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1. Introduction 

Machine learning is becoming increasingly pervasive in all 

chemistry research and development activities, from molecular 

discovery through to process optimisation and chemical 

manufacturing. [1–3] This has driven the emergence of new and 

challenging molecular targets with greater three-dimensionality, 

which requires the exploitation of a wider and more complex 
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The consideration of discrete variables (e.g. catalyst, ligand, solvent) in experimental self-

optimisation approaches remains a significant challenge. Herein we report the application of a 

new mixed variable multi-objective optimisation (MVMOO) algorithm for the self-optimisation 

of chemical reactions. Coupling of the MVMOO algorithm with an automated continuous flow 

platform enabled identification of the trade-off curves for different performance criteria by 

optimizing the continuous and discrete variables concurrently. This approach utilizes a Bayesian 

methodology to provide high optimisation efficiency, enhances process understanding by 

considering key interactions between the mixed variables, and requires no prior knowledge of the 

reaction. Nucleophilic aromatic substitution (SNAr) and palladium catalyzed Sonogashira 

reactions were investigated, where the effect of solvent and ligand selection on the regioselectivity 

and process efficiency were determined respectively whilst simultaneously determining the 

optimum continuous parameters in each case. 
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reaction toolkit. [4] Subsequent development of these more 

intricate processes is a challenging and expensive task, often 

requiring the optimisation of both continuous and discrete 

variables. Traditionally, high-throughput screening (HTS) 

methodologies are used to screen different combinations of 

discrete variables (catalyst, ligand, solvent), prior to further 

optimisation of the continuous variables (reaction time, 

temperature, stoichiometry). [5–8] However, faced with 

increasingly complex synthetic methodologies, the laborious 

‘brute-force’ approach to HTS (i.e., testing all possible 

combinations of discrete variables) is becoming increasingly 

unattractive. In addition, the workflow of optimizing discrete and 

continuous variables in a sequential manner results in an 

incomplete process understanding, as key interactions between the 

mixed variables are not considered (Figure 1). For example, the 

effects of varying temperature on the activity of different catalysts 

would be omitted. 

An attractive solution to these limitations would be to 

simultaneously optimize the mixed variables of chemical reactions 

algorithmically, by coupling automated reactor platforms with 

machine learning to intelligently explore the multivariate reaction 

landscape. [9] This self-optimisation technology has been shown 

to greatly accelerate process development, yet current systems are 

largely limited to the optimisation of continuous variables, owing 

to a lack of advanced algorithms available for mixed variable 

problems with expensive-to-evaluate objectives. [10–26] Warren 

et al. explored the multi-objective optimisation of molar mass 

dispersity and monomer conversion for a series of RAFT 

polymerizations, using a Thompson sampling-based algorithm 

(TSEMO). [27] However, individual optimizations were required 

for each RAFT agent, which resulted in high data density in non-

optimal regions of the reaction space. Similarly, Lapkin et al. 

explored the multi-objective optimisation of a Rhodium catalyzed 

asymmetric hydrogenation, but where solvent and temperature 

were simultaneously optimized. [28] This was achieved by using 

molecular descriptors to define the candidate solvents, thereby 

converting the discrete variable to the continuous domain. 

However, selection of the molecular descriptors which effectively 

account for the observed behavior can require extensive prior 

knowledge of the system, which is difficult to obtain for novel 

reactions. For example, correlations between the bite angle of 

diphosphine complexes and selectivity in catalytic reactions. [29]  

In contrast, black-box optimisation methods bypass the 

requirement for physical knowledge of the discrete variables. [30] 

Jensen et al. utilized an optimal DoE-based algorithm to optimize 

a series of mixed variable transition metal catalyzed cross-

coupling reactions. [31–33] This approach used the adaptive 

response surface method to iteratively eliminate catalytic species 

from the optimisation. However, as a single-objective optimisation 

method, it does not provide insight into the trade-off (Pareto front) 

between conflicting performance criteria, which is crucial in the 

development of viable industrial processes. We have previously 

demonstrated the importance of identifying the Pareto front 

between economic and environmental objectives during self-

optimisation workflows. [34–36] As such, there remains a need to 

develop efficient multi-objective algorithms which include 

discrete variables within the optimization domain.  

Chemical reaction optimizations are inherently expensive-to-

evaluate problems due to the requirement of conducting physical 

experiments, which can be time consuming and resource intensive. 

