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A B S T R A C T   

The consideration of discrete variables (e.g. catalyst, ligand, solvent) in experimental self-optimization ap-
proaches remains a significant challenge. Herein we report the application of a new mixed variable multi- 
objective optimization (MVMOO) algorithm for the self-optimization of chemical reactions. Coupling of the 
MVMOO algorithm with an automated continuous flow platform enabled identification of the trade-off curves for 
different performance criteria by optimizing the continuous and discrete variables concurrently. This approach 
utilizes a Bayesian methodology to provide high optimization efficiency, enhances process understanding by 
considering key interactions between the mixed variables, and requires no prior knowledge of the reaction. 
Nucleophilic aromatic substitution (SNAr) and palladium catalyzed Sonogashira reactions were investigated, 
where the effect of solvent and ligand selection on the regioselectivity and process efficiency were determined 
respectively whilst simultaneously determining the optimum continuous parameters in each case.   

1. Introduction 

Machine learning is becoming increasingly pervasive in all chemistry 
research and development activities, from molecular discovery through 
to process optimization and chemical manufacturing. [1–3] This has 
driven the emergence of new and challenging molecular targets with 
greater three-dimensionality, which requires the exploitation of a wider 
and more complex reaction toolkit. [4] Subsequent development of 
these more intricate processes is a challenging and expensive task, often 
requiring the optimization of both continuous and discrete variables. 
Traditionally, high-throughput screening (HTS) methodologies are used 
to screen different combinations of discrete variables (catalyst, ligand, 
solvent), prior to further optimization of the continuous variables (re-
action time, temperature, stoichiometry). [5–8] However, faced with 
increasingly complex synthetic methodologies, the laborious ‘brute- 
force’ approach to HTS (i.e., testing all possible combinations of discrete 
variables) is becoming increasingly unattractive. In addition, the 
workflow of optimizing discrete and continuous variables in a sequential 

manner results in an incomplete process understanding, as key in-
teractions between the mixed variables are not considered (Fig. 1). For 
example, the effects of varying temperature on the activity of different 
catalysts would be omitted. 

An attractive solution to these limitations would be to simulta-
neously optimize the mixed variables of chemical reactions algorith-
mically, by coupling automated reactor platforms with machine 
learning to intelligently explore the multivariate reaction landscape. [9] 
This self-optimization technology has been shown to greatly accelerate 
process development, yet current systems are largely limited to the 
optimization of continuous variables, owing to a lack of advanced al-
gorithms available for mixed variable problems with expensive-to- 
evaluate objectives. [10–26] Warren et al. explored the multi-objective 
optimization of molar mass dispersity and monomer conversion for a 
series of RAFT polymerizations, using a Thompson sampling-based al-
gorithm (TSEMO). [27] However, individual optimizations were 
required for each RAFT agent, which resulted in high data density in 
non-optimal regions of the reaction space. Similarly, Lapkin et al. 
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explored the multi-objective optimization of a Rhodium catalyzed 
asymmetric hydrogenation, but where solvent and temperature were 
simultaneously optimized. [28] This was achieved by using molecular 
descriptors to define the candidate solvents, thereby converting the 
discrete variable to the continuous domain. However, selection of the 
molecular descriptors which effectively account for the observed 
behavior can require extensive prior knowledge of the system, which is 
difficult to obtain for novel reactions. For example, correlations between 
the bite angle of diphosphine complexes and selectivity in catalytic re-
actions. [29] 

In contrast, black-box optimization methods bypass the requirement 
for physical knowledge of the discrete variables. [30] Jensen et al. 

utilized an optimal DoE-based algorithm to optimize a series of mixed 
variable transition metal catalyzed cross-coupling reactions. [31–33] 
This approach used the adaptive response surface method to iteratively 
eliminate catalytic species from the optimization. However, as a single- 
objective optimization method, it does not provide insight into the 
trade-off (Pareto front) between conflicting performance criteria, which 
is crucial in the development of viable industrial processes. We have 
previously demonstrated the importance of identifying the Pareto front 
between economic and environmental objectives during self- 
optimization workflows. [34–36] As such, there remains a need to 
develop efficient multi-objective algorithms which include discrete 
variables within the optimization domain. 

Fig. 1. Comparison of full reaction optimization using traditional HTS methodologies versus newly developed MVMOO self-optimization approach.  

