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Abstract. A new technique is proposed for determining the response of multi-degree-of-freedom
nonlinear complex multi-body systems with singular parameter matrices subject to combined
periodic and stochastic loads. The singular parameter matrices are due to adopting redun-
dant coordinates for modeling the system governing equations of motion. Considering that the
system response has a periodic as well as a stochastic component, a harmonic balance method-
based scheme is used for treating the deterministic component, followed by the application of
the generalized statistical linearization method, in conjunction with an averaging treatment to
account for the stochastic component. The validity of the proposed technique is demonstrated
by pertinent numerical examples.
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1 INTRODUCTION

When the problem of formulating the governing equations of motion of multi-degree-of-

freedom (MDOF) dynamical systems is considered, the minimum number of independent co-

ordinates is used. Nevertheless, for several classes of complex multi-body systems and also

systems subject to constraints [1, 2], a redundant coordinates modeling is often connected with

solution treatments of reduced computational cost [3, 4, 5]. However, this yields singular ma-

trices in the system governing equations of motion. Therefore, several techniques have been

developed recently for conducting stochastic response analyses pertaining to systems exhibit-

ing singular parameter matrices; see, indicatively, [6, 7, 8, 9, 10, 11]. This is achieved by

resorting to the theory of generalized matrix inverses.

In this paper, a Moore-Penrose (M-P) generalized matrix inverses framework is adopted for

determining the response of MDOF nonlinear systems with singular matrices subject to com-

bined periodic and stochastic excitations. To this end, the harmonic balance method is com-

bined with the statistical linearization methodology for systems with singular matrices [12, 13].

Specifically, since the system excitation consists of a periodic and a stochastic component, the

corresponding response also has a periodic and a stochastic part. Therefore, a solution treat-

ment based on the harmonic balance method is used for the former, whereas the latter is treated

by resorting to the generalized statistical linearization method. Combining the two methods re-

sults in the formulation of a coupled system of algebraic equations, which is solved iteratively

by invoking the generalized matrix inverse theory [14]. Overall, the proposed technique con-

sists a generalization of the framework developed in [15] to account for systems with singular

matrices. Its validity is demonstrated by pertinent numerical examples.

2 MATHEMATICAL FORMULATION

The governing equations of motion of an l-DOF nonlinear system are given by

Mxẍ+Cxẋ+Kxx+Φx(x, ẋ, ẍ) = fd,x(t) +Qx(t), (1)

where x denotes an l dependent coordinates vector, Mx,Cx and Kx are, respectively, the l × l
mass, damping and stiffness matrices, and Φx(x, ẋ, ẍ) represents the l vector of the nonlinear-

ities, which are of the polynomial kind for simplicity. Further, fd,x(t) represents the periodic

component of the excitation, whereas Qx(t) is a zero-mean Gaussian stochastic excitation. Con-

sidering that the system of Eq. (1) is subject to a number of constraint equations of the form

Aẍ+Eẋ+Lx = F, where A,E,L and F denote, respectively, m× l matrices and an l vector,

Eq. (1) is recast into

M̄xẍ+ C̄xẋ+ K̄xx+ Φ̄x(x, ẋ, ẍ) = f̄d,x(t) + Q̄x(t). (2)

In Eq. (2), M̄x, C̄x and K̄x denote the augmented (l + m) × l mass, damping and stiffness

parameter matrices, which have the form [7]

M̄x =

[
(Il −A+A)Mx

A

]
, C̄x =

[
(Il −A+A)Cx

E

]
, K̄x =

[
(Il −A+A)Kx

L

]
, (3)

where Il denotes the l× l identity matrix, and “+” represents the M-P matrix inverse operation.

Further, the augmented (l + m) vector of the system nonlinearities, and the corresponding

periodic and stochastic (l +m) vectors of the excitation are given by

Φ̄x =

[
(Il −A+A)Φx

0

]
, f̄d,x(t) =

[
(Il −A+A)fd,x(t)

F

]
, Q̄x(t) =

[
(Il −A+A)Qx(t)

F

]
.

(4)
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A detailed derivation of Eqs. (2)-(4) is found in [7, 12].

Next, considering that the MDOF system in Eq. (2) is subject to combined deterministic and

stochastic loads, it is assumed that the corresponding response also consists of a periodic and

a stochastic component, namely x(t) = xs(t) + xd(t). Further, assuming that the stochastic

excitation is modeled as a zero-mean Gaussian process, ensemble averaging Eq. (2) yields

M̄xẍd + C̄xẋd + K̄xxd + E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] = f̄d,x(t), (5)

which consists of a periodic and a stochastic response component too. In the ensuing analysis,

first, the harmonic balance methodology is used in conjunction with the concept of the gener-

alized inverse matrix for treating the deterministic component in Eq. (5). Then, the stochastic

component of the system is treated by applying the generalized statistical linearization [12, 13].

2.1 Application of the harmonic balance method for treating the periodic component of
the response

Assume that f̄d,x(t) in Eq. (4) is modeled as a monofrequency function of period T = 2π
ωd

.