In this work, we use our recently developed mixed variable multi-

objective optimisation (MVMOO) algorithm, which has been 

shown to perform competitively (i.e. reduced 

experimental budget) for a series of in silico test problems when 

compared to alternative methods, including a mixed-variable 

implementation of NSGA-II. [37]
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Figure 1. Comparison of full reaction optimization using traditional HTS methodologies versus newly developed MVMOO self-

optimization approach. 

 

 
An open-source implementation of MVMOO is available on 

GitHub (https://github.com/jmanson377/MVMOO). This study 

identifies key interactions between mixed variables whilst 

highlighting the complete trade-off between competing objectives, 

which maximizes process understanding for accelerating the 

development of chemical processes. Although the simultaneous 

optimisation of categorical and continuous variables has 

previously been achieved using HTS batch systems, [38] 

continuous flow systems offer additional benefits, including 

access to higher temperatures and hazardous intermediates during 

these optimizations. Herein, the MVMOO algorithm was 

combined with an automated continuous reaction system, and 

evaluated using two case studies: (i) a SNAr reaction with solvent 

dependent regioselectivity; [39] (ii) a Sonogashira reaction as a 

key step in the synthesis of a TRPV1 receptor antagonist. [40] 

2. Materials and Methods 

2.1. Chemicals  

All of the following compounds were purchased from suppliers 

and used without further purification. 1-Methyl-2-pyrrolidone 

(NMP; 99%), dimethylformamide (DMF; Extra Pure), 

dimethylacetamide (DMAc; 99+%), ethanol (EtOH; 99.8%), 

acetonitrile (MeCN; HPLC grade), morpholine (99+%) and 

pyrrolidine (99%) were purchased from Fisher Scientific Ltd.  2,4-

Difluoronitrobenzene (99%), 2-bromo-4-

(trifluoromethyl)benzonitrile (95%), 2-dicyclohexylphosphino-2'-

(N,N-dimethylamino)biphenyl (DavePhos; 98%), 2-

dicyclohexylphosphino-2'.4’.6’-triisopropylbiphenyl (XPhos; 

98%), (2-biphenyl)dicyclohexylphosphine (CyJohnPhos; 98%) 

and 2-dicyclohexylphosphino-2',6’-dimethoxybiphenyl (SPhos; 

98%) were purchased from Fluorochem. Triphenylphosphine 

(TPP; flake, 99%) was purchased from Alfa Aesar. 3,3-Dimethyl-

1-butyne (98%), 1,3,5-trimethoxybenzene (99+%), biphenyl 

(99.5% GC), copper (I) iodide (98%) and palladium (II) acetate 

(99+%) were purchased from Merck Life Science UK Ltd. 

Triethylamine (99%) was purchased from Acros Organics. 

2.2. MVMOO Algorithm 

The MVMOO algorithm was integrated with the automated 

flow reactor to enable closed-loop mixed variable multi-objective 

optimization of chemical reactions (Scheme 1). [37] The 

MVMOO algorithm is initialized with a space filling design, using 

five identical Latin hypercube (LHC) sampling points per discrete 

variable, to provide sufficient exploratory information for use with 

the iterative process models. [41] 
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Scheme 1. Generalized flow diagram for automated mixed variable multi-objective reaction optimization. The reactor 

configuration can be modified for different mixed variable systems via selection of desired 6-way valves/pumps. 

 
Within the algorithm, individual Gaussian processes (GPs) are 

utilized as surrogate models for each objective. To enable 

modelling of mixed variables, the GP surrogates use an internal 

distance metric based on Gower similarity, which permits the use 

of pre-existing covariance functions such as the mixed Matérn 5/2 

kernel. [42] The hyperparameters are optimized by maximizing 

the log marginal likelihood of the current data using GPflow’s 

internal Adam optimizer. [43] The kernel lengthscales are learned 

hyperparameters which correlate to the relative importance of each 

input variable, where lower values indicate a greater contribution 

to the objective.  The next set of reaction conditions are determined 

via internal optimization of the expected improvement matrix 

(EIM) acquisition function with a Euclidean based 

transformation. [44] The optimization of the EIM occurs in two 

stages: (i) a large sample of the EIM is taken using a Halton 

sequence for each discrete variable combination; (ii) the leading 

variable combination undergoes additional local optimized using 

/SciPy’s implementation of sequential least squares programming 

(SLSQP). [45] After conducting the suggested experiment, the 

GPs are updated, and the process is repeated iteratively for a 

desired number of function evaluations.  This approach balances 

exploration and exploitation to identify the global Pareto front. 