Scheme 1. Generalized flow diagram for automated mixed variable multi-objective reaction optimization. The reactor configuration can be modified for different 
mixed variable systems via selection of desired 6-way valves/pumps. 
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Chemical reaction optimizations are inherently expensive-to- 
evaluate problems due to the requirement of conducting physical ex-
periments, which can be time consuming and resource intensive. In this 
work, we use our recently developed mixed variable multi-objective 
optimization (MVMOO) algorithm, which has been shown to perform 
competitively (i.e. reduced experimental budget) for a series of in silico 
test problems when compared to alternative methods, including a 
mixed-variable implementation of NSGA-II. [37] 

An open-source implementation of MVMOO is available on GitHub 
(https://github.com/jmanson377/MVMOO). This study identifies key 
interactions between mixed variables whilst highlighting the complete 
trade-off between competing objectives, which maximizes process un-
derstanding for accelerating the development of chemical processes. 
Although the simultaneous optimisation of categorical and continuous 
variables has previously been achieved using HTS batch systems, [38] 
continuous flow systems offer additional benefits, including access to 
higher temperatures and hazardous intermediates during these optimi-
zations. Herein, the MVMOO algorithm was combined with an auto-
mated continuous reaction system, and evaluated using two case studies: 
(i) a SNAr reaction with solvent dependent regioselectivity; [39] (ii) a 
Sonogashira reaction as a key step in the synthesis of a TRPV1 receptor 
antagonist. [40] 

2. Materials and methods 

2.1. Chemicals 

All of the following compounds were purchased from suppliers and 
used without further purification. 1-Methyl-2-pyrrolidone (NMP; 99%), 
dimethylformamide (DMF; Extra Pure), dimethylacetamide (DMAc; 
99+%), ethanol (EtOH; 99.8%), acetonitrile (MeCN; HPLC grade), 
morpholine (99+%) and pyrrolidine (99%) were purchased from Fisher 
Scientific ltd. 2,4-Difluoronitrobenzene (99%), 2-bromo-4-(trifluoro-
methyl)benzonitrile (95%), 2-dicyclohexylphosphino-2′-(N,N-dimethy-
lamino)biphenyl (DavePhos; 98%), 2-dicyclohexylphosphino-2′.4′.6′- 
triisopropylbiphenyl (XPhos; 98%), (2-biphenyl)dicyclohexylphosphine 
(CyJohnPhos; 98%) and 2–dicyclohexylphosphino-2′,6′-dimethox-
ybiphenyl (SPhos; 98%) were purchased from Fluorochem. Triphenyl-
phosphine (TPP; flake, 99%) was purchased from Alfa Aesar. 3,3- 
Dimethyl-1-butyne (98%), 1,3,5-trimethoxybenzene (99+%), biphenyl 
(99.5% GC), copper (I) iodide (98%) and palladium (II) acetate (99+%) 
were purchased from Merck Life Science UK ltd. Triethylamine (99%) 
was purchased from Acros Organics. 

2.2. MVMOO algorithm 

The MVMOO algorithm was integrated with the automated flow 
reactor to enable closed-loop mixed variable multi-objective optimiza-
tion of chemical reactions (Scheme 1). [37] The MVMOO algorithm is 
initialized with a space filling design, using five identical Latin hyper-
cube (LHC) sampling points per discrete variable, to provide sufficient 
exploratory information for use with the iterative process models. [41] 
Within the algorithm, individual Gaussian processes (GPs) are utilized as 
surrogate models for each objective. To enable modelling of mixed 
variables, the GP surrogates use an internal distance metric based on 
Gower similarity, which permits the use of pre-existing covariance 
functions such as the mixed Matérn 5/2 kernel. [42] The hyper-
parameters are optimized by maximizing the log marginal likelihood of 
the current data using GPflow’s internal Adam optimizer. [43] The 
kernel lengthscales are learned hyperparameters which correlate to the 
relative importance of each input variable, where lower values indicate 
a greater contribution to the objective. The next set of reaction condi-
tions are determined via internal optimization of the expected 
improvement matrix (EIM) acquisition function with a Euclidean based 
transformation. [44] The optimization of the EIM occurs in two stages: 
(i) a large sample of the EIM is taken using a Halton sequence for each 

discrete variable combination; (ii) the leading variable combination 
undergoes additional local optimized using SciPy’s implementation of 
sequential least squares programming (SLSQP). [45] After conducting 
the suggested experiment, the GPs are updated, and the process is 
repeated iteratively for a desired number of function evaluations. This 
approach balances exploration and exploitation to identify the global 
Pareto front. 

