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William Ravenscroft , Stefan Goetze and Thomas Hain

Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
{jwravenscroft1, s.goetze, t.hain}@sheffield.ac.uk

ABSTRACT

Speech dereverberation is an important stage in many speech
technology applications. Recent work in this area has been domi-
nated by deep neural network models. Temporal convolutional net-
works (TCNs) are deep learning models that have been proposed for
sequence modelling in the task of dereverberating speech. In this
work a weighted multi-dilation depthwise-separable convolution is
proposed to replace standard depthwise-separable convolutions in
TCN models. This proposed convolution enables the TCN to dy-
namically focus on more or less local information in its receptive
field at each convolutional block in the network. It is shown that this
weighted multi-dilation temporal convolutional network (WD-TCN)
consistently outperforms the TCN across various model configura-
tions and using the WD-TCN model is a more parameter-efficient
method to improve the performance of the model than increasing the
number of convolutional blocks. The best performance improve-
ment over the baseline TCN is 0.55 dB scale-invariant signal-to-
distortion ratio (SISDR) and the best performing WD-TCN model
attains 12.26 dB SISDR on the WHAMR dataset.

Index Terms— speech dereverberation, temporal convolutional
network, speech enhancement, receptive field, deep neural network

1. INTRODUCTION

Speech dereverberation remains an important task for robust speech
processing [1–3]. Far-field speech signals such as for automatic
meeting transcription and digital assistants normally require prepro-
cessing to remove the detrimental effects of interference in the sig-
nal [4–6]. A number of methods have been proposed for speech
dereverberation for both single channel and multichannel models [7].
Recent advances in speech dereverberation performance in a number
of domains have been driven by deep neural network (DNN) mod-
els [8–12].

Convolutional neural network models are commonly used for se-
quence modelling in speech dereverberation tasks [13–15]. One such
fully convolutional model known as the TCN has been proposed for
a number of speech enhancement tasks [16–18]. TCNs are capable
of monaural speech dereverberation as well as more complex tasks
such as joint speech dereverberation and speech separation [17]. The
best performing TCN models for speech dereverberation tasks typi-
cally have a larger receptive field for data with higher reverberation
times T60 and a smaller receptive field for data with small T60s [19]
which forms the motivation for this paper.

This work was supported by the Centre for Doctoral Training in Speech
and Language Technologies (SLT) and their Applications funded by UK Re-
search and Innovation [grant number EP/S023062/1]. This work was also
funded in part by 3M Health Information Systems, Inc.

In this work, a novel TCN architecture is proposed which is able
to focus on specific temporal context within its receptive field. This
is achieved by using an additional depthwise convolution kernel in
the depthwise-separable convolution with a small dilation factor. In-
spired by work in dynamic convolutional networks, an attention net-
work is used to selected how to weight each of the depthwise ker-
nels [20, 21].

The remainder of this paper proceeds as follows. Section 2 intro-
duces the signal model and the WD-TCN dereverberation network.
Section 3 describes the experimental setup and data and results are
presented in Section 4. Section 5 concludes the paper.

2. DEREVERBERATION NETWORK

In this section the monaural speech dereverberation signal model is
introduced and the proposed WD-TCN dereverberation model is de-
scribed. The general WD-TCN model architecture is similar to the
reformulation of the Conv-TasNet speech separation model [22] as a
denoising autoencoder (DAE) in [19].

2.1. Signal Model

A reverberant single-channel speech signal is defined as

x[i] = h[i] ∗ s[i] = sdir[i] + srev[i] (1)

for discrete time index i where ∗ denotes the convolution opera-
tor, h[i] denotes a room impulse response (RIR) and s[i] denotes
the clean speech signal. In this paper the target speech is sdir[i] =
αs[i − τ ], i.e. the clean signal convolved with the direct path of the
RIR from speaker to receiver, expressed by the delay of signal travel
from speaker to receiver τ and attenuation factor α.