2.3. Automated reaction platform 

Reagents were pumped using JASCO PU-2080 dual piston 

HPLC pumps and flows were mixed using Swagelok SS-100-3 

tee-pieces. Reactors of a desired volume were made from PTFE 

tubing (1/16” OD, 1/32” ID), which were fitted to a cylindrical 

aluminium block and heated with a Eurotherm 3200 temperature 

controller. Solvent and ligand selection was achieved using a 

JASCO CO4062 column oven module as a 6-way switching valve. 



 

  

 

Sampling was achieved using a VICI Valco EUDA-CI4W sample 

loop (4-port) with 0.5 μL injection volume. The reactor was 

maintained under the desired fixed back pressure using an 

Upchurch Scientific back pressure regulator (250 psi). 

Quantitative analysis was performed on an Agilent 1260 Infinity 

II series HPLC instrument fitted with an Agilent Poroshell 120 

EC-C18 reverse phase column (5 cm length, 4.6 mm ID and 

2.7 μm particle size). The automated system was controlled using 

a custom written MATLAB program, and the MVMOO algorithm 

was written and implemented in Python. 

2.4. Optimization procedure 

A MATLAB script controlled the pump flow rates, valve 

positions, reactor temperature and sampling. For each iteration 

valve positions were set to the corresponding discrete variable; the 

reactor was allowed to stabilize at the desired operating 

temperature; the pumps were set to the required flow rates and left 

for three reactor volumes to reach steady state; and finally, the 

sampling valve was triggered alongside HPLC analysis. To 

minimize the duration and material consumption per iteration: (i) 

pump flow rates were reduced to a minimum during 

heating/cooling of the reactor; (ii) initial LHC experiments were 

sorted in order of increasing temperature; (iii) sequential LHC 

experiments were started whilst analysis of the previous 

experiment was running. Responses for each objective were 

calculated from HPLC chromatograms obtained after each 

iteration and used to update the surrogate models and generate the 

next set of reaction conditions using the MVMOO algorithm. In 

each case, the hypervolume was monitored after 60 experiments, 

and the optimizations terminated when a significant plateau was 

observed (see ESI for details). 

3. Results and Discussion 

3.1. Nucleophilic Aromatic Substitution (SNAr) 

Nucleophilic aromatic substitution (SNAr) reactions provide a 

convenient method for forming aromatic carbon-heteroatom 

bonds. The regioselectivity of SNAr reactions using 2,4-

dihaloaromatic compounds are known to be greatly influenced by 

solvent effects. In addition, the ability to selectively synthesize 

different regioisomers is key for the preparation of desired 

compounds, as well as their corresponding by-products for 

impurity profiling. Therefore, we decided to investigate the SNAr 

reaction between 2,4-difluoronitrobenzene 1 and morpholine 2, 

simultaneously optimizing for the formation of both the ortho-

isomer 3 and para-isomer 4 (Scheme 2). In contrast to previous 

SNAr self-optimizations, solvent choice was included as a discrete 

variable, alongside continuous variables comprising residence 

time, concentration, equivalents, and temperature. Solvents were 

selected based on their ability to provide a homogeneous reaction 

mixture, as well as their different solvent polarities (see Table 1), 

which is a factor known to influence the regioselectivity of the 

reaction. The MVMOO algorithm was initialized with five LHC 

experiments per solvent (25 experiments), and then allowed to run 

for 74 sequential iterations. Of these experiments, there were 20 

non-dominated solutions identified, which highlight the trade-off 

between formation of the ortho-3 and para-4 regioisomers (Figure 

2). The optimal ortho-3 yield was 80% with a corresponding para-

4 yield of 10%. Conversely, the optimal para-4 yield was 48% 

with a corresponding ortho-3 yield of 49%.  

In this case, the Pareto front is divided into three discontinuous 

sections as a result of different solvent effects. MeCN and NMP 

afford the highest yields of ortho-3 and para-4 respectively, 

whereas DMF provides a moderate compromise. Despite the 

structural similarity between DMF and DMAc, DMAc gave higher 

para-4 selectivity, but was dominated by NMP in all but one 

experiment. 
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Scheme 2. SNAr reaction between 2,4-difluoronitrobenzene 1 

and morpholine 2, forming ortho-3 and para-4 regioisomers, 

and bis adduct 5. Includes optimization parameters. 