2.3. Automated reaction platform 

Reagents were pumped using JASCO PU-2080 dual piston HPLC 
pumps and flows were mixed using Swagelok SS-100–3 tee-pieces. Re-
actors of a desired volume were made from PTFE tubing (1/16′′ OD, 1/ 
32′′ ID), which were fitted to a cylindrical aluminium block and heated 
with a Eurotherm 3200 temperature controller. Solvent and ligand se-
lection was achieved using a JASCO CO4062 column oven module as a 
6-way switching valve. Sampling was achieved using a VICI Valco 
EUDA-CI4W sample loop (4-port) with 0.5 μL injection volume. The 
reactor was maintained under the desired fixed back pressure using an 
Upchurch Scientific back pressure regulator (250 psi). Quantitative 
analysis was performed on an Agilent 1260 Infinity II series HPLC in-
strument fitted with an Agilent Poroshell 120 EC-C18 reverse phase 
column (5 cm length, 4.6 mm ID and 2.7 μm particle size). The auto-
mated system was controlled using a custom written MATLAB program, 
and the MVMOO algorithm was written and implemented in Python. 

2.4. Optimization procedure 

A MATLAB script controlled the pump flow rates, valve positions, 
reactor temperature and sampling. For each iteration valve positions 
were set to the corresponding discrete variable; the reactor was allowed 
to stabilize at the desired operating temperature; the pumps were set to 
the required flow rates and left for three reactor volumes to reach steady 
state; and finally, the sampling valve was triggered alongside HPLC 
analysis. To minimize the duration and material consumption per iter-
ation: (i) pump flow rates were reduced to a minimum during heating/ 
cooling of the reactor; (ii) initial LHC experiments were sorted in order 
of increasing temperature; (iii) sequential LHC experiments were started 
whilst analysis of the previous experiment was running. Responses for 
each objective were calculated from HPLC chromatograms obtained 
after each iteration and used to update the surrogate models and 
generate the next set of reaction conditions using the MVMOO algo-
rithm. In each case, the hypervolume was monitored after 60 experi-
ments, and the optimizations terminated when a significant plateau was 
observed (see ESI for details). 

Scheme 2. SNAr reaction between 2,4-difluoronitrobenzene 1 and morpholine 
2, forming ortho-3 and para-4 regioisomers, and bis adduct 5. Includes opti-
mization parameters. 
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3. Results and discussion 

3.1. Nucleophilic aromatic substitution (SNAr) 

Nucleophilic aromatic substitution (SNAr) reactions provide a 
convenient method for forming aromatic carbon-heteroatom bonds. The 
regioselectivity of SNAr reactions using 2,4-dihaloaromatic compounds 
are known to be greatly influenced by solvent effects. In addition, the 
ability to selectively synthesize different regioisomers is key for the 
preparation of desired compounds, as well as their corresponding by- 
products for impurity profiling. Therefore, we decided to investigate 
the SNAr reaction between 2,4-difluoronitrobenzene 1 and morpholine 
2, simultaneously optimizing for the formation of both the ortho-isomer 
3 and para-isomer 4 (Scheme 2). In contrast to previous SNAr self- 
optimizations, solvent choice was included as a discrete variable, 
alongside continuous variables comprising residence time, concentra-
tion, equivalents, and temperature. Solvents were selected based on 
their ability to provide a homogeneous reaction mixture, as well as their 
different solvent polarities (see Table 1), which is a factor known to 
influence the regioselectivity of the reaction. The MVMOO algorithm 
was initialized with five LHC experiments per solvent (25 experiments), 
and then allowed to run for 74 sequential iterations. Of these experi-
ments, there were 20 non-dominated solutions identified, which high-
light the trade-off between formation of the ortho-3 and para-4 
regioisomers (Fig. 2). The optimal ortho-3 yield was 80% with a corre-
sponding para-4 yield of 10%. Conversely, the optimal para-4 yield was 
48% with a corresponding ortho-3 yield of 49%. 