The mixture signal x[i] is processed in Lx blocks

xℓ = [x[0.5(ℓ− 1)LBL], . . . , x[0.5(1 + ℓ)LBL − 1]] (2)

of LBL samples with a 50% overlap for frame index ℓ ∈ {1, . . . , Lx}.

2.2. Encoder

The encoder is a 1D convolutional layer with trainable weights B ∈
R

LBL×N , where LBL and N are the kernel size and number of out-
put channels respectively. This layer transforms xℓ into a set of fil-
terbank features wℓ such that

wℓ = Henc (xℓB) , (3)

where Henc : R
1×N → R

1×N is a ReLU activation function.
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2.3. Mask Estimation using WD-TCNs

A mask estimation network is trained to estimate a sequence of
masks mℓ that filter the encoded features wℓ to produce an encoded
dereverberated signal defined as

vℓ = mℓ ⊙wℓ. (4)

The ⊙ operator denotes the Hadamard product. A more detailed de-
scription of the TCN used as a baseline in this paper is provided
in [23]. Streaming implementations of these models are feasible
but for this paper we focus on utterance-level implementations for
brevity [22].

The conventional TCN consists of an initial stage which nor-
malizes the encoded features wℓ and reduces the number of features
from N to B for each block using a pointwise convolution (P-Conv)
bottleneck layer [22]. The TCN is composed of a stack of X di-
lated convolutional blocks that is repeated R times. This structure
allows for increasingly larger models with increasingly larger re-
ceptive fields [19]. The depthwise convolution (D-Conv) layer in
the blocks has an increasing dilation factor to the power of two
for the X blocks in a stack, i.e. the dilation factors f for each
block are taken from the set {20, 21, . . . , 2X−1} in increasing order.
Fig. 1 (a) depicts the convolutional block as implemented in [23,24].
The convolutional block consist primarily of P-Conv and D-Conv
layers with parametric rectified linear unit (PReLU) activation func-
tions [25] and global layer normalization (gLN) layers [22]. The
P-Conv and D-Conv layers are structured to allow increasingly
larger models to have larger receptive fields. Combining these two
operations is an operation known as depthwise-separable convolu-
tion (DS-Conv) [22]. More detailed definitions of P-Conv, D-Conv
and DS-Conv layers are given in Section 2.3.1 before the proposed
WD-TCN to replace the DS-Conv operations in TCNs is introduced
in Section 2.3.2, denoted in this paper as weighted multi-dilation
depthwise-separable convolution (WD-Conv).

2.3.1. Depthwise-Separable Convolution (DS-Conv)

The DS-Conv operation is a factorised version of standard convolu-
tional kernel using a D-Conv layer and a P-Conv layer. The main
motivation for using DS-Conv is primarily parameter efficiency
where the number of channels is sufficiently larger than the kernel
size [22]. Note that in this section the focus is entirely on 1D con-
volutional kernels but the same principle can be extended to higher
dimensional kernels.

The D-Conv layer is an entirely sequential convolution with di-
lation factor f , i.e. each operation operates on each input channel
individually. For the matrix of input features Y ∈ R

G×Lx where G

is the number of input channels (and consequently also the number
of output channels) the D-Conv operation can be defined as

D(Y,KD) =
[

(y0 ∗ k0)
⊤
, . . . , (yG−1 ∗ kG−1)

⊤
]⊤

(5)

where KD ∈ R
G×P is the the D-Conv kernel matrix of trainable

weights and P is the kernel size. The gth row of Y and KD are
denoted by yg and kg respectively.

The P-Conv layer is an entirely channel-wise convolution. This
operation in practice is a standard 1D convolutional kernel but with
only a kernel size of 1. The P-Conv operation can be defined as

P(Y,KP) = Y
⊤
KP (6)

where KP ∈ R
G×H is the P-Conv kernel of trainable weights.

