17, 18]. The (integro-)PDEs we
consider here come from statistical mechanics, in particu-
lar dynamical density functional theory (DDFT) [19–22],
which is a theory for the time-evolution of ρ(x).

This paper is arranged as follows: in Sec. II we describe
the bronze mean and equidiagonal rectangle–triangle
tilings, illustrate the inflation rules for constructing them
and the corresponding Fourier power spectra that we
then use to bridge between these tilings and PFT. Then,
in Sec. III we briefly explain how PFT allows us to iden-
tify two circles on the Fourier spectra and to determine
which Fourier modes are needed to form the tiling struc-
tures. In Sec. IV we describe how to go from the Fourier
spectrum for each tiling to determine in each case a soft
particle model with pair interactions that make the cor-
responding tilings stable. We use DDFT to obtain den-
sity profiles ρ(x), and to demonstrate that the resulting
structures are stable. However, these profiles are local
minima of the free energy and not the global minima of
the free energy, so they are not thermodynamically sta-
ble, only metastable states. We also show how to match
a subset of the maxima in ρ(x) with the vertices of the
corresponding tiling. In Sec. V we give further details of
how to calculate the density profiles, in particular show-
ing what size of box in which to calculate ρ(x). Since
QCs have no unit cell, often one must resort to calcu-
lating ρ(x) on a finite-size domain with periodic bound-
ary conditions, thus actually obtaining an approximant

to the true QC. We show how to select the box size
so as to minimize errors from working with a finite size
piece of the QC. We also discuss how this approach is re-
lated to some other possible approaches to constructing
periodic approximants. In Sec. VI we describe some of
the key characteristic properties of the new equidiagonal
rectangle–triangle tiling, including the inflation factor,
numbers of the different tiles and the projection window.
Finally, in Sec. VII we make a few concluding remarks.

(a) (b)

Figure 2. A single rectangle is inflated twice using the rules
in Fig. 1; (a) is the BM case and (b) the EDRT.

II. BRONZE MEAN AND EQUIDIAGONAL

RECTANGLE–TRIANGLE TILINGS

In Fig. 1(a)–(c), we illustrate the set of three tiles from
which the BM tiling is built up: a rectangle and two
equilateral triangles whose sides are the lengths of the
two sides of the rectangle. The ratio of the sides of the
rectangle is 1

6
(
√
3 +

√
39) ≈ 1.330. The aperiodic tiling

is created using an inflation rule [illustrated in Fig. 2(a)],
as described in [13, 16]. The inflation scaling factor is

the Bronze Mean, 1
2
(3 +

√
13) ≈ 3.303.

In the BM tiling, there are two lengths that are almost
the same: the diagonal across two large triangles, and
the diagonal across the small (or large) triangle and the
rectangle (see Fig. 1(d), red and blue lines). We change

the ratio of the sides of the rectangle slightly, to (
√
3 +√

11)/4 ≈ 1.262, to make these two diagonals equal in
length (see Fig. 1(h), magenta lines), which leads to a
new aperiodic tiling with tiling subdivision rule shown
in Fig. 1(e)–(g) and the inflation illustrated in Fig. 2(b),

with a much larger inflation factor of 2
√
3+

√
11 ≈ 6.781.

We refer to this as the equidiagonal rectangle–triangle
(EDRT) tiling. As can be seen from Fig. 2(b) [see also
Fig. 1(e)–(g)], the larger inflation factor corresponds to a
much larger number of tiles in each inflated tile. Note also
the patches of large triangles are bigger in this striking
structure and also that the rectangles rotate by 90◦ after
each inflation, leading to a non-Pisot inflation factor.

In Fig. 3(a) and (c) we show the Fourier power spec-
tra of the BM and the EDRT tilings, respectively. These
are obtained by forming the tiling as projection from a
four-dimensional periodic structure and then calculating
the Fourier transform of a large but finite portion of this
projection, displaying only peaks with intensity greater
than 0.0045 times that of the central peak. Further in-
formation about these tilings and their Fourier spectra
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Figure 3. (a,c) Power spectrum of aperiodic tiling and
(b,d) wave vectors, with (a,b) BM and (c,d) EDRT. The
short vectors are of length k1 = 1 while the longer have length
k2 ≈ 2.252 (BM) and k2 ≈ 2.186 (EDRT). Pairs of the long
vectors add to give the small ones. Making such Fourier tri-
angles energetically favourable in the particle systems aids in
stabilizing these structures.

are given in Sec. VI; see also Ref. [13].