Then, f̄d,x(t) = f̄d1,x cos(ωdt) + f̄d2,x sin(ωdt), where f̄d1,x and f̄d2,x are the constant coefficient

(l +m) vectors, and thus, the deterministic response of the system in Eq. (5) becomes xd(t) =
xd1 cos(ωdt) + xd2 sin(ωdt), where xd1 ,xd2 are constant l vectors. Next, applying the harmonic

balance method yields the overdetermined system of equations

Pu = v, (6)

where the 2(l +m)× 2l matrix P, and the 2l- and 2(l +m) vectors u, v are given by

P =

[
K̄x − ω2

dM̄x ωdC̄x

−ωdC̄x K̄x − ω2
dM̄x

]
,u =

[
xd1

xd2

]
,v =

[
f̄d1 − 2

T

∫ T

0
E[Φ̄x] cos(ωdt)dt

f̄d2 − 2
T

∫ T

0
E[Φ̄x] sin(ωdt)dt

]
. (7)

The solution of the system in Eq. (6) leads to the computation of the deterministic component

of the response. In this regard, utilizing the generalized matrix inverses theory implies [14]

u = P+v + (I−P+P)y, (8)

which, in essence, corresponds to a family of solutions, since y is an arbitrary 2l vector. How-

ever, the matrix M̄x in the diagonal entries of matrix P in Eq. (7) ensures that the columns of the

latter are independent of each other or, equivalently, that matrix P has full column rank. There-

fore, it holds that P+ = (P∗P)−1P∗, and thus, Eq. (8) attains a unique solution corresponding

to the deterministic response component of the system in Eq. (2).

2.2 Application of the statistical linearization method for treating the stochastic compo-
nent of the response

The stochastic component xs(t) of the system response is treated by resorting to the general-

ized statistical linearization methodology for systems with singular parameter matrices [12, 13];

see also [16, 17, 18, 19, 20, 21, 22, 23] for a broader perspective, as well as several examples

pertaining to application of the method. First, the difference between the systems in Eqs. (2)

and (5) is formed,

M̄xẍs + C̄xẋs + K̄xxs + Φ̃x(xs,xd) = Q̄x(t), (9)
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where Φ̃x(xs,xd) = Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)− E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] is the

zero-mean vector of the system nonlinearities. Then, the linear equivalent system to Eq. (9) is

written as [12, 16]

(M̄x + M̄e)ẍs + (C̄x + C̄e)ẋs + (K̄x + K̄e)xs = Q̄x(t). (10)

Subsequently, the error function, which is defined as the difference between Eqs. (9) and (10), is

formed and minimized by adopting the mean square minimization criterion [12, 13, 16]. In this

regard, the elements of the (l +m)× l matrices M̄e, C̄e and K̄e are given by pertinent closed

form expressions; more details are found in [13].

Since the nonlinear vector Φ̃x(xs,xd) depends on the deterministic and stochastic com-

ponents of the response, the elements me
ij, c

e
ij, k

e
ij of matrices M̄e, C̄e and K̄e are also time-

dependent. Nevertheless, the slowly varying over a period T of oscillation components of

M̄e, C̄e and K̄e are approximated by their average over T [15, 24], i.e., M̄e ≈ M̄av
e , C̄e ≈ C̄av

e

and K̄e ≈ K̄av
e ; indicatively, M̄av

e = 1
T

∫ T

0
M̄edt. This provides with an approximation to the

system in Eq. (10), given by the equivalent system

(M̄x + M̄av
e )ẍs + (C̄x + C̄av

e )ẋs + (K̄x + K̄av
e )xs = Q̄x(t). (11)

Further, the response statistics of the equivalent system in Eq. (11) are determined by employ-

ing a frequency domain approach. In this regard, the frequency response function matrix of

the system in Eq. (11) is derived and used in conjunction with the generalized input-output re-

lationship for systems with singular parameter matrices, i.e., Sx(ω) = αx(ω)SQ̄x
(ω)αT∗

x (ω),
for determining the response power spectrum Sxs(ω) [13] Finally, the second order response

statistics of the equivalent system in Eq. (11) are computed by [16]

E[x2
s(i)] =

∫ ∞

−∞
Sxs(i)xs(i)(ω)dω, i = 1, 2, . . . , l. (12)

Eq. (12) in conjunction with the generalized input-output relationship for systems with singular

parameter matrices, as well as Eq. (8), constitute a coupled nonlinear system of equations to be

solved for determining the system response. For its solution, the following iterative procedure

is used: i. The nonlinear vector Φ̃x(xs,xd) in the governing equations of motion is set equal to

the null vector and the deterministic response xd is obtained. ii. The variance of the stochastic

response xs is derived by using the generalized input-output relationship in conjunction with

Eq. (12). iii. Using step (ii.), Eq. (8) leads to the derivation of the deterministic response,

which, in turn, results in calculating the values M̄av
e , C̄av

e and K̄av
e . iv. Steps (ii.) and (iii.)

are repeated until reaching satisfactory accuracy for the response variance.