In this case, the Pareto front is divided into three discontinuous 
sections as a result of different solvent effects. MeCN and NMP afford the 
highest yields of ortho-3 and para-4 respectively, whereas DMF provides 
a moderate compromise. Despite the structural similarity between DMF 
and DMAc, DMAc gave higher para-4 selectivity, but was dominated by 
NMP in all but one experiment. In contrast, EtOH gives high ortho-3 
selectivity, but suffers from significantly lower overall yields in the 
optimization domain. This resulted in the MVMOO algorithm only 
suggesting one EtOH-based experiment for exploration beyond the 
initial LHC. 

Notably, the MVMOO algorithm was able to map the relative 
importance of the variables at each discrete level across the Pareto front 
(Fig. 3). When using NMP, a relatively high para-4 yield can be achieved 
across a wide range of continuous variable combinations, indicating that 
the solvent effect is the dominant factor. In contrast, when using MeCN, 
a high residence time, equivalents and temperature are also required to 
maximize the ortho-3 yield, whereas concentration has lesser impor-
tance. Similarly, the moderate compromise achieved using DMF requires 
a high temperature, equivalents and concentration, combined with 
moderate temperatures. Importantly, traditional optimization work-
flows, where discrete and continuous variables are optimized sequen-
tially, would have falsely assumed that the interactions between the 
continuous variables and each solvent were the same. In contrast, the 
MVMOO algorithm used in this approach successfully optimized the 
mixed variables simultaneously, thus providing greater understanding 
of the trade-off in regioselectivity. In addition, the optimization was 
completed in just over 18 h with no human intervention, representing an 
increase in efficiency compared to iterative HTS campaigns, or indi-
vidual optimizations for each discrete variable. [27] 

Given the diverse dataset provided by the optimization, an analysis 
of which underlying chemical descriptors effectively model the observed 
behavior was investigated (see ESI for details). Three common solvent 
polarity metrics (Table 1) were examined: (i) polarity index, a measure 

Table 1 
Values of common solvent polarity metrics for evaluation as chemical 
descriptors.  

Solvent Polarity Indexa Dipole Moment Dielectric Constant 

DMF  6.4  3.86  36.71 
NMP  6.7  4.09  32.20 
EtOH  5.2  1.66  24.55 
DMAc  6.5  3.72  37.78 
MeCN  5.8  3.44  37.50  

a Taken from Snyder et al. [46]. 

Fig. 2. (A). Results of the five-parameter mixed variable multi-objective opti-
mization of the SNAr reaction. For each solvent, 5 initial LHC points were 
collected. The MVMOO algorithm conducted 74 additional experiments, 20 of 
which formed a Pareto front highlighting the trade-off in regioselectivity be-
tween the ortho-3 and para-4 products. Solvent shapes represent: ● – DMF, ◆ – 
NMP, ■ – EtOH, þ – MeCN, £ – DMAc (B). Calculated hypervolume vs 
experiment number graph to visualize the hypervolume increase over the 
optimization period for the SNAr. 

O.J. Kershaw et al.                                                                                                                                                                                                                             



Chemical Engineering Journal 451 (2023) 138443

5

Fig. 3. Parallel coordinate plots showing the interactions between the variables for each Pareto optimal solution of the SNAr reaction. Each line represents a single 
non-dominated solution for the corresponding solvent. DMAc also achieved a Pareto point (see ESI) which achieved an ortho yield of 55.3% and para yield of 40.4% 
requiring: tres = 2 min, equivalents = 5, SM concentration = 0.175 M and Temperature = 90 ◦C. 
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of a solvents’ ability to interact with various polar test solutes; (ii) dipole 
moment, the product of the magnitude of separated charges and the 
distance between them; (iii) dielectric constant, a measure of a sub-
stance’s ability to insulate charges from each other. Overall, a bias to-
wards ortho-substitution was observed, likely caused by hydrogen 
bonding between the nucleophile and the neighboring nitro group. [47] 
The relationship deduced by the models, in which increasing the po-
larity index of the solvent results in an increase in para-4 yield, corre-
lates well with previous studies. [48] In contrast, selecting either dipole 
moment or dielectric constant fails to completely describe the observed 
relationship, with dielectric constant predicting MeCN to behave simi-
larly to DMAc, which was not observed experimentally. These findings 
highlight the importance that chemical descriptor selection can have on 
a model’s ability to accurately map the input domain to the objective 
space. It is worth noting that, although this method enabled the iden-
tification of optimal solvents from a small selection, a significantly 
larger dataset would be required to truly study the key solvent de-
scriptors in more detail. 