III. PATTERN FORMATION THEORY

We next call on ideas from PFT to select two circles
in Fourier space: these correspond to two length-scales
that we build into the pair interaction potentials between
soft particles. Stabilizing patterns in continuum mod-
els involves nonlinear interactions between density waves
acting to reinforce each other [23–29]. Two modes inter-
act with a third when the wavevectors add up, as illus-
trated in Fig. 3(b) and (d), and typically, in problems of
minimising a free energy, having more three-wave inter-
actions leads to an enhancement of the stability of the
structure containing all these waves [25].
The choice of circles is not unique, and we used three

criteria to select the circles. First, the peaks lying on the
two circles should be amongst the strongest in the power
spectrum of the tiling, so the resulting pattern should
stand a good chance of resembling the tiling. Second,
there should be three-wave interactions: two vectors on
one of the circles should add up to a vector on the other,
required for stabilising the quasiperiodic pattern. And
third, the ratio between the two radii should be greater
than two, which implies that the three-wave interaction

must be two long vectors on the outer circle adding up
to a small vector on the inner. In the simplest cases
of hexagonal symmetry, this criterion also implies that
there should be twelve vectors (with uneven spacing) on
the outer circle and six on the inner. The reason for this
third criterion is that it simplifies the possible three-wave
interactions: with a radius ratio less than two, two vec-
tors on the inner circle could add up to a vector on the
outer, which would result in the complication of compe-
tition between two types of pattern [26, 29].
The pairs of circles we select are displayed in Fig. 3(a)

and (c). In the EDRT tiling, the six peaks just off the
outer circle in the BM spectrum have moved onto the
outer circle, making a total of eighteen peaks.
In the following section we discuss systems of interact-

ing soft particles, treated using DDFT, thus allowing us
to incorporate these ideas from PFT to tune the interac-
tions between particles so that they are stable in either
the BM or EDRT structures.
Note also that to calculate the density field ρ(x) from

DDFT for a QC a periodic approximation is necessary.
The considerations required to do this are discussed in
Sec. V.

IV. DYNAMICAL DENSITY FUNCTIONAL

THEORY

Having found the specific favourable wavenumbers and
Fourier modes for forming these structures, we can then
identify the soft-matter systems in which the interactions
between the particles leads to these modes being promi-
nent in ρ(x), i.e. where the free energy is lowered by
modes on these two circles having a large amplitude. As
mentioned, DDFT is a theory for the time evolution of
ρ(x), with the dynamics given by [19–22]

∂ρ

∂t
= ∇ ·

[

Γρ∇δF [ρ]

δρ

]

(1)

where Γ = D/kBT , D is the diffusion coefficient, T is the
temperature and kB is Boltzmann’s constant. Also, F [ρ]
is the Helmholtz free energy functional from equilibrium

density functional theory (DFT) [21, 30],

F [ρ] = kBT

∫

dx ρ[ln Λdρ− 1] +

∫

dxUρ+ Fex[ρ]. (2)

The first term is the ideal-gas contribution (Λ is the ther-
mal de Broglie wavelength and d is the dimensionality of
the system), the second is the contribution from any ex-
ternal potential U(x) (here U = 0) and the last term is
the contribution from the interactions between the par-
ticles. For soft particles interacting via a pair potential
v(r) that is finite for all inter-particles distances r, the
following simple approximation is rather accurate [31–33]

Fex[ρ] =
1

2

∫

dx

∫

dx′ρ(x)ρ(x′)v(|x− x′|) (3)
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and so is used here. This can be re-written as the Fourier
space integral

Fex[ρ] =
1

2(2π)d

∫

dk|ρ̂(k)|2v̂(k), (4)

where ρ̂(k) =
∫

dxρ(x)e−ik·x is the Fourier transform of
the density profile and v̂(k) is the Fourier transform of
the pair potential, with k = |k|. From Eq. (4), one can
see that modes ρ̂(k) that correspond to minima in v̂(k)
decrease Fex and so are likely to be favourable. By per-
forming a linear stability analysis of the full equation (1)
for the uniform liquid of density ρ̄, one can determine the
dispersion relation, which gives the growth or decay rate
of modes with wavenumber k and also provides a measure
of the relative contributions of the energetic Fex[ρ] and
the entropic (ideal-gas) parts to the free energy. The re-
sulting criterion for marginal stability at wavenumber kc
is 1 + ρ̄βv̂(kc) = 0, where β = (kBT )

−1 [27, 28, 34].
Thus, our approach here is to construct pair poten-

tials v(r) so that the liquid is marginally stable at the
two wavenumbers k1 and k2 (radii of the two Fourier
space circles in Fig. 3) identified from our analysis of the
tilings, as described in Sec. III. We scale lengths so that
the smaller wavenumber is k1 = 1, and then for the BM
tiling the larger wavenumber is k2 ≈ 2.252 and for the
EDRT tiling, k2 ≈ 2.186. We achieve this by using the
following pair potential

v(r) = εe−
1
2
σ2r2

(

1 + C2r
2 + C4r

4 + C6r
6 + C8r

8
)

