
This is a repository copy of PRINS : scalable model inference for component-based
system logs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/189630/

Version: Published Version

Article:

Shin, D. orcid.org/0000-0002-0840-6449, Bianculli, D. and Briand, L. (2022) PRINS :
scalable model inference for component-based system logs. Empirical Software
Engineering, 27 (4). 87. ISSN 1382-3256

https://doi.org/10.1007/s10664-021-10111-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

https://doi.org/10.1007/s10664-021-10111-4

PRINS: scalable model inference for component-based
system logs

Donghwan Shin1 ·Domenico Bianculli1 · Lionel Briand1,2

Accepted: 20 December 2021

© The Author(s) 2022

Abstract

Behavioral software models play a key role in many software engineering tasks; unfortu-

nately, these models either are not available during software development or, if available,

quickly become outdated as implementations evolve. Model inference techniques have been

proposed as a viable solution to extract finite state models from execution logs. However,

existing techniques do not scale well when processing very large logs that can be commonly

found in practice. In this paper, we address the scalability problem of inferring the model of

a component-based system from large system logs, without requiring any extra information.

Our model inference technique, called PRINS, follows a divide-and-conquer approach. The

idea is to first infer a model of each system component from the corresponding logs; then,

the individual component models are merged together taking into account the flow of events

across components, as reflected in the logs. We evaluated PRINS in terms of scalability and

accuracy, using nine datasets composed of logs extracted from publicly available bench-

marks and a personal computer running desktop business applications. The results show

that PRINS can process large logs much faster than a publicly available and well-known

state-of-the-art tool, without significantly compromising the accuracy of inferred models.

Keywords Logs · Model inference · Component-based system

Communicated by: David Lo

This work has received funding from the Luxembourg National Research Fund (FNR) under grant

agreement No C-PPP17/IS/11602677 and from the NSERC Discovery and Canada Research Chair

programmes.

� Donghwan Shin

donghwan.shin@uni.lu

Domenico Bianculli

domenico.bianculli@uni.lu

Lionel Briand

lionel.briand@uni.lu

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg

2 University of Ottawa, Ottawa, ON, Canada

Empirical Software Engineering (2022) 27: 87

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10111-4&domain=pdf
http://orcid.org/0000-0002-0840-6449
http://orcid.org/0000-0002-4854-685X
http://orcid.org/0000-0002-1393-1010
mailto: donghwan.shin@uni.lu
mailto: domenico.bianculli@uni.lu
mailto: lionel.briand@uni.lu

1 Introduction

Behavior models of software system components play a key role in many software

engineering tasks, such as program comprehension (Cook and Wolf 1998), test case genera-

tion (Fraser and Walkinshaw 2012), and model checking (Clarke et al. 2018). Unfortunately,

such models are either scarce during software development or, if available, quickly become

outdated as the corresponding implementations evolve, because of the time and cost

involved in generating and maintaining them (Walkinshaw et al. 2010).

One possible way to overcome the lack of software models is to use model inference tech-

niques, which extract models—typically in the form of Finite State Machine (FSM)—from

execution logs. Although the problem of inferring a minimal FSM is NP-complete (Gold

1967), there have been several proposals of polynomial-time approximation algorithms to

infer FSMs (Biermann and Feldman 1972; Beschastnikh et al. 2011) or richer variants, such

as gFSM (guarded FSM) (Walkinshaw et al. 2016; Mariani et al. 2017) and gFSM extended

with transition probabilities (Emam and Miller 2018), to obtain relatively faithful models.

Though the aforementioned model inference techniques are fast and accurate enough

for relatively small programs, all of them suffer from scalability issues, due to the intrinsic

computational complexity of the problem. This leads to out-of-memory errors or extremely

long, impractical execution time when processing very large logs (Wang et al. 2015) that

can be commonly found in practice. A recent proposal (Luo et al. 2017) addresses scal-

ability using a distributed FSM inference approach based on MapReduce. However, this

approach requires to encode the data to be exchanged between mappers and reducers in

the form of key-value pairs. Such encoding is application-specific; hence, it cannot be used

in contexts—like the one in which this work has been performed—in which the system is

treated as a black-box (i.e., the source code is not available), with limited information about

the data recorded in the system logs.