3 NUMERICAL EXAMPLE

In this example, the 2-DOF system in Fig. 1 is considered, where mass m1 is connected

to the foundation by a nonlinear damper and a nonlinear spring of forces c1q̇1(1 + ε1q̇
2
1) and

k1q1(1+ε2q
2
1), respectively. Further, qi denotes the displacement of the i-th mass, and ε1, ε2 the

magnitude of the nonlinearities. In addition, mass m2 is connected to m1 by a linear spring of

stiffness k2 and a linear damper of damping coefficient c2. The system is excited by a combina-

tion of a stochastic force Q1(t), which is modeled as a Gaussian white noise stochastic process

with spectral density S0, and a deterministic force of the form fd2,1 sin(ωdt). The following set

of parameter values is considered: m1 = m2 = 1, c1 = c2 = 0.2, k1 = k2 = 1, S0 = 10−2

(0 < ω < 2π), fd2,1 = 0.4, ωd = π and ε1 = ε2 = 10.
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Figure 1: A 2-DOF nonlinear system subject to pe-

riodic and stochastic excitations.

Figure 2: The nonlinear system of

Fig. 1 modeled by employing an

additional redundant coordinate.

Next, considering the redundant coordinates vector xT =
[
x1 x2 x3

]
, the 2-DOF system

of Fig. 1 is decomposed into its partial subsystems, as shown in Fig. 2. The system constraints

equation is formed (see section 2), where A =
[
1 −1 0

]
, E = L = 01×3 and F = 0. Thus,

the parameter matrices defined in Eq. (3) are determined, and the (l + m) vectors in Eq. (4)

are computed. For the application of the harmonic balance method, the system response is

decomposed into its stochastic xs and deterministic xd components, and ensemble averaging

the expression for Φ̄x yields

(E[Φ̄x])
T =

(
c1ε1(ẋ

3
d,1 + 3ẋd,1σ

2
ẋs,1

) + k1ε2(x
3
d,1 + 3xd,1σ

2
xs,1

)
) [

0.5 0.5 0 0
]
. (13)

Then, taking into account that the 8×6 matrix P has full rank (see Eq. (7)), the overdetermined

system in Eq. (6) leads to a uniquely defined periodic response component. Next, the iterative

scheme in section 2.2 is employed to solve the coupled set of algebraic equations formed by

Eqs. (12) and Eq. (8), and thus, to derive the variance of the stochastic response. The scheme

is initialized by using C̄av
e = 0, K̄av

e = 0 and xd1 = xd2 = 0. The stochastic and deterministic

components are derived based on the criterion
∣∣∣ C̄av

e,j+1−C̄av
e,j

C̄av
e,j

∣∣∣ < 10−5 and
∣∣∣ K̄av

e,j+1−K̄av
e,j

K̄av
e,j

∣∣∣ < 10−5,

as well as a similar criterion for xd1 , xd2 . The iterative scheme is applied until reaching sat-

isfactory accuracy for the response displacement and velocity variances. Finally, considering

that x(t) = xs(t) + xd(t) and successively ensemble and temporal averaging the expression

xd(t) = xd1 cos(ωdt) + xd2 sin(ωdt) implies

〈
E[x2

i ]
〉
= σ2

xs,1
+

x2
d1,i

+ x2
d2,i

2
,
〈
E[ẋ2

i ]
〉
= σ2

ẋs,1
+

ω2
d(x

2
d1,i

+ x2
d2,i

)

2
, i = 1, 2, 3, (14)

where 〈·〉 denotes the temporal averaging operation.

Eq. (14), in conjunction with the results of the iterative scheme above yield σ2
x1

= 0.0705,

σ2
ẋ1

= 0.0704 and σ2
x3

= 0.0617, σ2
ẋ3

= 0.1098. Finally, applying the standard solution

framework proposed in [15] for deriving the system response variance yields σ2
q1

= 0.0705,

σ2
q̇1

= 0.0704 and σ2
q2

= 0.0617, σ2
q̇2

= 0.1098. Clearly, comparing the results above, it is seen

that the herein proposed framework is in total agreement with the standard approach in [15].

4 CONCLUSIONS

In this paper, the response of multi-degree-of-freedom nonlinear systems with singular pa-

rameter matrices subject to combined stochastic and deterministic excitations has been deter-

mined by resorting to a generalized inverse matrix-based approach. Singular matrices appeared

due to a redundant coordinates formulation of the system governing equations of motion. The
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latter is associated with solution frameworks of reduced computational cost for certain classes

of complex multi-body systems and/or systems with constraints. In this context, considering

that the system excitation consists of a periodic and a stochastic component, the correspond-

ing response has been decomposed in two parts, namely a periodic and a stochastic. Then,

the system response has been determined by utilizing the generalized matrix inverses theory,

in conjunction with the harmonic balance method and the generalized statistical linearization

method for systems with singular parameter matrices. The validity of the proposed technique

has been demonstrated by pertinent numerical examples.
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