(5)

that was originally proposed by Barkan et al. [35]. Note
that other soft-core systems also form QCs [27, 36–39].
Soft-core potentials arise as the coarse-grained effective
potentials between polymeric macromolecules in solu-
tion, such as star polymers, dendrimers or block copoly-
mers [31]. The parameter ε in Eq. (5) controls the overall
strength of v(r), while the others P = {σ,C2, C4, C6, C8}
can be chosen to determine the location and sharpness
of the two minima in v̂(k). Choosing ρ̄ = 10 and βε = 1,
and requiring that the liquid be marginally stable at
k = k1 and k = k2 results in four relations between
the five parameters P. In practice, we choose the value
of σ and find the other four parameters using these re-
lations. A similar approach is discussed in Ref. [28] (see
also [35, 40]).
The choice of σ is not entirely straight-forward since

for the desired structures to be stable, one must at
the same time make sure that the value of v̂(k) is
sufficiently high at other wavenumbers k correspond-
ing to competing crystal structures [28]. We deter-
mined σ largely by trial and error, using insight from
the rate of convergence (or divergence) of the Picard-
iteration algorithm used to solve the DDFT [41]. We find
P = PBM ≡ {0.95,−2.3455, 1.2638,−0.20667, 0.010136}
leads to a stable BM structure. Similarly, P = PEDRT ≡
{0.85,−1.4516, 0.69075,−0.098040, 0.0044548} leads to a
stable EDRT structure. The potentials v(r) and their
Fourier transforms v̂(k) are displayed in Fig. 4.

0 4 8

0

1

r

v(r)

(a)

EDRT

BM

0 3 6
0

10

k

v̂(k)

(b)

EDRT

BM

k1 k2

Figure 4. (a) Interaction potential v(r) and (b) its Fourier
transform v̂(k) for the BM tiling (blue) and EDRT tiling (red)
cases. The minima in the v̂(k) curves occur at k1 = 1 (both
cases) and at k2 ≈ 2.252 (BM) and k2 ≈ 2.186 (EDRT).

In Fig. 5 we display portions of equilibrium density
profiles obtained for both the BM and EDRT systems.
Superimposed on two-thirds of the images are the corre-
sponding tilings created by identifying all points xm that
are maxima in the density profiles with ρ(xm)/ρm > c,
where c = 0.967 (EDRT) or c = 0.953 (BM) and where
ρm is the largest of all ρ(xm) values, and then joining
neighbouring xm points with straight lines and paring
excess vertices and edges. The tiles have been colored
in just the left hand third of the figures. We have con-
firmed that these density profiles correspond to local min-
ima of F , but are not the global minima. The hexago-
nal crystal is the global minimum state and is the phase
that typically forms from random initial conditions. The
equilibrium QC density profiles are calculated using Pi-
card iteration starting from an initial guess constructed
in Fourier space by setting the amplitudes of ρ̂(k = 0)
and all the points on the two circles displayed in Fig. 3
to have a large value, while all others are given a small
randomly chosen value. The domain on which we calcu-
late ρ(x) is rectangular, of size Lx × Ly, with periodic
boundary conditions. We choose the side lengths Lx and
Ly so that the resulting (now periodic) profile is a good
approximant for the true QC, with the values used chosen
following the approach of Refs. [43, 44]. Further details
are given on this below in Sec. V.

Note that in Fig. 5 not all density peaks correspond to
corners of the superimposed tiles, and in fact the tiles all
contain multiple density peaks, as is common in this ap-
proach to tiling density fields. Moreover, it is interesting
to note that the manner in which the peaks decorate the
tiles varies quantitatively between instances. The total
average particle densities in these two systems are ρ̄ = 9.6
(BM) and ρ̄ = 9.4 (EDRT). Since the radii of the parti-
cles R ≈ 2π, these densities correspond to each particle
overlapping with ρ̄πR2 ∼ 103 other particles on average,
which justifies the use of the mean-field approximation
for Fex[ρ] in Eq. (3). Note also that these high den-
sities make particle-based simulations of these systems
difficult, requiring simulations of millions of particles if
systems of the size shown in Fig. 5 are to be achieved.