In this paper, we address the scalability problem of inferring a system model from the

logs recorded during the execution (possibly multiple executions) of a system composed of

multiple “components” (hereafter called component-based system), without requiring any

extra information other than the logs. In this paper, we use the term “component” in a broad

sense: the large majority of modern software systems are composed of different types of

“components”, such as modules, classes, and services; in all cases, the resulting system

decomposition provides a high degree of modularity and separation of concerns. Our goal

is to efficiently infer a system model that captures not only the components’ behaviors but

also the flow of events across the components as reflected in the logs.

Our approach, called PRINS, follows a divide-and-conquer strategy: we first infer a

model of each component from the corresponding logs using a state-of-the-art model infer-

ence technique, and then we “stitch” (i.e., we do a peculiar type of merge) the individual

component models into a system-level model by taking into account the interactions among

the components, as reflected in the logs. The rationale behind this idea is that, though exist-

ing model inference techniques cannot deal with the size of all combined component logs,

they can still be used to infer the models of individual components, since their logs tend

to be sufficiently small. In other words, PRINS alleviates the scalability issues of existing

model inference techniques by limiting their application to the smaller scope defined by

component-level logs.

We implemented PRINS in a prototype tool, which internally uses MINT (Walkinshaw

et al. 2016), the only publicly available state-of-the-art technique for inferring gFSMs, to

infer the individual component models. We evaluate the scalability (in terms of execution

time) and the accuracy (in terms of recall and specificity) of PRINS in comparison with

87 Page 2 of 32 Empir Software Eng (2022) 27: 87

MINT (to directly infer system models from system logs), on nine datasets composed of

logs extracted from publicly available benchmarks (He et al. 2020) and a personal computer

(PC) running desktop business applications on a daily basis. The results show that PRINS is

significantly more scalable than MINT and can even enable model inference when MINT

leads to out-of-memory failures. It also achieves higher specificity than MINT (with a dif-

ference ranging between -3.1 pp and +34.9 pp, with pp=percentage points) while achieving

lower recall than MINT (with a difference ranging between -23.5 pp and +0 pp). Through a

detailed analysis, we determined that a lower recall for PRINS only happens when logs are

inadequate to infer accurate models, using any of the techniques. We also propose a sim-

ple and practical metric for engineers to easily predict (and thus improve) such cases before

running model inference. With adequate logs, PRINS therefore provides a comparable or

even better accuracy.

To summarize, the main contributions of this paper are:

– the PRINS approach for taming the scalability problem of inferring the model of a

component-based system from the individual component-level logs, when no additional

information is available;

– the novel stitching algorithm that “combine” individual component models together

taking into account the flow of events across components as recorded in logs;

– a publicly available implementation of PRINS (see Section 5.8);

– the empirical evaluation, in terms of scalability and accuracy, of PRINS and its

comparison with the state-of-the-art model inference tool.

The rest of the paper is organized as follows. Section 2 gives the basic definitions of

logs and models that will be used throughout the paper. Section 3 illustrates the motivating

example. Section 4 describes the different stages of PRINS. Section 5 reports on the evalua-

tion of PRINS. Section 6 discusses related work. Section 7 concludes the paper and provides

directions for future work.

2 Background

This section provides the basic definitions for the main concepts that will be used throughout

the paper.

2.1 Logs

A log is a sequence of log entries; a log entry contains a timestamp (recording the time

at which the logged event occurred), a component (representing the name of the compo-

nent where the event occurred), and a log message (with run-time information related to the

logged event). A log message is typically a block of free-form text that can be further decom-

posed (Zhu et al. 2019; He et al. 2017; Messaoudi et al. 2018; El-Masri et al. 2020) into an

event template, characterizing the event type, and the parameter values of the event, which

are determined at run time. For example, given the log entry “15:37:56 - Master -

end (status=ok)”, we can see that the event end of the component Master occurred

at timestamp 15:37:56 with the value ok for parameter status.

More formally, let C be the set of all components of a system, ET be the set of all events

that can occur in the system, V be the set of all mappings from event parameters to their

concrete values, for all events et ∈ ET , and L be the set of all logs retrieved for the system; a

log l ∈ L is a sequence of log entries 〈e1, e2, . . . , en〉, with ei = (tsx, cmi, et i, vi), tsi ∈ N,

Page 3 of 32 87Empir Software Eng (2022) 27: 87

cmi ∈ C, et i ∈ ET , and vi is a vector of parameter values over V . To denote individual log

entries, we use the notation ei,j for the i-th log entry in the j -th execution log.