 
In contrast, EtOH gives high ortho-3 selectivity, but suffers from 

significantly lower overall yields in the optimization domain. This 

resulted in the MVMOO algorithm only suggesting one EtOH-

based experiment for exploration beyond the initial LHC. 

Notably, the MVMOO algorithm was able to map the relative 

importance of the variables at each discrete level across the Pareto 

front (Figure 3). When using NMP, a relatively high para-4 yield 

can be achieved across a wide range of continuous variable 

combinations, indicating that the solvent effect is the dominant 

factor. In contrast, when using MeCN, a high residence time, 

equivalents and temperature are also required to maximize the 

ortho-3 yield, whereas concentration has lesser importance.  

Similarly, the moderate compromise achieved using DMF 

requires a high temperature, equivalents and concentration, 

combined with moderate temperatures. Importantly, traditional 

optimization workflows, where discrete and continuous variables 

are optimized sequentially, would have falsely assumed that the 

interactions between the continuous variables and each solvent 

were the same. In contrast, the MVMOO algorithm used in this 

approach successfully optimized the mixed variables 

simultaneously, thus providing greater understanding of the trade-

off in regioselectivity. 

 

 
 

 

Figure 2. (A). Results of the five-parameter mixed variable 

multi-objective optimization of the SNAr reaction. For each 

solvent, 5 initial LHC points were collected. The MVMOO 

algorithm conducted 74 additional experiments, 20 of which 

formed a Pareto front highlighting the trade-off in 

regioselectivity between the ortho-3 and para-4 products. 

Solvent shapes represent: ● – DMF, ♦ – NMP, ■ – EtOH, 

+ – MeCN, × – DMAc (B). Calculated hypervolume vs 

experiment number graph to visualize the hypervolume 

increase over the optimisation period for the SNAr. 

 
In addition, the optimization was completed in just over 18 hours 

with no human intervention, representing an increase in efficiency 

compared to iterative HTS campaigns, or individual optimizations 

for each discrete variable. [27]  

(A) 

(B) 



 

  

 

 

Figure 3. Parallel coordinate plots showing the interactions 

between the variables for each Pareto optimal solution of the 

SNAr reaction. Each line represents a single non-dominated 

solution for the corresponding solvent. DMAc also achieved a 

Pareto point (see ESI) which achieved an ortho yield of 55.3% 

and para yield of 40.4% requiring: tres = 2 minutes, equivalents 

= 5, SM concentration = 0.175 M and Temperature = 90 °C. 
 

 

Table 1. Values of common solvent polarity metrics for 

evaluation as chemical descriptors. 
 

a Taken from Snyder et al. [46] 

 

Given the diverse dataset provided by the optimization, an 

analysis of which underlying chemical descriptors effectively 

model the observed behavior was investigated (see ESI for 

details). Three common solvent polarity metrics (Table 1) were 

examined: (i) polarity index, a measure of a solvents’ ability to 

interact with various polar test solutes; (ii) dipole moment, the 

product of the magnitude of separated charges and the distance 

between them; (iii) dielectric constant, a measure of a substance’s 

ability to insulate charges from each other.  

Overall, a bias towards ortho-substitution was observed, likely 

caused by hydrogen bonding between the nucleophile and the 

neighboring nitro group. The relationship deduced by the models, 

in which increasing the polarity index of the solvent results in an 

increase in para-4 yield, correlates well with previous studies. 

In contrast, selecting either dipole moment or dielectric 

constant fails to completely describe the observed relationship, 

with dielectric constant predicting MeCN to behave similarly to 

DMAc, which was not observed experimentally. These findings 

highlight the importance that chemical descriptor selection can 

have on a model’s ability to accurately map the input domain to 

the objective space. It is worth noting that, although this method 

enabled the identification of optimal solvents from a small 

selection, a significantly larger dataset would be required to truly 

study the key solvent descriptors in more detail. 