In Fig. 6 we display the Fourier transforms of the den-
sity profiles displayed in Fig. 5. In both cases, the power
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Figure 5. Grayscale plots of density profiles for the BM (top) and EDRT (bottom) systems, where black corresponds to
maxima, where ρ ≈ 25, while white corresponds to minima, where ρ ≈ 2. Superimposed on each is the corresponding tiling.
In the BM case, the short and long edges are of length 8.36 and 11.61, while in the EDRT case, these lengths are 8.72 and
11.95. We display here only small portions of profiles calculated on domains of size 172π×172π/

√
3 (BM) and 236π×236π/

√
3

(EDRT). The full profiles are displayed below in Figs. 10 and 11 together with the corresponding tilings. The data for the
profiles are available at [42].

spectra are dense (up to the limit imposed by the peri-
odic domain) and have six-fold rotation symmetry. Com-
paring these to the power spectra in Fig. 3, and allowing
for the fact that the density profiles are periodic approxi-
mants to the quasicrystals, we see that the primary peaks
are the same, i.e. for the BM case, the six peaks on the
inner circle and twelve on the outer are the same. Simi-
larly, for the EDRT case, the six on the inner circle and
eighteen on the outer are the same. In terms of the loca-
tions of the peaks off the two circles, the corresponding
tiling and DDFT Fourier spectra are the same, though
the strength of the peaks differ. In particular, the DDFT
spectra have far more easily visible peaks outside of the
outer circle, due to the small-scale structures decorating
the tiles in the DDFT system, which are not present in
the tilings.

V. PERIODIC APPROXIMANTS

A fundamental property of QCs is that they are not
formed from any periodically repeating unit-cell: they
have no translational ordering, though they do have rota-

tional ordering. However, one must generally work with
finite sized portions of such structures in most practi-
cal calculations such as those presented here. To do this
we must then either (i) deal with the complex boundary
conditions that arise for finite-size portions of a QC or
(ii) we must construct periodic approximants to the true
QC, which then have simple (periodic) boundary condi-
tions. A third possible approach (iii) is to note that QCs
can be formed from projections of periodic structures in
higher dimensions [1, 47]. The simplest two-dimensional
QCs can generally by formed by projecting from four-
dimensional periodic structures. Option (ii) is the one
we pursue here, though we discuss the four-dimensional
nature of the EDRT tiling in Sec. VI.

There are several ways to construct the periodic ap-
proximants that we consider. Since we are taking a
PFT approach, it is natural to focus on the wavevectors,
and make small alterations to their orientations and/or
lengths to make the resulting pattern periodic, as dis-
cussed for instance in [43]. Since the quasicrystals have
six-fold symmetry, we choose (as explained in detail be-
low) wavevectors on a hexagonal lattice that approximate
the most prominent wavevectors in the Fourier transform
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Figure 6. Power spectra (i.e. Fourier transforms) of the den-
sity profiles displayed in Fig. 5. The upper plot is for the BM
system and the lower for the EDRT. The radius of each dot
is set by the strength of the peak, with the radius going a
step smaller for every factor of 10 decrease in the strength of
the peak in the Fourier spectrum. The inner circle in each
case is k = 1, and the outer circles are k = 2.252 (BM) and
k = 2.186 (EDRT). The Fourier mode amplitudes continue at
reasonably large amplitude out to about k = 10, though the
equivalent power spectra for ln ρ drop off at smaller wavenum-
bers, consistent with the arguments of [45, 46].

of the tiling. These of course include the wavevectors il-
lustrated in Fig. 3.

There are other ways of choosing periodic approxi-
mants of QCs. The cut-and-project method from the
four-dimensional space [48] works well with some classes
of QCs, but in this case, there are difficulties because of

kx

ky

e1

e2

k1 = 4e1

k2

k3

q1 = 10e1 + 7e2

q4 = 10e1 + 3e2

−q2

−q3

−q5

l1 = 3(e1 − e2)

l2

−l3

Rectangle

Large triangle

Figure 7. The periodic hexagonal lattice (gray dots) is
generated by two small vectors e1 and e2. From com-
binations of this pair, two circles of wavevectors of radii
k1 = 1 and k2 are built. The outer circle has twelve vec-
tors: ±q1,±q2,±q3,±q4,±q5 and ±q6, and the inner has
six: ±k1,±k2 and ±k3. Note that these can be arranged
to form rectangles (e.g. the one illustrated with the vectors
±(q1+k3) and ±k2 forming the sides), whose side-lengths are
(in the limit) in the same ratio as the sides of the rectangles in
the tiling. Similarly, corresponding small and large triangles
can be formed. This case illustrated is (a, b) = (10, 7) and
(n,m) = (3, 4), and the angle between q1 and q4 is α ≈ 26◦.

the fractal nature of the projection windows (see Fig. 13
below). A third approach is to take a hexagonal arrange-
ment of the small or large triangular tiles and then inflate
these a finite number of times. This leads to a sequence of
periodic approximants, which become better and better
approximations to the true QC as the number of infla-
tions is increased. Below we discuss briefly the connec-
tions between this and the wavevector approaches, after
first giving further details on each.