2.2 Models

In this paper, we represent the models inferred for a system for a component as guarded

Finite State Machines (gFSMs). Informally, a gFSM is an “extended” finite state machine

whose transitions are triggered by the occurrence of an event and are guarded by a function

that evaluates the values of the event parameters.

More formally, let ET and V be defined as above. A gFSM is a tuple m =

(S, ET ,G, δ, s0, F), where S is a finite set of states, G is a finite set of guard functions of

the form g : V → {True, False}, δ is the transition relation δ ⊆ S × ET × G × S, s0 ∈ S

is the initial state, and F ⊆ S is the set of final states. A gFSM m makes a guarded transi-

tion from a (source) state s ∈ S to a (target) state s′ ∈ S when reading an input log entry

e = (ts, cm, et, v), written as s
e
−→ s′, if (s, et, g, s′) ∈ δ and g(v) = True. We say that

a guarded transition is deterministic if there is at most one target state for the same source

state and the same log entry. Otherwise, it is non-deterministic. Based on this, we say that

a gFSM is deterministic if all of its guarded transitions are deterministic; otherwise, the

gFSM is non-deterministic. We say that a gFSM m accepts a log l = 〈e1, . . . , en〉 if there

exists a sequence of states 〈γ0, . . . , γn〉 such that (1) γi ∈ S for i = 0, . . . , n, (2) γ0 = s0,

(3) γi−1
ei
−→ γi for i = 1, . . . , n, and (4) γn ∈ F .

3 Motivating Example

This section presents a simple example to motivate and demonstrate our work.

Let us consider an imaginary system composed of two components, Master and Job;

Fig. 1 depicts the set of logs LS = {l1, l2} recorded during the executions of the system.

Entries in the logs are denoted using the notation introduced in Section 2.1; for instance, log

entry e8,1 corresponds to the tuple (·,Master, end, [ok]), where the event is “end” and the

value for its first (and only) parameter is “ok”. Notice that in Fig. 1 we use a short form (as

in “end (ok)”) to indicate both an event and its parameter value; also, we omit timestamps

in the running example logs as they are not used in our approach.

Fig. 1 Running example logs LS = {l1, l2}, inspired by Hadoop logs (He et al. 2020)

87 Page 4 of 32 Empir Software Eng (2022) 27: 87

A software engineer is tasked with building a finite-state model of the system that accu-

rately captures the behavior observed in the logs. However, the engineer cannot rely on the

system source code since it is not available. This is the case, for example, where the system

is mainly composed of heterogeneous, 3rd-party components for which neither the source

code nor the documentation are available (Aghajani et al. 2019; Palmer and McAddis 2019;

Rios et al. 2020). The only information about the system to which engineers have access is

represented by the execution logs LS. To perform this task, the engineer uses a tool imple-

menting one of the state-of-the-art model inference techniques (Walkinshaw et al. 2016;

Mariani et al. 2017; Emam and Miller 2018) proposed in the literature; the tool takes as input

the logs LS and returns the system model mS shown in Fig. 2a. Intuitively, we can see that

mS properly reflects the flow of events recorded in LS. However, when the engineer tries

to execute the model inference tool on much larger logs of the same system, she observes

that the tool does not terminate within a practical time limit (e.g., one day). Indeed, due to

the intrinsic complexity of the model inference problem (Gold 1967), the time complexity

of state-of-the-art model inference algorithms is polynomial (Lang et al. 1998; Emam and

Miller 2018) in the size of the input logs.

To address this problem, the engineer decides to use our new approach, PRINS: it takes

as input the logs LS in Fig. 1 and returns the same system model mS shown in Fig. 2a; the

main difference with the tool used in the previous attempts is that PRINS takes considerably

less time to yield a system model.

The main idea behind PRINS is to tackle the intrinsic complexity of model inference by

means of a divide-and-conquer approach: PRINS uses existing model inference techniques

to infer a model, not for the whole system but for each component. Figure 2b and c show

the component models mM and mJ for the Master and Job components, respectively.

Component-level model inference is one of the main contributors to the significant reduction

of the execution time achieved by PRINS. Furthermore, component-level model inference

can be easily parallelized.