 

Solvent  Polarity 
Indexa 

Dipole 
Moment 

Dielectric 
Constant 

DMF  6.4 3.86 36.71 

NMP  6.7 4.09 32.20 

EtOH  5.2 1.66 24.55 

DMAc  6.5 3.72 37.78 

MeCN  5.8 3.44 37.50 



 

  

 

3.2. Sonogashira Cross-Coupling 

Sonogashira cross-coupling reactions provide a convenient 

method for the formation of carbon-carbon bonds between a vinyl 

or aryl halide and a terminal alkyne, generally performed using a 

palladium catalyst, copper co-catalyst, phosphine ligand and 

amine base. There are a large number of factors which can 

influence the performance of catalytic reactions (e.g. sterics, 

solvent, ligand, heteroatoms, base, temperature, metal source), 

resulting in substantial optimization often being needed for 

different pairs of substrates. The Jensen group have previously 

optimized Suzuki-Miyaura cross-coupling reactions using a 

droplet-flow microfluidic system combined with a MINLP 

optimization approach. However, this method was limited to the 

optimization of a single objective, which restricts the amount of 

process understanding that can be achieved. [30,31] As such, an 

efficient experimental approach for multi-objective optimization 

of mixed variable catalytic systems on a substrate-by-substrate 

basis would be desirable. Therefore, we decided to investigate a 

pharmaceutically relevant Sonogashira cross-coupling reaction, 

utilizing the developed MVMOO self-optimization approach. The 

Sonogashira cross-coupling reaction between aryl bromide 6 and 

terminal alkyne 7 to form aryl alkyne 8 was investigated (Scheme 

3). 
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Scheme 3. Sonogashira cross-coupling reaction between aryl 

bromide 6 and terminal alkyne 7 to form aryl alkyne 8. Includes 

optimization parameters.  
 

This is a modified step in the synthesis of a TPRV1 receptor 

antagonist, used primarily for the management and treatment of 

pain. The following modifications were made to the original 

reported synthesis to enable optimization using our continuous 

flow platform: (i) the aryl chloride was replaced with the 

corresponding aryl bromide to increase the rate of reaction; (ii) 

Pd2dba3 was replaced with the more stable PdOAc2 precatalyst; 

(iii) NEt3 was replaced with a PhMe:MeCN (2:1) solvent mixture 

and pyrrolidine base, providing a homogeneous reaction mixture. 

In addition, reservoirs were prepared and stored under nitrogen for 

the duration of the optimisation, overcoming the experimental 

challenge of metal-ligand complex stabilization.  

As this represents an industrially relevant process, the 

productivity (space-time yield, STY) and environmental impact 

(reaction mass efficiency, RME) were selected as optimization 

objectives to identify viable operating conditions. Owing to the 

crucial role of ligands in catalyzed reactions, the choice of 

phosphine ligand was included as a discrete variable, alongside 

residence time, equivalents, and temperature. A range of 

monodentate phosphine ligands were selected for the optimization 

due to their high activity in palladium-catalyzed cross-coupling 

reactions, good solubility in organic solvents and commercial 

availability. In addition, ligands with different cone angles were 

chosen to assess the effect of steric bulk on the outcome of the 

reaction.  The MVMOO algorithm was initialized with five LHC 

experiments per ligand (25 experiments), and then allowed to run 

for 44 sequential iterations. Of these experiments, there were 12 

non-dominated solutions identified, which highlight the trade-off 

between STY and RME (Figure 4). The optimal STY was 

322.0 kg m-3 h-1 with a corresponding RME of 51.5. Conversely, 

the optimal RME was 68.2 with a corresponding STY of 

32.31 kg m-3 h-1. 



 

  

 

 
 

Figure 4. (A). Results of the four-parameter mixed variable 

multi-objective optimization of the Sonogashira cross-coupling 

reaction. For each ligand, 5 initial LHC points were collected. 

The MVMOO algorithm conducted 44 additional experiments, 

12 of which formed a Pareto front highlighting the trade-off in 

STY and RME. Ligand shapes represent: ● – DavePhos, 

♦ – XPhos, ■ – CyJohnPhos, × – SPhos, + – TPP. 

(B). Calculated hypervolume vs experiment number for the 

Sonogashira optimisation.   

 
In this case, the Pareto front highlights a steep linear trade-off, 

where the STY can be significantly improved whilst having little 

detrimental effect on the RME. Notably, an excellent in-situ yield 

of 90% was achieved at the conditions corresponding to the 

optimum RME. 

The results from the initial LHC were in the region of objective 

space corresponding to a range of RMEs with low STYs. Notably, 

for each LHC experiment, triphenylphosphine was found to give 

the highest STY and RME compared to all other ligands, resulting 

in the MVMOO algorithm predominantly suggesting 

triphenylphosphine-based experiments for subsequent iterations. 