Combining the definitions for the D-Conv and P-Conv opera-
tions, the DS-Conv operation is defined as

S (Y,KD,KP) = P (D (Y,KD) ,KP) . (7)

The DS-Conv operation as implemented in the baseline system used
in [19] and in this paper can be seen in Fig. 1 (a) highlighted by the
dashed orange box.
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Fig. 1: (a) Convolutional block in baseline TCN; (b) Proposed con-
volutional block. Example for final block in a stack of conv. blocks
for Q = 2 with dilation factor f = 2X−1. Note that a residual con-
nection around the entire block is omitted for brevity.

2.3.2. Weighted Multi-Dilation Depthwise-Separable Convolution

(WD-Conv)

The WD-Conv network structure depicted in Fig. 1 (b) is proposed
here as an extension to the DS-Conv operation where it is preferable
to allow the network to be more selective about the temporal context
to focus on without drastically increasing the number of parameters
in the model. The proposed WD-Conv layer incorporates additional
parallel D-Conv layers that can have a different dilation factor, hence
it is referred to as dilation-augmented. The output of the D-Conv
layers are weighted in a sum-to-one fashion and summed together.
This summed output is then passed as the input to a P-Conv. In its
simplest form the WD-Conv operation can be formulated as

W
(

Y,
(

KD1,, . . . ,KDQ

)

,KP

)

=

P

(

Q
∑

q=1

aqDq

(

Y,KDq

)

,KP

)

(8)

where Q is the number of parallel D-Convs in the WD-Conv and aq

are their corresponding weights that sum-to-one, i.e.
∑Q

q=1
aq = 1.

In the model proposed here the number of D-Convs is set to Q = 2
; one with a dilation factor f = 1 and the other according to the
exponentially increasing dilation rule defined previously and used
in [19, 22, 23] where f is increasing in powers of 2 with every suc-
cessive block in a stack of X blocks. Note that the first convolutional
blocks of a stack of X blocks in the proposed implementation use an
identical dilation of f = 1 for each of the D-Conv kernels in the
WD-Conv operation.
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Fig. 2: Squeeze and excite attention weighting network. Output di-
mensionality of each layer is indicated above arrows.

Inspired by the dynamic convolution kernel proposed in [21],
the implementation proposed in this paper computes the weights for
each D-Conv layer using an squeeze-and-excite (SE) attention net-
work [26]. The SE attention network is shown in Fig. 2 and is com-
posed of a global average pooling layer that reduces the sequence di-
mension from Lx to 1 producing a vector of dimension H , the same
as the feature dimension of the input. This feature vector is then
compressed using a linear layer, with a rectified linear unit (ReLU)
activation, to a dimension of 4 as in [21]. The final stage is a linear
layer that computes a weight for each of the D-Conv kernels in the
WD-Conv structure. In the proposed model there are two D-Conv
kernels and so the linear layer has an input dimension of 4 and an
output dimension of 2. A softmax activation is used to ensure the
sum-to-one constraint on the weights of the D-Conv layers.

2.4. Decoder

The decoder tansforms the encoded dereverberated signal vℓ back
into a time domain signal using a transposed 1D convolutional layer
with N input channels, 1 output channel and a kernel size of LBL

such that
ŝℓ = vℓU (9)

where U ∈ R
N×LBL is a matrix of trainable convolutional weights

and ŝℓ is an estimated dereverberated signal block in the time do-
main. The overlap-add method is used for re-synthesis of the signal
from the overlapping blocks.

2.5. Objective Function

The objective function used here is the SISDR function [27] which
is the same as that used to train the baseline TCN [19]. It is reformu-
lated as a loss function by taking the negative SISDR value between
the estimated speech segment ŝ and the reference direct path of the
signal sdir defined as

LSISDR(ŝ, sdir) := −10 log
10

∥

∥

∥

⟨ŝ,sdir⟩sdir

∥sdir∥
2

∥

∥

∥

2

∥

∥

∥
ŝ− ⟨ŝ,sdir⟩sdir

∥sdir∥
2

∥

∥

∥

2
. (10)