A. Constructing QC approximants in Fourier space

We begin by defining three vectors e1, e2 and e3 of
equal length and at 120◦ to each other, with e1 aligned
in the positive x direction and

e1 + e2 + e3 = 0. (6)

Integer combinations of these three vectors define a
hexagonal lattice – these are the gray dots in Fig. 7.
Then, all continuous functions of interest, such as the

density profile ρ(x), can be approximated as Fourier
sums of waves with wavevectors on this lattice. Form-
ing them this way, the functions are periodic in a rect-
angular domain of size Lx ×Ly, where Lx = 4π/|e1| and
Ly = Lx/

√
3.
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For our purposes, we follow the approach of [49] and
construct periodic approximants to BM and EDRT quasi-
patterns by making appropriate choices of pairs of inte-
gers (a, b), with a and b being coprime and with a > b >
1
2
a > 0. We describe below how we choose (a, b). The

integers define six vectors [44, 49]:

q1 = ae1 + be2,

q2 = (b− a)e1 − ae2,

q3 = −be1 + (a− b)e2,

q4 = ae1 + (a− b)e2,

q5 = −be1 − ae2,

q6 = (b− a)e1 + be2. (7)

With this definition, we have

q1 + q2 + q3 = 0,

q4 + q5 + q6 = 0, (8)

and

|qj |2 = (a2 − ab+ b2)|e1|2. (9)

The twelve vectors±qj correspond to the twelve peaks on
the outer circles in Fig. 3. These are illustrated in Fig. 7
for the case when (a, b) = (10, 7). The angle between q1

and q4 is α, with

cosα =
a2 + 2ab− 2b2

2(a2 − ab+ b2)
, (10)

and

√
3 sinα =

3a(2b− a)

2(a2 − ab+ b2)
, (11)

noting that these are both rational numbers [44].
Then we choose two sets of three vectors:

k1 = q2 − q5 = (2b− a)e1 = me1,

k2 = q1 − q4 = (2b− a)e2 = me2,

k3 = q3 − q6 = (2b− a)e3 = me3 (12)

and

l1 = q1 + q5 = (a− b)(e1 − e2) = n(e1 − e2),

l2 = q3 + q4 = (a− b)(e2 − e3) = n(e2 − e3),

l3 = q2 + q6 = (a− b)(e3 − e1) = n(e3 − e1). (13)

With these definitions, |kj | = (2b − a)|e1| and |lj | =√
3(a − b)|e1|. We also define m = 2b − a > 0 and n =

a− b > 0, so a = m+ 2n and b = m+ n.
These ±kj and ±lj vectors correspond to the peaks

on the inner circle and just outside the inner circle in
Fig. 3. The kj and qj vectors define the triangles noted
in Fig. 3(b) and 3(d). We scale |ej | = 1/(2b−a) = 1/m so

that |kj | = k1 = 1 and |qj | = k2 =
√
a2 − ab+ b2/(2b −

a). This implies that the domain edge lengths are Lx =

2m× 2π and Ly = Lx/
√
3.

This choice of scaling means that we have chosen the
ratio of the two wavenumbers to be greater than two.
Other choices of wavenumber ratios are possible, but we
note that had we chosen the ratio to be less than two,
other mode interactions would compete with those that
stabilize our chosen quasicrystal [26].
Next, we show how to choose (a, b) so that solving the

DFT (2) and/or the DDFT (1) in the periodic domain
of size Lx ×Ly will result in good approximations to the
BM and EDRT quasicrystals. The aspect ratios of the
rectangles in the BM tiling are:

√
3× 1 +

√
13

6
(14)

and for the EDRT:

√
3× 3 +

√
33

12
. (15)

Rectangles with the same aspect ratio appear in the
Fourier spectrum. This is explained for the BM case in
Ref. [13], but also applies to the EDRT case – see Sec. VI
below on properties of the EDRT tiling. The rectangle is
illustrated in Fig. 7, and connects the ends of the vectors
k1, q4, q1 and −k3, with short side of length k1 = 1. The
long side is of length |l3| =

√
3(a− b)/(2b−a) =

√
3× n

m
.