In general, Sonogashira reactions involving deactivated aryl 

halides favor the use of sterically demanding and electron-rich 

phosphine ligands. The cone angle can be used as a measure of the 

steric bulk of ligands. Although values reported in literature vary, 

the general trend in cone angles for the monodentate phosphine 

ligands used in this work is: 

TPP < DavePhos, XPhos < CyJohnPhos < SPhos. Therefore, the 

results from this optimization are counterintuitive based on current 

chemical understanding. This highlights the usefulness of efficient 

experimental optimization, particularly for complex reactions 

involving novel substrate pairs, where interactions are not fully 

understood or easily predicted. Despite localization of the LHC on 

regions of low STY, the MVMOO algorithm was successful in 

identifying new regions of objective space corresponding to more 

productive reactions. 

 

Figure 5. Parallel coordinate plots showing the interactions 

between the variables for each Pareto optimal solution of the 

Sonogashira reaction. Each line represents a single non-

dominated solution for the TPP ligand points. Line colour is 

scaled with regards to STY weighting to aid in visualization 

(high STY/low RME = –, low STY/high RME = –). SPhos 

achieved a Pareto point (see ESI) which achieved a STY of 

322 kg m-3 h-1 and RME of 68.19 requiring: tres = 1 minute, 

equivalents = 3 and Temperature = 140 °C.  

(A) 

(B) 



 

  

 

The MVMOO algorithm demonstrated its exploratory ability 

by conducting a small number of SPhos-based experiments, which 

was identified as the second most favorable ligand during the 

initial LHC. Notably, the optimum STY was achieved with SPhos 

at low residence times, high equivalents and high temperatures 

(Figure 5).  

Subsequently, the MVMOO algorithm conducted a direct 

comparison of these continuous conditions using 

triphenylphosphine, which resulted in an inferior STY and RME 

as a result of a lower yield. Rather, triphenylphosphine favored the 

use of low to moderate equivalents, combined with high residence 

times and low temperatures to achieve high RMEs, or low 

residence times and high temperatures to achieve high STYs. 

Similar to the SNAr case study, the interactions between the 

continuous variables and each ligand were found to be 

significantly different, highlighting simultaneous optimization of 

mixed variables to be a superior approach for finding the true 

optima compared to traditional sequential optimization. The 

ability to optimize complex mixed variable catalytic reactions for 

different substrate pairs offers an opportunity to explore new 

regions of chemical space, provided that the method is not 

experimentally laborious. In this case, the developed MVMOO 

self-optimization approach was able to autonomously optimize a 

four parameter, mixed variable Sonogashira cross-coupling 

reaction, with respect to two objectives in just 69 experiments over 

a 22-hour period, with no human intervention beyond the 

preparation of reagent solutions. This is comparable to previously 

reported experimental optimizations of single objective mixed 

variable systems and multi-objective continuous variable 

systems. [31,35] As such, we envisage that this approach will be 

functional in expanding the reaction toolkit available for synthetic 

and process chemists. 

4. Conclusion 

In conclusion, we have demonstrated the application of a mixed 

variable multi-objective optimization algorithm for the 

autonomous development of chemical reactions. This approach 

was used to optimize the regioselectivity of a SNAr reaction, and 

the efficiency of a pharmaceutically relevant Sonogashira reaction, 

including the solvent and ligand effects respectively. For the SNAr 

reaction, the trade-off between the ortho and para regioisomers 

was identified, and the corresponding variable effects elucidated. 

Notably, the polarity index of the solvent was found to be a useful 

chemical descriptor for SNAr reactions between 2,4-

dihalonitrobenzenes and amines. For the Sonogashira reaction, the 

trade-off between the productivity and environmental impact was 

identified, which included screening a selection of monodentate 

phosphine ligands. In contrast to current chemical understanding, 

the least sterically demanding ligand, triphenylphosphine, was 

found to be the best performing ligand. This highlights that the 

results of complex catalytic reactions with different and/or novel 

substrate pairs can be nonintuitive, and therefore warrant 

experimental optimization. The MVMOO algorithm utilized in 

this work provides an efficient method for achieving this, 

optimizing the two mixed variable reactions with respect to two 

objectives each in a combined time of just 40 hours. In addition, 

this approach simultaneously optimizes discrete and continuous 

variables, which enables the identification of key interactions that 

would otherwise be missed with traditional sequential 

optimization. In both case studies herein, the interactions between 

the continuous variables and each discrete variable were found to 

be significantly different i.e., different solvents and ligands 

favored different combinations of continuous conditions. 

Integration of this optimization approach with a segmented flow 

microfluidic system for more resource efficient process 

development is currently under investigation.  
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