However, before yielding a system model, PRINS needs to properly “combine” the indi-

vidual component models. In our running example, this means building the mS model shown

Fig. 2 Models corresponding to the running example logs (mS: system model, mM: model for component

Master, mJ: model for component Job)

Page 5 of 32 87Empir Software Eng (2022) 27: 87

in Fig. 2 by “combining” the component models in MC = {mM, mJ} and shown in Fig. 2b

and c. This is a challenging problem: we cannot simply concatenate or append the two com-

ponent models together, because the result would not conform to the flow of events across

the components recorded in the logs. In our running example logs, it is recorded that the

event start of Master is immediately followed by the event init of Job. Such a flow of

events recorded in the logs should be represented in the final system model produced by

PRINS. To efficiently and effectively solve this problem, we propose a novel algorithm for

stitching component models in the context of model inference.

4 Scalable Model Inference

Our technique for scalable model inference follows a divide-and-conquer approach. The

main idea is to first infer a model of each system component from the corresponding logs

that are generated by the projection of system logs on the components; then, the individ-

ual component models are stitched together taking into account the flows of the events

across the components, as reflected in the logs. We call this approach PRINS (PRojection-

INference-Stitching). The rationale behind PRINS is that, though existing (log-based) model

inference techniques cannot deal with the size of system logs, they can still be used to

accurately infer the models of individual components, since their logs are sufficiently small

for the existing model inference techniques to work. As anticipated in Section 3, the chal-

lenge is then how to “stitch” together the models of the individual components to build a

system model that reflects not only the components’ behaviors but also the flow of events

across the components, while preserving the accuracy of the component models. Tackling

this challenge is our main contribution, as detailed in Section 4.3.

Figure 3 outlines the workflow of PRINS. It takes as input the logs of the system

under analysis, possibly coming from multiple executions; it returns a system model in the

form of a gFSM. PRINS is composed of four main stages: projection, inference, stitch-

ing, and determinization. The projection stage produces a set of logs for each component

from the input system logs. The component logs are then used to infer individual compo-

nent models in the inference stage. The stitching stage combines the component models

into a non-deterministic system model. Last, the determinization stage transforms the non-

deterministic model into a deterministic model that is the output of PRINS. The four stages

are described in detail in the following subsections.

Fig. 3 Overview of PRINS

87 Page 6 of 32 Empir Software Eng (2022) 27: 87

We remark that PRINS does not require any extra information (e.g., source code and

documentation) other than logs. Furthermore, we do not restrict logs to be produced by

one thread/process: as one can see in the replication package for our evaluation (see

Section 5.8), individual logs for many of our subject systems are already produced by mul-

tiple threads/processes (distinguished by tid/pid). Our only assumption is that log entries

contain the name of the “component” that generated them. This assumption is realistic since

this is common in practice, as shown in real logs (He et al. 2020). Also, as indicated in

Section 1, we use the term “component” in a broad sense (e.g., modules, classes) to rep-

resent an architectural “part” of a system. Therefore, PRINS is applicable to any software

system composed of multiple components as long as their behavior is recorded in logs.

4.1 Projection

This stage generates a set of component logs—which will be used to infer a model for

each component—from system logs. For instance, for our running example logs LS =

{l1, l2} shown in Fig. 1, we want to generate the set of logs for the Master compo-

nent LM = {〈e1,1, e3,1, e8,1〉, 〈e1,2, e3,2, e8,2〉}, and the set of logs for the Job component

LJ = {〈e2,1, e4,1, e5,1, e6,1, e7,1〉, 〈e2,2, e4,2, e5,2, e6,2, e7,2〉}. To achieve this, we define the

projection operation as follows. Let L be a set of logs of a system and C be a set of com-

ponents of the system; the projection of L for a component c ∈ C, denoted with L|c, is the

set of logs obtained from L by removing all occurrences of log entries of all c′ ∈ C where

c′ �= c. For the running example, we have LS|Master = LM and LS|Job = LJ.

4.2 Inference

This stage infers individual component models from the sets of component logs generated

from the projection stage. This is straightforward because inferring a (component) model

from a set of logs can be achieved using an off-the-shelf model inference technique. We

remark that PRINS does not depend on any particular model inference technique, as long as

it yields a deterministic FSM (or a deterministic gFSM1) as a resulting model. Also, PRINS

can infer multiple component models in parallel because the inference processes of the

individual component models are independent from each other. For the running example,

using an off-the-shelf model inference tool like MINT (Walkinshaw 2018) on the logs in

LM and LJ, we obtain models mM (see Fig. 2b) and mJ (see Fig. 2c), respectively.

We want to note that the parallelization of component model inference is just a byproduct

of using the divide-and-conquer approach enabled by the central component of PRINS:

stitching (Section 4.3).