So, cancelling a factor of
√
3 from this expression and

from the irrational expressions in Eq. (14) leads us to
consider the continued fraction approximations. For the
BM this is:

n

m
=

3

4
,
10

13
,
33

43
,
109

142
, · · · → 1 +

√
13

6
≈ 0.7676 (16)

and for the EDRT:

n

m
=

3

4
,
8

11
,
43

59
,
94

129
, · · · → 3 +

√
33

12
≈ 0.7287. (17)

These continued fraction approximants are readily
calculated using the Euclidean algorithm and are
within O(m−2) of the corresponding irrational num-
ber. In continued fraction notation, we have
1
6
(1 +

√
13) = [0; 1, 3, 3, 3, . . . ] and 1

12
(3 +

√
33) =

[0; 1, 2, 1, 2, 5, 2, 1, 2, 5, . . . ].
These choices of (n,m), and the associated values of

(a, b) = (m + 2n,m + n), define a series of periodic do-
main sizes (with Lx = 4πm) that allow good approxima-
tions to the aperiodic BM and EDRT quasicrystals. For
the DDFT results presented in Figs. 5, 10 and 11, we
used (n,m) = (33, 43) (BM case) and (n,m) = (43, 59)
(EDRT case), in domains with Lx = 86 × 2π and Lx =
118 × 2π, respectively. These provide rational approxi-
mations to the irrational rectangle tile aspect ratio that
are within 0.02% of the true value. For larger (n,m), the
error goes as m−2.
The method presented here of constructing periodic

approximants to six-fold quasicrystals generalizes the
method proposed in Ref. [43] for the dodecagonal qua-
sicrystal. That method was based on square periodic
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domains and a different series of rational approximations
to an irrational number. Here the 1 :

√
3 domains lend

themselves naturally to quasicrystals with six-fold sym-
metry, and with this point of view, the relevant irrational
number for the dodecagonal case is 1/

√
3. The periodic

approximants have n
m

= 3
5
, 4
7
, 11
19
, 15
26
, 41
71
, 56
97
, · · · → 1√

3
.

B. Constructing QC approximants via inflation

As mentioned above, an alternative method of con-
structing periodic approximants is based on tiles and in-
flation rules, rather than wavevectors. There are several
ways to construct a sequence of approximants that tends
to ideal QCs. Here we illustrate a series of rectangu-
lar approximants with aspect ratio

√
3 : 1, natural for

structures with six-fold symmetry. The starting points
are either six large or six small triangles, arranged as
shown in Figs. 8 and 9. With periodic boundary condi-
tions, these form a rectangle with aspect ratio

√
3 : 1. On

applying the inflation rules, in which the number of poly-
gons grows as described by Eq. (23) below, we obtain a
sequence of periodic approximants of increasing size. Ide-
ally, the starting choice of tiles should be a configuration
that would appear naturally within the full tiling: this is
the case when choosing six large triangles but not when
choosing six small triangles.

C. Linking the Fourier and tiling viewpoints

In Figs. 10 and 11 we show the full extent of the
DDFT density profiles from which portions are displayed
in Fig. 5. Figure 10 shows the BM QC and Fig. 11 shows
the EDRT QC. In each case we superimpose the cor-
responding tiling with vertices at a sub-set of the max-
ima in the density profile, as described above in Sec. IV.
We tint in green some of the large triangles to aid the
eye. Beneath each density profile, we display the cor-
responding tiling approximants, which are also the last
in the sequence of inflations illustrated in Fig. 8(a) and
Fig. 9(a).
Notice in Fig. 10 that arrangements of six large trian-

gles (highlighted in green) in central and corner parts of
the density profile do not line up with the correspond-
ing sets of six large triangles in the tiling. The reason
for this is that the rules we use for linking maxima in
the density profile are local and do not take into ac-
count the global structure imposed by the inflation rules.
Minor rearrangements (phason flips) of the tiles would
make the match perfect. In contrast, in the EDRT case
(Fig. 11), the agreement is perfect without any rearrange-
ment. Other choices of (m,n) in the sequence of approx-
imations in the DDFT calculations lead, in both the BM
and EDRT cases, to tilings that match those that can
be found by sequences of inflations of six small or large
triangles (though the exact alignment between these is
more complicated in the EDRT case).

VI. PROPERTIES OF THE EDRT TILING

The EDRT tiling presented in Figs. 1, 2 and 9 is com-
posed of small (ST) and large (LT) equilateral triangles of
edge lengths S and L, respectively, and of rectangles (R)
of size L × S; see Fig. 1. We impose the equidiagonal
conditions for ST–R, LT–R and LT–LT pairs as shown
in Fig. 1(h). To do this, the ratio of the edge lengths
must be

φ =
L

S
=

√
3 +

√
11

4
≈ 1.262. (18)

In each inflation step, the tiles are subdivided according
to the rules illustrated in Fig. 1(e)–(g). Upon subdivi-
sion, the two lengths of the i-th generation tiling Li and
Si transform as

(

Li+1

Si+1

)

=

(

3
√
3 2

4
√
3

)(

Li

Si

)

. (19)

The positive eigenvalue of this transformation matrix is

β = 2
√
3 +

√
11 ≈ 6.781, (20)

which is the inflation factor, and the corresponding eigen-
vector gives exactly the ratio in Eq. (18). Note that the
inflation factor β is not a Pisot number but its square
β2 = 23+4

