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Abstract

This paper proposes neural models to predict Speech Intelligi-

bility (SI),both by prediction of established SI metrics and of

human speech recognition (HSR) on the 1st Clarity Prediction

Challenge. Both intrusive and non-intrusive predictors for intru-

sive SI metrics are trained, then fine-tuned on the HSR ground

truth. Results are reported on a number of SI metrics, and the

model choice for the Clarity challenge submission is explained.

Additionally, the relationship between the SI scores in the data

and commonly used signal processing metrics which approxi-

mate SI are analysed, and some issues emerging from this rela-

tionship discussed. It is found that intrusive neural predictors of

SI metrics when fine-tuned on the true HSR scores outperform

the non neural challenge baseline.

1. Introduction

In the United Kingdom (UK) 1 in 5, or just over 12 million peo-

ple, experience Hearing Loss (HL) of greater than 25 decibels

hearing level (dBHL) [1]. By 2035 this will rise to 14.2 mil-

lion [1] and with age correlating with an individual’s likelihood

for developing impaired hearing this statistic is going to inflate

dramatically. By 2050 we will have observed a near doubling of

the global population aged older than 60 going from just 12% in

2015, to making up 22% of the world’s population by 2050 [2];

a reality that has large consequences for all medical conditions

which increase in likelihood with age.

Whilst it may seem intuitive to imagine that hearing aids are

somewhat of a solved problem given their supposed ubiquitous-

ness in society, the reality is far from that case. 80% of adults

aged 55-74 who would benefit from wearing a hearing aid do

not use one, this accounts for approximately 32% of the entire

55-74 population [3]. Many reasons are given including poor

fit, side effects such as rashes, technical difficulties replacing

cells, and a dislike of the aesthetic [3]. However studies repeat-

edly demonstrate that the main issue prompting users to not use

their hearing aids is poor performance, often in environments

with background noise [3, 4, 5, 6, 7, 8] leading to decreased

HSR [9]. Untreated HL can result in many harmful outcomes

such as a loss of environmental awareness leading to accidents,

a general worsening of quality of life, and even greater risks for

developing depression [4] as well as impacts on neurological

conditions [10]. In the context of the Clarity Prediction Chal-

lenge 1 (CPC1) [11] Speech Intelligibility (SI) is defined as the

percentage of words that a listener correctly identifies after lis-

tening to a sequence of words.
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SI prediction metrics are either intrusive, i.e. rely on access to

the clean reference signal, or non-intrusive, i.e. rather than fa-

cilitating a comparative function non-intrusive metrics analyse

only the degraded signal under test to identify key areas of po-

tential distortion [12]. There are 3 key domains of non-intrusive

SI; feature-based approaches using key acoustic features and

potentially other linguistic information for prediction, statistical

data-driven methods such as machine learning, and neurophys-

iological measures that integrate neuroimaging or oculometric

techniques [13]. This paper aims to use both non-intrusive and

intrusive methods for predicting intrusive SI metrics as outlined

in Section 2.

2. Speech Intelligibility Metrics

This paper explores the viability of a neural network to predict

intrusive metrics for SI using non-intrusive and intrusive input

audio. 3 intrusive SI metrics listed here in increasing levels of

complexity of computation are investigated. All metrics return

a number between 0% and 100% representing the percentage of

words correctly identified.

The Short-Time Objective Intelligibility (STOI) [14] is a com-

monly used monoaural metric for the assessment of SI. It works

by computing an average of the correlation between one-third-

octave filter-bank representations of the clean and degraded

speech signals. It has been found to correlate well with human

intelligibility in normal hearing individuals [15, 16, 17].

The Modified Binaural Short-Time Objective Intelligibility

(MBSTOI) [18] is a variant of STOI which takes into account

binaural degraded and reference signals. The score additionally

includes internal simulation of the ’better ear effect’ wherein the

channel with the highest correlation for that block of processing

is used to compute the final score.

The Hearing-Aid Speech Perception Index (HASPI) [19] is de-

signed specifically to assess intelligibility in people with HL.

In addition to a degraded and a reference signal it also takes an

audiogram representation of the HL in a given ear into account,

and incorporates a HL simulation as part of the computation of

the score. It additionally incorporates an ensemble of neural

networks fitted to real human intelligibility as part of the score

calculation.

2.1. CPC1 Score Distributions

It is worth noting that, compared to other SI corpora including

ground truth HSR scores, data used in this challenge contains

grammatically intact sentences. This has been demonstrated

to yield lower accuracy for diagnosis than a bag of words ap-

proach [20] in optometry or matrix tests [21] in SI assessments.