3.2. Sonogashira cross-coupling 

Sonogashira cross-coupling reactions provide a convenient method 
for the formation of carbon–carbon bonds between a vinyl or aryl halide 
and a terminal alkyne, generally performed using a palladium catalyst, 
copper co-catalyst, phosphine ligand and amine base. There are a large 
number of factors which can influence the performance of catalytic re-
actions (e.g. sterics, solvent, ligand, heteroatoms, base, temperature, 
metal source), resulting in substantial optimization often being needed 
for different pairs of substrates. The Jensen group have previously 
optimized Suzuki-Miyaura cross-coupling reactions using a droplet-flow 
microfluidic system combined with a MINLP optimization approach. 
However, this method was limited to the optimization of a single 
objective, which restricts the amount of process understanding that can 
be achieved. [30,31] As such, an efficient experimental approach for 
multi-objective optimization of mixed variable catalytic systems on a 
substrate-by-substrate basis would be desirable. Therefore, we decided 
to investigate a pharmaceutically relevant Sonogashira cross-coupling 
reaction, utilizing the developed MVMOO self-optimization approach. 
The Sonogashira cross-coupling reaction between aryl bromide 6 and 
terminal alkyne 7 to form aryl alkyne 8 was investigated (Scheme 3). 

This is a modified step in the synthesis of a TPRV1 receptor antag-
onist, used primarily for the management and treatment of pain. [40,49] 
The following modifications were made to the original reported syn-
thesis to enable optimization using our continuous flow platform: (i) the 
aryl chloride was replaced with the corresponding aryl bromide to in-
crease the rate of reaction; (ii) Pd2dba3 was replaced with the more 
stable PdOAc2 precatalyst; (iii) NEt3 was replaced with a PhMe:MeCN 
(2:1) solvent mixture and pyrrolidine base, providing a homogeneous 
reaction mixture. In addition, reservoirs were prepared and stored under 

nitrogen for the duration of the optimization, overcoming the experi-
mental challenge of metal–ligand complex stabilization. 

As this represents an industrially relevant process, the productivity 
(space–time yield, STY) and environmental impact (reaction mass effi-
ciency, RME) were selected as optimization objectives to identify viable 
operating conditions. Owing to the crucial role of ligands in catalyzed 
reactions, the choice of phosphine ligand was included as a discrete 
variable, alongside residence time, equivalents, and temperature. A 
range of monodentate phosphine ligands were selected for the optimi-
zation due to their high activity in palladium-catalyzed cross-coupling 
reactions, good solubility in organic solvents and commercial avail-
ability. In addition, ligands with different cone angles were chosen to 
assess the effect of steric bulk on the outcome of the reaction. The 
MVMOO algorithm was initialized with five LHC experiments per ligand 
(25 experiments), and then allowed to run for 44 sequential iterations. 
Of these experiments, there were 12 non-dominated solutions identified, 
which highlight the trade-off between STY and RME (Fig. 4). The 
optimal STY was 322.0 kg m− 3 h− 1 with a corresponding RME of 51.5. 
Conversely, the optimal RME was 68.2 with a corresponding STY of 
32.31 kg m− 3 h− 1. In this case, the Pareto front highlights a steep linear 
trade-off, where the STY can be significantly improved whilst having 
little detrimental effect on the RME. Notably, an excellent in-situ yield of 
90% was achieved at the conditions corresponding to the optimum RME. 

The results from the initial LHC were in the region of objective space 
corresponding to a range of RMEs with low STYs. Notably, for each LHC 
experiment, triphenylphosphine was found to give the highest STY and 
RME compared to all other ligands, resulting in the MVMOO algorithm 
predominantly suggesting triphenylphosphine-based experiments for 
subsequent iterations. In general, Sonogashira reactions involving 
deactivated aryl halides favor the use of sterically demanding and 
electron-rich phosphine ligands. [50] The cone angle can be used as a 
measure of the steric bulk of ligands. Although values reported in 
literature vary, the general trend in cone angles for the monodentate 
phosphine ligands used in this work is: TPP < DavePhos, XPhos <
CyJohnPhos < SPhos. Therefore, the results from this optimization are 
counterintuitive based on current chemical understanding. This high-
lights the usefulness of efficient experimental optimization, particularly 
for complex reactions involving novel substrate pairs, where in-
teractions are not fully understood or easily predicted. 