√
33, corresponding to two consecutive subdi-

visions, is a Pisot number. We note that the EDRT tiling
is categorized as a type IIC tiling, extending the scheme
of Ref. [16]. More precisely type II means the tiles are ro-
tated by 30◦ at each inflation, and has in this case n = 3
and m = 4 in Eq. (16) in the main text of Ref. [16] (com-
pare with Eq. (19) above), and the label C is given in
analogy to the case of type IC in Supplementary Note 3
of that paper.
Also of interest are the numbers of long and short edges

nL
i and nS

i , respectively, which transform according to

(

nL
i+1

nS
i+1

)

=

(

3
√
3 4

2
√
3

)(

nL
i

nS
i

)

. (21)

In a self-similar tiling, the ratio of the numbers of long
and short edges is

ψ =

√
3 +

√
11

2
≈ 2.524, (22)

coming from an eigenvector of the matrix in (21).
By inspecting the inflation rules for each tile type in

Fig. 1(e)–(g), we find that in the EDRT tiling the num-
bers of ST, LT, and R tiles in the (i + 1)-th generation
denoted by STi+1, LTi+1, and Ri+1, respectively, are re-
lated to those in the i-th generation by





STi+1

LTi+1

Ri+1



 =





3 4 8
16 27 48
6 9 17









STi
LTi
Ri



 . (23)



9

(a)

6ST 6ST× 1 6ST× 2 6ST× 3

(b)

6LT/6LT× 1 6LT× 2 6LT× 3

Figure 8. Constructing BM QC approximants by inflation: (a) six small triangles (ST) or (b) six large triangles (LT) are
arranged to form a hexagon, with a periodic rectangle with aspect ratio

√
3 : 1 indicated in black (allowing the tiles to overlap).

The six triangles are then inflated three times, using the inflation rules in Fig. 1. The scaling is consistent within the panels,
and tiles that are completely outside the periodic rectangle are not drawn. The last inflated tiling in (a) is repeated in Fig. 10,
which compares it to the DDFT density profile.

The largest eigenvalue of the above matrix is β2. The
eigenvector corresponding to β2 is

1

12





7−
√
33

8

−3 +
√
33



 ≈





0.105
0.667
0.229



 , (24)

while for the BM tiling the corresponding vector is [13]:

1

43





29− 5
√
13

23−
√
13

−9 + 6
√
13



 ≈





0.255
0.451
0.294



 . (25)

Therefore, we find that the EDRT tiling has a higher
proportion of the LT compared to the BM tiling.
The two-dimensional aperiodic EDRT tiling can be

constructed by projecting from a four-dimensional pe-
riodic structure, with set of basis vectors {aj}, where

j = 0, 1, 2, 3. Projection matrices P ‖ and P⊥ allow us
to define the basis vectors in the physical and in the

perpendicular space by a
‖
j ≡ P ‖

aj and a
⊥
j ≡ P⊥

aj ,
respectively. See the section “Higher-dimensional repre-
sentation” in Ref. [13] for more details. Thus, we find

that
∣

∣

∣a
‖
odd

∣

∣

∣ = a ℓ α,
∣

∣

∣a
‖
even

∣

∣

∣ = c α,
∣

∣a
⊥
odd

∣

∣ = aα, and
∣

∣a
⊥
even

∣

∣ = c ℓ α. The ratios of the lengths of even and odd
basis vectors in the physical and in the perpendicular
space are

∣

∣

∣a
‖
odd

∣

∣

∣

∣

∣

∣
a
‖
even

∣

∣

∣

=
aℓ

c
= φ (26)
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(a)

6ST 6ST× 1 6ST× 2

(b)

6LT 6LT× 1 6LT× 2

Figure 9. Constructing EDRT QC approximants by inflation: (a) six small or (b) large triangles are arranged to form a
hexagon, as in Fig. 8. The six triangles are then inflated twice. The last inflated tiling in (a) is repeated in Fig. 11, which
compares it to the DDFT density profile.

and
∣

∣a
⊥
even

∣

∣

∣

∣a
⊥
odd

∣

∣

=
cℓ

a
= ψ, (27)

respectively.
Using these ratios, we construct the projection win-

dows in the perpendicular space. The position of a
vertex of a tiling in the physical space is given as

r
‖ =

∑3

j=0 nja
‖
j , where nj are integers and a

‖
j are the

physical-space basis vectors of the tiling. The same set
of ni also defines the position of the corresponding ver-
tex in the perpendicular space r

⊥ =
∑3

j=0 nja
⊥
j , and

these vertices constitute the projection windows. Fig-
ure 13(a) shows the projection window, which tends to
a self-similar shape as one proceeds with inflation from
generation to generation. Figure 13(b) shows the projec-
tion window for the BM tiling.