4.3 Stitching

Individual component models generated from the inference stage are used in this stitching

stage, which is at the core of PRINS. In this stage, we build a system model that captures

not only the components’ behaviors inferred from the logs but also the flow of events across

components as reflected in the logs. For the running example, this means building a model

1A deterministic gFSM m = (S,ET ,G, δ, s0, F) with δ : S × ET × G → S can be easily converted into a

deterministic FSM m′ = (S,�, δ′, s0, F) with δ′ : S × � → S where � = ET × G.

Page 7 of 32 87Empir Software Eng (2022) 27: 87

that is as “similar” as possible to mS, using models mM and mJ as well as the input logs LS

reflecting the flow of events.

The idea of stitching comes from two important observations on the system and com-

ponent models: (1) A system model is the composition of partial models of the individual

components; this means that partial behaviors of components are interleaved in a system

model. (2) The component partial models (included within a system model) are combined

together (i.e., appended) according to the flow of events recorded in logs, since the system

model must be able to accept the logs that were used to infer it.

For example, in the models shown in Fig. 2, we can see that the subgraph of mS, enclosed

with a red solid line, contains two partial models: one, called m
p
M and enclosed with a blue

dashed line, extracted from mM (including the states s8 and s9—mapped to s0 and s1 in mS—

and the corresponding transition labeled with start) and the other, called m
p
J and enclosed

with a green dashed line, extracted from mJ (including the states s13 and s14—mapped to

s1 and s2 in mS—and the corresponding transition labeled with init). Notice that the partial

models m
p
M and m

p
J correspond to the partial (behaviors recorded in the) logs 〈e1,1〉 and

〈e2,1〉, respectively, that are determined by the interleaving of components in the system log

l1 shown in Fig. 1. Furthermore, in mS, m
p
J is appended to m

p
M , reflecting the fact that event

start (from component Master) is immediately followed by init (from component Job) in

the input logs.

Based on these observations, we propose a novel stitching technique that first “slices”

individual component models into partial models according to the component interleavings

shown in logs; then it “appends” partial models according to the flow of the events recorded

in logs. However, the behaviors of components recorded in logs can be different from exe-

cution to execution (for instance, see the difference in terms of recorded events between l1
and l2 in our running example). To address this, we first build an intermediate, system-level

model for each execution (i.e., for each log) and then merge these models together at the

end.

The Stitch algorithm (whose pseudocode is shown in Algorithm 1) takes as input a set

of logs Lsys and a set of component models MC ; it returns a system model msys (built from

the elements in MC) that accepts Lsys .

87 Page 8 of 32 Empir Software Eng (2022) 27: 87

The algorithm builds a system-level model ma for each system log lsys ∈ Lsys (lines 2–

10). To build ma for a given lsys , the algorithm first initializes ma as an empty model (lin3)

and initializes the start states of all components models in MC to their initial states (line 4).

The algorithm then partitions lsys into a list of logs P , each one corresponding to log entries

of one component, according to the component interleavings shown in lsys (using algorithm

Partition at line 5, described in detail in Section 4.3.1). For each log lc ∈ P (lines 6-9), the

algorithm retrieves the component model mc ∈ MC of the component c that produced lc,

slices it (using algorithm Slice at line 8, described in detail in Section 4.3.2) into a partial

model msl that accepts only log lc, and then appends msl to ma (using algorithm Append

at line 9, described in detail in Section 4.3.3). During the iteration over the system logs in

Lsys , the resulting system-level models ma are collected in the set A. Last, the models in

A are combined into a single model msys (using algorithm Union at line 11, described in

detail in Section 4.3.4). The algorithm ends by returning msys (line 12), inferred from all

logs in Lsys .

Before illustrating an example for Stitch, let us first present the details of the auxiliary

algorithms Partition, Slice, Append, and Union.

4.3.1 Partition

This algorithm takes as input a system log l (i.e., a sequence of log entries from various

components); it partitions l into a sequence of logs P , where each log lc ∈ P is the longest

uninterrupted sequence of log entries produced by the same component, and returns P . By

doing this, we can divide a system log into component-level logs, each of which represents

the longest uninterrupted partial behavior for a component, while preserving the flow of

events across components as recorded in the system log.

For instance, when the function takes as input the running example log l1, it returns

P = 〈lc,1, lc,2, . . . , lc,5〉 where lc,1 = 〈e1,1〉, lc,2 = 〈e2,1〉, lc,3 = 〈e3,1〉, lc,4 =

〈e4,1, e5,1, e6,1, e7,1〉, and lc,5 = 〈e8,1〉.