Most participant in the CPC1 data have moderate to severe

high-frequency HL as Figure 1 shows in terms of box plots
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Figure 1: Audiogram data for left (red) and right (blue) ear of

in CPC1 listeners and the frequency characteristics of speech

phones

for audiograms of left and right ear in red and blue colour,

respectively. The grey shaded area in Figure 1 shows typical

level range and frequency distribution as well as positions

of individual speech fragments according to their principal

frequency content [22]. This indicates that phones such as

/k/, /f/, /s/ or /th/, but also others, are usually not perceived

by the participants since their (central) energy lies below the

hearing threshold. It is therefore important to consider whether

the purpose of a hearing aid algorithm evaluation is designed

to maximise language comprehension given an individual’s

cognitive language processing abilities, or to maximise signal

enhancement for language carrying signals agnostic of cog-

nitive ability. This creates a problem for evaluation metrics

as such metrics fall firmly within the latter, but querying an

individual to repeat a grammatical sentence back falls firmly in

the former definition. Beyond grammar one might even remark

upon the likely less impactful entropy of phones themselves and

how an individual guessing a word is fundamentally depending

on known rules of language and thus are still to a degree

dependent on cognitive ability. Future experiments looking

to test the impact of linguistic knowledge may wish to try

comparing the performance of individuals with no background

in English to determine to what degree these metrics are truly

agnostic of cognitive and linguistic ability, if the objective is to

maximise the enhancement ability of a hearing aid algorithm

agnostic of human language comprehension.
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Figure 2: Histogram showing distribution of ground truth cor-

rectness Qh, i.e. HSR in CPC1 Training set

Figure 2 shows the distribution of the ground truth intelli-

gibility scores in the CPC1 training data. This shows that the

largest class is a HSR of 100 where the listeners were able to

perfectly identify the sequence of words they listened to. The

next largest class is an HSR of 0 where the listener was unable

to identify any of the words; either guessing 0 words correctly

or not making an attempt.

The Spearman r and Pearson ρ correlations between the SI

metrics and the ground truth HSR are presented in Table 1 and

the relationships are visualised in Figure 3.

Metric STOI MBSTOI HASPI

r 0.65 0.61 0.34

ρ 0.57 0.54 0.31

Table 1: Spearman r and Pearson ρ Correlation between SI

metrics and HSR

These both show that, while correlation is low for all three met-

rics, STOI and MBSTOI correlate somewhat more strongly with

the data compared with HASPI - this is interesting, especially

given that HASPI is the one metric of the 3 which has explicit

access to the audiogram information. One possible explana-

tion is that STOI and MBSTOI are computed using x̂ while

HASPI uses x as it contains its own internal HL simulation;

it is possible that this internal model produces outputs which

differ greatly from that of the baseline system.

3. Neural Intelligibility Prediction

Inspired by recent works [23, 24, 25] which use a neural

network to mimic the performance of an intrusive metric

for speech quality and intelligibility, this contribution uses a

similar network structure to predict the metric score that will

be assigned to the input audio. Note that here networks that

are provided with representations of both the degraded and

reference signal (intrusive) and also with those that are only

provided with the degraded (non-intruisve) are investigated.

The focus is on a metric prediction objective over simply using

the ground truth ’correctness’ information in the training data

as this was found to be distributed in a way that was difficult

for our non-intrusive models to find any discernible patterns in.

Intuition is that if these metrics have been found to correlate

with human intelligibility, then non-intrusive predictors of said

metrics should also. Additionally, the performance of each of

our non-intrusive metric predictors after being fine-tuned on

the ground truth intelligibility is reported.

Figure 4 provides a generalised overview demonstrating the

training of such a neural network. Here, noisy audio x is

generated by a Speech In Noise (SPIN) generator and pro-

cessed by a hearing aid (HA) simulation then a HL simulation

which both take a representation of the specific listener’s HL

as input. This takes the form of an audiogram pair {al,ar}
which represent the specific characteristics of their HL for the

left and right ears respectively. Details on the HL model used

in the CPC1 baseline can be found in [26]. The output of this x̂

is input to a SI prediction model, along with the clean reference

audio s. The output of this prediction model Q̂ is compared to

the true value of the SI Q i.e the HSR, and the model is updated.