We find that
∣

∣

∣q
‖
odd

∣

∣

∣ = 2πℓα/a,
∣

∣

∣q
‖
even

∣

∣

∣ = 2πα/c,
∣

∣q
⊥
odd

∣

∣ = 2πα/a, and
∣

∣q
⊥
even

∣

∣ = 2πℓα/c. Thus the ra-
tios of lengths of the reciprocal-space basis vectors in the
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Figure 10. Density profiles in the BM case with the choice (m,n) = (43, 33) and the tiling corresponding to six small triangles
inflated three times (see Fig. 8). Sets of six large triangles in the density field are tinted green to guide the eye: the two tilings
differ in their central and corner regions, but small rearrangements of the choice of tiles (phason flips) in the density field would
lead to exact agreement. The data for the density profile are available at [42].

physical and the perpendicular space are

∣

∣

∣q
‖
odd

∣

∣

∣

∣

∣

∣q
‖
even

∣

∣

∣

=
cℓ

a
= ψ (28)

and

∣

∣q
⊥
even

∣

∣

∣

∣q
⊥
odd

∣

∣

=
aℓ

c
= φ, (29)
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Figure 11. Density profiles in the EDRT case with the choice (m,n) = (59, 43) and the tiling corresponding to six small
triangles inflated twice (see Fig. 9). Sets of six large triangles in the density field are tinted green to guide the eye: the two
tilings are the same. The data for the density profile are available at [42].

respectively. These ratios are the inverses of those in the
physical space.

Recall that Fig. 3(c) shows the Fourier transform of a
finite but large EDRT tiling, with the intensities normal-
ized by the central peak. Remarkably, many of the promi-

nent peaks and numerous of the smaller ones are similar
to those for the bronze-mean tiling [Fig. 3(a)]. The first
seven strong peaks are listed in Table 1. Note that strong
peaks No. 2 and 3 have the same length wavevectors,
which is nothing but the equidiagonal property.
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(a)

a
‖
1

a
‖
2

a
‖
3a

‖
4

(b)

a⊥
1

a⊥
2

a⊥
3

a⊥
4 (c)

q
‖
1

q
‖
2

q
‖
3

q
‖
4

(d)

q⊥
1

q⊥
2

q⊥
3

q⊥
4

Figure 12. Basis vectors in real and reciprocal space for
the EDRT tiling. Projected basis vectors in the physical and

in the perpendicular space, a
‖
j and a⊥

j are shown in (a) and
(b), respectively. Projected reciprocal-space basis vectors in

the physical and in the perpendicular space, q
‖
j and q⊥

j are
shown in (c) and (d), respectively.

(a) (b)

Figure 13. Projection windows for (a) the EDRT tiling with
136525 points and (b) the BM tiling.

VII. CONCLUDING REMARKS

To conclude, we recall that aperiodic tilings have been
invoked as a description of the geometry of QCs ever since
their discovery [50], and having two length scales present
in a system is known to stabilize QCs [15, 25]. Here,
we have demonstrated how to join these approaches to-
gether, leading to a new example of a QC/tiling, through
analysis of the Fourier spectrum of the aperiodic tiling
and a careful choice of interaction potential. The inter-
action potential we use (5) is a model for cluster crystals
of polymer micelles or dendrimers with a core and soft
corona [35, 51, 52]. Thus, our work contributes to un-
derstanding how to design soft-matter systems to form

particular structures that could have useful (e.g. optical)
properties.
More elaborate potentials, perhaps involving three-

body interactions, may be required for other tilings or
indeed to make the structures discussed here the global
minima of F . The number of aperiodic tilings found
so far is large [53], and includes structures that may
be relevant to two-dimensional materials such as bi-
layer graphene [44, 54] and three-dimensional quasicrys-
tals [46]. We are optimistic that our approach can be
used, at least in principle, to find soft-particle systems
that self-assemble into these structures.
The data associated with this paper are openly avail-

able from the University of Leeds Data Repository [42].
No. n1 n2 n3 n3 Intensity |k⊥| |k‖|
0 0 0 0 0 1.000 0.0 0.0
1 2 2 2 1 0.936 0.571 14.724
2 3 3 4 2 0.818 0.990 25.503
3 2 3 4 3 0.818 0.990 25.503
4 1 1 2 1 0.648 1.443 11.666
5 1 2 3 2 0.603 1.552 18.786
6 1 1 1 1 0.437 1.959 7.442

TABLE 1. List of prominent peaks for the EDRT tiling
having intensity I(k‖) > 0.4. Note that the ratio of |k‖|
for the second and third intensity peaks to the fourth is
25.503/11.666 = 2.186.
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