Despite localization of the LHC on regions of low STY, the MVMOO 
algorithm was successful in identifying new regions of objective space 
corresponding to more productive reactions. The MVMOO algorithm 
demonstrated its exploratory ability by conducting a small number of 
SPhos-based experiments, which was identified as the second most 
favorable ligand during the initial LHC. Notably, the optimum STY was 
achieved with SPhos at low residence times, high equivalents and high 
temperatures (Fig. 5). Subsequently, the MVMOO algorithm conducted 
a direct comparison of these continuous conditions using triphenyl-
phosphine, which resulted in an inferior STY and RME as a result of a 

Scheme 3. Sonogashira cross-coupling reaction between aryl bromide 6 and terminal alkyne 7 to form aryl alkyne 8. Includes optimization parameters.  
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lower yield. Rather, triphenylphosphine favored the use of low to 
moderate equivalents, combined with high residence times and low 
temperatures to achieve high RMEs, or low residence times and high 
temperatures to achieve high STYs. Similar to the SNAr case study, the 
interactions between the continuous variables and each ligand were 
found to be significantly different, highlighting simultaneous optimi-
zation of mixed variables to be a superior approach for finding the true 
optima compared to traditional sequential optimization. 

The ability to optimize complex mixed variable catalytic reactions 
for different substrate pairs offers an opportunity to explore new regions 
of chemical space, provided that the method is not experimentally 
laborious. In this case, the developed MVMOO self-optimization 
approach was able to autonomously optimize a four parameter, mixed 
variable Sonogashira cross-coupling reaction, with respect to two ob-
jectives in just 69 experiments over a 22-hour period, with no human 
intervention beyond the preparation of reagent solutions. This is com-
parable to previously reported experimental optimizations of single 
objective mixed variable systems and multi-objective continuous vari-
able systems. [31,35] As such, we envisage that this approach will be 
functional in expanding the reaction toolkit available for synthetic and 
process chemists. 

4. Conclusion 

In conclusion, we have demonstrated the application of a mixed 
variable multi-objective optimization algorithm for the autonomous 
development of chemical reactions. This approach was used to optimize 
the regioselectivity of a SNAr reaction, and the efficiency of a pharma-
ceutically relevant Sonogashira reaction, including the solvent and 
ligand effects respectively. For the SNAr reaction, the trade-off between 
the ortho and para regioisomers was identified, and the corresponding 
variable effects elucidated. Notably, the polarity index of the solvent 
was found to be a useful chemical descriptor for SNAr reactions between 
2,4-dihalonitrobenzenes and amines. For the Sonogashira reaction, the 
trade-off between the productivity and environmental impact was 
identified, which included screening a selection of monodentate phos-
phine ligands. In contrast to current chemical understanding, the least 
sterically demanding ligand, triphenylphosphine, was found to be the 
best performing ligand. This highlights that the results of complex cat-
alytic reactions with different and/or novel substrate pairs can be 
nonintuitive, and therefore warrant experimental optimization. The 
MVMOO algorithm utilized in this work provides an efficient method for 
achieving this, optimizing the two mixed variable reactions with respect 

Fig. 4. (A). Results of the four-parameter mixed variable multi-objective optimization of the Sonogashira cross-coupling reaction. For each ligand, 5 initial LHC 
points were collected. The MVMOO algorithm conducted 44 additional experiments, 12 of which formed a Pareto front highlighting the trade-off in STY and RME. 
Ligand shapes represent: ● – DavePhos, ◆ – XPhos, ■ – CyJohnPhos, £ – SPhos, þ – TPP. (B). Calculated hypervolume vs experiment number for the Sonogashira 
optimization. 
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to two objectives each in a combined time of just 40 h. In addition, this 
approach simultaneously optimizes discrete and continuous variables, 
which enables the identification of key interactions that would other-
wise be missed with traditional sequential optimization. In both case 
studies herein, the interactions between the continuous variables and 
each discrete variable were found to be significantly different i.e., 
different solvents and ligands favored different combinations of 
continuous conditions. Integration of this optimization approach with a 
segmented flow microfluidic system for more resource efficient process 
development is currently under investigation. 
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