3.1. Feature Extraction

The same feature extraction as described in [25] is used here

with the discrete time domain input audio being transformed to

normalised log features. Note that in the following X
l
f , Xr

f de-

notes the feature representation of the hearing aid output while

X̂
l
f ,X̂r

f is the feature representation of the hearing aid output x

with the baseline HL applied x̂.
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Figure 3: SI metrics versus ground truth HSR in Clarity Prediction Challenge Training Set
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Figure 4: Diagram of general non-intrusive SI metric prediction

training

3.2. Model Structure for Non-Intrusive Prediction

For each of the 3 metrics investigated, the same basic model

structure is adapted for the specific requirements of the met-

ric. The basic structure is based on that of the discriminator

network in [24] - 4 2D convolutional layers with 15 filters of

a kernel size of (5, 5). To account for the variable length of

input data, a global 2D average pooling layer is placed imme-

diately after the input, fixing the feature representation at 15 di-

mensions. After the convolutional layers, a mean is taken over

the 2nd and 3rd dimensions, and this representation is fed into

3 sequential linear layers, with 50, 10, and 1 output neuron(s)

respectively. The first 2 of these layers have a LeakyReLU ac-

tivation while the final layer has no activation. For STOI, the

score for each channel of the HA output audio x̂ is predicted

separately, with the input to the prediction network being the

feature space representation of the given channel X̂c
f where c

is a channel index. As such, the input dimension to the aver-

age pooling and first 2D convolutional layer is set to 1. For

MBSTOI, the score is predicted for the HA output stereo audio

together, with the input to the network being the feature space

representations of both channels {X̂l
f , X̂

r
f}. The input dimen-

sion of the average pooling layer and the initial convolutional

layer is 2 to account for these stacked channel representations.

Finally for HASPI which like STOI is defined per audio chan-

nel, the X
l
f and X

r
f representation of the audio, but also use

a
l and a

r the audiogram representations of the listener’s HL is

used as input. This 6 element representation is passed through

a linear layer with 10 output neurons then another with 50; this

representation is then concatenated along the feature dimension

with the representation of the audio of the same size. This 100

element representation is then fed through a further 3 linear lay-

ers with 50, 10, and 1 output node(s) respectively, all but the last

layer having a LeakyReLU activation. Additionally, we train a

model with the same structure as that for the HASPI prediction

described above, using {X̂l
f , X̂

r
f} as input and train it to predict

the ground truth Correctness scores in the training data.

3.3. Model Struture for Intrusive Prediction

We additionally train and fine-tune intrusive versions of the

metric prediction models. These are similar to those above ex-

cept we also input the clean reference features Sc
f to the model.

For the STOI and HASPI prediction models we stack the clean

and degraded features per channel, {Sl
f , X̂

l
f}, {Sr

f , X̂
r
f} for

STOI and {Sl
f ,X

l
f},{Sr

f ,X
r
f} along with a

l, ar for HASPI.

For MBSTOI we use both channels of the clean and degraded

features, {X̂l
f ,S

l
f , X̂

r
f ,S

r
f}.

4. Experiments

4.1. Tools and Software

Experiments are implemented via modifications to the chal-

lenge baseline system, replacing the simple fitting model with

the neural models described above using PyTorch [27]. The

SpeechBrain [28] framework is used for audio loading and dat-

aloader creation. Existing Python and MATLAB implementa-

tions are used for STOI 1, MBSTOI (taken from CPC1 baseline)

and HASPI 2. All of the models are relatively low cost, and can

be run on a CPU in a reasonable amount of time.

4.2. Data Description

Audio data provided by the CPC1 is used for the hearing aid

outputs x, the hearing aid outputs processed by the baseline

HL simulation x̂ and the anechoic clean reference signal s ,

accompanied by ground truth correctness scores Qh and listen-

ers’ audiograms {al,ar} for left and right ear, respectively. In

total the challenge corpus provides 4863 training examples ex-

pressed as combinations of ’scenes’ (s, x), listener HL charac-

teristics (al,ar), HL simulations x̂ and correctness scores Qh.

The spoken sentence are taken from the Clarity speech corpus

1https://github.com/mpariente/pystoi
2https://claritychallenge.github.io/clarity_

CPC1_doc/docs/cpc1_faq
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[29].

4.3. Experiment Setup

We pre-compute the STOI, MBSTOI, and HASPI scores for the

entire train set. We then train models as described above, to

reproduce the score. The feature extraction use a Short Time

Fourier Transform (STFT) with a window length of 20ms, a

hop length of 10ms and an FFT size of 1024. The hearing aid

outputs x have a sampling rate of 32kHz, while the hearing aid

outputs with the baseline HL simulation applied x̂ have a sam-

pling rate of 44kHz. Following on from the baseline system we

train with a 5 fold validation technique, partitioning the folds on

the scene ID. We use the Adam [30] Optimiser with a learning

rate of 0.001 for all models. All models are trained with a batch

size of 1 with the exception of the model that directly predicts

Correctness which uses a batch size of 20. The metric predic-

tion models are additionally fine-tuned using the ground truth

HSR ‘Correctness’ (intelligibility) scores; in the case of the the

metrics that are defined per channel (STOI and HASPI) we use

the channel that returned the highest predicted score between

the 2, as a simplified simulation of the ‘better ear effect’. This

fine-tuning process consists of exposing the model to the entire

training set in the same way as in the pre-training, but having

it’s outputs compared to the ground truth rather than the metric.