3. EXPERIMENTAL SETUP

3.1. Model and Training Configuration

Different model configurations are compared in the following to
demonstrate the improvement gained by the proposed WD-TCN
model across a range of model sizes. This is done by varying the
number of convolutional blocks in a dilated stack X as well as the
number of times the dilated stack is repeated R. Based on previous
work [19], the ranges of X ∈ {4, 5, 6, 7, 8} and R ∈ {4, 5, 6, 7, 8}
were selected, resulting in 25 different configurations. All other
parameters are fixed, i.e. kernel size LBL = 16, number of encoder

output channels N = 512, number of bottleneck output channels
B = 128, number of channels inside the convolutional blocks
H = 512 and the kernel size inside each D-Conv P = 3. For more
details on these parameters see [19, 22, 23].

The same training approach as in [19] is used for both the base-
line TCN and WD-TCN. Each model is trained for 100 epochs.
An initial learning rate of 0.001 is used and is halved if there is
no improvement for 3 epochs. A batch size of 4 is used. The
training was performed using the SpeechBrain speech processing
toolkit [24]. The implementation of the proposed WD-TCN is avail-
able on GitHub1.

3.2. Data

The simulated WHAMR noisy reverberant two speaker speech sep-
aration corpus [16] is used for the following experiments in this sec-
tion. Only the reverberant and clean first speaker data is used for the
input data x[i] and target data sdir[i]. RIRs are simulated using the
pyroomacoustics software toolkit [28] and then convolved with the
speech clips to produce the reverberant signal x[i]. The training set
contains 20,000 samples for training which are truncated or padded
to 4 s in length, to address sample length mismatches in batches and
to also speed up training. There are 5000 samples (14.65 hrs) and
3000 samples (9 hrs) in the validation and test sets respectively.

3.3. Metrics

A number of metrics are used to assess a variety of properties in the
dereverberated speech. The objective function SISDR is also used
to measure distortions in signals. Speech-to-reverberation modula-
tion energy ratio (SRMR) [29] is a measure used to directly measure
reverberant effects in the signal. Perceptual evaluation of speech
quality (PESQ) [30] and extended short-time objective intelligibil-
ity (ESTOI) [31] are objective measures used to assess the quality
and intelligibility of signals.

4. RESULTS

4.1. Performance Metrics and Model Size

The average SISDR results on the WHAMR evaluation set for the
25 chosen model configurations of the proposed WD-TCN model
are given in Table 1 with SISDR improvements over the TCN model
in the parenthesis. The bold font indicates best performance and
highest improvement, respectively. These results show that the
WD-TCN outperforms the TCN model across all 25 model configu-
rations. The biggest performance gains are seen around {X,R} =
{5, 7} and the WD-TCN model with most parameters and largest

1Link to WD-TCN model on GitHub: https://github.com/

jwr1995/WD-TCN

X

4 5 6 7 8

4 11.21 (.28) 11.66 (.29) 11.81 (.40) 11.94 (.38) 12.04 (.40)
5 11.51 (.41) 11.86 (.41) 11.94 (.23) 12.11 (.42) 12.11 (.39)

R 6 11.64 (.38) 11.95 (.30) 12.08 (.31) 12.09 (.23) 12.11 (.20)
7 11.65 (.20) 12.17 (.44) 12.22 (.30) 12.16 (.13) 12.14 (.16)
8 11.79 (.27) 12.03 (.19) 12.20 (.17) 12.21 (.22) 12.26 (.32)

Table 1: SISDR performance of WD-TCN with SE attention in dB.
Numbers in (·) report performance improvement over baseline TCN.



Fig. 3: Comparison of baseline TCN and WD-TCN over model size
(no. of parameters) in terms of SISDR (top) and SRMR (bottom).

receptive field, {X,R} = {8, 8}, shows best overall performance,
contrary to the TCN model which gave the best SISDR results with
{X,R} = {6, 8}. Fig. 3 (top) shows SISDR performance for all
models over the model sizes in number of parameters. It can be seen
that using the WD-TCN is a more parameter efficient approach to
improving model performance than increasing the number of convo-
lutional blocks (larger X or R values) in a conventional TCN. The
SRMR performance against model size (Fig. 3, lower panel) shows
the same findings, i.e. that the WD-TCN is a more parameter effi-
cient approach to improving performance. For some larger models
(> 6M parameters) performance differs less. However the best per-
forming model in terms of SRMR is still the WD-TCN.