We use this same technique to evaluate the performance of these

models.

5. Results

Table 2 shows the results for non-intrusive prediction over the

entire training set for the challenge. The upper half shows the

Root Mean Square Error (RMSE) between model output and

ground truth ’correctness’ values, i.e. HSR. The lower half

shows the RMSE between target metric and prediction of the

model. r and ρ are the Spearman and Pearson Correlations, re-

spectively.

In terms of prediction error, the model showing best non-

Table 2: Non Intrusive Performance on the Clarity Prediction

Challenge Training Set

Model Objective Correctness Error r ρ

STOI 35.63 0.30 0.21

STOI (fine) 34.55 0.32 0.25

MBSTOI 39.30 0.26 0.18

MBSTOI (fine) 34.72 0.32 0.23

HASPI 38.80 0.23 0.22

HASPI (fine) 31.55 0.53 0.46

Correctness 33.44 0.45 0.42

Prediction Error r ρ

STOI 13.88 0.43 0.3

STOI (fine) 16.44 0.43 0.3

MBSTOI 15.50 0.44 0.33

MBSTOI (fine) 21.81 0.47 0.32

HASPI 25.10 0.59 0.59

HASPI (fine) 37.09 0.29 0.29

intrusive target metric prediction is the STOI prediction model,

while the the HASPI model shows lowest performance. This is

likely because the calculation of STOI is considerably simpler

than that for HASPI. As expected, fine-tuning to the ground

truth correctness increases prediction error while decreasing

correctness error for all models.

Table 3: Intrusive Performance on the Clarity Prediction Chal-

lenge Training Set

Model Objective Correctness Error r ρ

baseline 28.5 0.62 0.54

STOI 32.45 0.58 0.52

STOI (fine) 27.59 0.66 0.56

MBSTOI 29.67 0.65 0.54

MBSTOI (fine) 27.20 0.67 0.58

HASPI 41.04 0.27 0.25

HASPI (fine) 29.67 0.65 0.54

Correctness 35.62 0.31 0.27

Prediction Error r ρ

STOI 9.05 0.86 0.83

STOI (fine) 16.24 0.75 0.70

MBSTOI 10.79 0.79 0.80

MBSTOI (fine) 22.64 0.73 0.7

HASPI 23.06 0.68 0.68

HASPI (fine) 29.11 0.43 0.43

Table 4: Non Intrusive Performance on the Clarity Prediction

Challenge Test Set

Model Objective Correctness Error r ρ

HASPI (fine) 31.99 0.43 0.50

Correctness 33.42 0.42 0.39

Best model in terms of prediction of ground truth correctness

is the fine-tuned HASPI predictor. This is interesting given that

HASPI itself has the lowest correlation with the ground truth

correctness in the data - it is possible that access to the audio-

gram information is what enables this. The slight performance

improvement versus the model that was only trained to predict

the correctness shows that the HASPI objective pre-training did

improve performance.

Table 3 shows the results of the intrusive prediction models,

along with that of the challenge baseline system. The predic-

tion error results follow the same pattern as those of the non-

intrusive models, but with lower overall error rates and signifi-

cantly higher correlations.

Both the fine-tuned STOI and MBSTOI models slightly outper-

formed the baseline system in terms of correctness error and

correlations.Interestingly, of the two models that directly pre-

dict the Correctness values Q, the non-intrusive model slightly

outperforms the intrusive one.

Table 4 shows the performance on the test set of the two non-

intrusive models submitted to the challenge. The pretrained

HASPI model performs slightly better overall compared to the

direct Correctness model.

6. Conclusion

Of the models trained, it was found that intrusive models out-

perform non intrusive models for both metric prediction and for

real intelligibility prediction. An intrusive neural model out-

performs the intrusive baseline system for the challenge. Fur-

thermore, pre-training models to predict an intelligibility met-

ric, and then fine-tuning on the true intelligibility improves per-

formance. Additionally, the relationship between the real intel-

ligibility scores in the data and signal processing based intru-

sive metrics was examined, and it was found that these are only

weakly correlated.
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