Table 2 shows the results of the best performing TCN and
WD-TCN models for each of the chosen performance metrics, high-
lighted in yellow, compared with the respective other model for the
same X and R hyper-parameters. The performance in PESQ is
inconclusive as many TCN models outperform their corresponding
WD-TCN configurations but the best PESQ score of 3.5 is achieved
with the WD-TCN model. The WD-TCN models show slightly
better performance in ESTOI in line with the trend already observed
in SRMR and SISDR. Note that SRMR is considered the most
significant metric as it is designed to assess reverberation only.

4.2. Squeeze-and-Excite Attention Analysis and T60 Variation

In the following, the attentive weights aq in (8) in the convolu-
tional blocks are analysed. Note that a1 corresponds to the attention
weight applied to the D-Conv layers with the increasing dilation of
f ∈ {1, 2, . . . , 2X−1} for all convolutional blocks (cf. Fig. 1 (b))
and a2 = is the weight corresponding to the D-Conv layers with the
more local fixed dilation f = 1. To analyse whether the SE atten-
tion approach was working as intended the attention weights were
firstly computed across the entire evaluation set for every WD-TCN
model trained in Table 1. Mean values of the weights for each model
and each sample in the evaluation set were then computed and the

Model X R # params SISDR PESQ ESTOI SRMR

TCN 6 7 5.8M 11.92 3.46 0.930 8.65
WD-TCN 6 7 6.0M 12.22 3.5 0.933 8.69

TCN 6 8 6.6M 12.03 3.46 0.932 8.70
WD-TCN 6 8 6.8M 12.20 3.43 0.934 8.72

TCN 8 4 4.5M 11.63 3.48 0.927 8.60
WD-TCN 8 4 4.6M 12.04 3.45 0.931 8.67

TCN 8 7 7.7M 11.98 3.46 0.933 8.79

WD-TCN 8 7 7.9M 12.14 3.45 0.935 8.72

TCN 8 8 8.8M 11.94 3.46 0.933 8.71
WD-TCN 8 8 9.1M 12.26 3.45 0.935 8.8

Table 2: Best performing TCN and WD-TCN models compared cor-
responding models in SISDR, PESQ, ESTOI and SRMR. Bold indi-
cates best performance per configuration, in terms of the X and R

hyper-parameters. Results highlighted in yellow indicate best overall
results for each model in each metric.

evaluation set was in divided into increasing T60 ranges from 0.1s
up to 1s. The mean for each weight aq over all models and samples,
denoted as āq, q ∈ {1, 2}, was then computed for each T60 range.
Figure 4 shows how the mean weight values vary across increasing
T60 ranges. As the T60 range increases ā1 increases. This demon-
strates the SE attention approach is working as intended because the
network has a less local focus within its receptive field for speech
signals with larger reverberation times. Similarly the mean of the lo-
cal attention weight ā2 decreases as the T60 range increases demon-
strating that the network is more focused on local information in its
receptive field when the speech has a smaller reverberation time.

Fig. 4: Mean values of attention weights āq across six different T60
ranges in the WHAMR evaluation set over all models with X ∈
{4, . . . , 8} and R ∈ {4, . . . , 8}.

5. CONCLUSIONS

In this work, the WD-TCN model was proposed for TCN-based
speech dereverberation by replacing depthwise-separable convolu-
tions with weight multi-dilation depthwise-separable convolutions.
It was shown that the WD-TCN consistently outperformed a conven-
tional TCN across 25 different model configurations and that using
the WD-TCN was a more parameter efficient approach to improv-
ing model performance than increasing the number of convolutional
blocks in the TCN.
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