4.3.2 Slice

This algorithm (whose pseudocode is shown in Algorithm 2) takes as input a component

model mc and a component log lc; it returns a new model msl , which is the sliced version

of mc and accepts only lc.

Page 9 of 32 87Empir Software Eng (2022) 27: 87

First, the algorithm retrieves the state of mc that will become the initial state s of the

sliced model msl (line 2). Upon the first invocation of Slice for a certain model mc, s will

be the initial state of mc; for the subsequent invocations, s will be the last state visited in mc

when running the previous slice operations. Note that there is always only one last visited

state because mc is deterministic, as described in Section 4.2. Starting from s, the algorithm

performs a run of mc as if it were to accept lc by iteratively reading each log entry e ∈ lc:

the traversed states and guarded transitions of mc are added into msl (lines 3-6). After the

end of the iteration, the algorithm records the last state s visited in mc (line 7), which is the

(only one) final state of msl and will be used as the initial state of the next slice on mc. The

algorithm ends by returning msl .

For example, let us consider the case where Slice is called with parameters mc = mM and

lc = 〈e1,1〉, and the slice start state returned by getSliceStartState for mM is the initial state

s8. Starting from s = s8, a run of mM is performed: reading log entry e1,1 results in making

the guarded transition to s1 in mM. This results in msl to include the guarded transition from

s8 to s9 with label start as well as the states s8 and s9; the call to function getTargetState

updates s to s9. Since there is no more log entry in lc, s9 is the final state of msl and is the

slice start state for the next call to Slice for mM. The resulting msl is slice1 shown in Fig. 4.

4.3.3 Append

This algorithm takes as input two models ma and msl ; it returns an updated version of ma

built by appending msl to the end of the original version of ma . If ma is an empty model (i.e.,

when Slice is called for the first time after the initialization of ma in line 3 in Algorithm 1),

the algorithm simply returns msl . Otherwise, the algorithm merges the final state of ma and

the initial state of msl and ends by returning the updated ma . Merging two states sx and sy
is done by simply changing both the source states of all outgoing transitions of sy and the

target states of all incoming transitions of sy as sx . Note that a sliced model msl has only

one final state as noted in Section 4.3.2, and therefore so does ma .

For example, let us consider the case where Append is called with parameters ma =

slice1 and msl = slice2 shown in the left block of Fig. 4. The algorithm merges s9 (i.e.,the

final state of ma) and s13 (i.e., the initial state of msl), resulting in ma′ shown in the right

block of Fig. 4.

4.3.4 Union

This algorithm takes as input a set of models A; it returns a model mu that is able to accept

all logs that can be accepted by all models in A. To do this, the algorithm simply merges the

initial states of all models in A, and ends by returning the merged model as mu.

Fig. 4 Illustration of appending two sliced models generated by Slice for lc,1 = 〈e1,1〉 and lc,2 = 〈e2,1〉.

They are appended by Append, resulting in ma′ that accepts 〈e1,1, e2,1〉

87 Page 10 of 32 Empir Software Eng (2022) 27: 87

slice4

s14

s15

trypass

slice5

s10 s11
end (ok)

slice3

s9 s10
working

slice2

s13 s14
init

slice1

s8 s9
start

ma,1

s8 s9,13
start

s11s14,9 s10,14,10

s15

init

pass try

working end (ok)

(iteratively)

Fig. 5 Illustration of building a system-level model for the running example log l1. The five sliced models

are generated by Slice according to the partition of l1. They are appended by Append to build a system-level

model ma,1 that accepts l1

We remark that merging states in Append and Union can make the resulting model non-

deterministic. Actually, the two algorithms are simplified2 versions of the standard NFA

(Non-deterministic Finite Automata) concatenation and union operation, respectively. We

will discuss non-determinism later in the determinization stage (see Section 4.4).

4.3.5 Application of Stitch to the running example

Let us consider the case where the Stitch algorithm is called with parameters Lsys = {l1, l2}

and MC = {mM,mJ}. For l1, the call to Partition yields P = 〈lc,1, lc,2, . . . , lc,5〉 where

lc,1 = 〈e1,1〉, lc,2 = 〈e2,1〉, lc,3 = 〈e3,1〉, lc,4 = 〈e4,1, e5,1, e6,1, e7,1〉, and lc,5 = 〈e8,1〉.

For each lc,i ∈ P , the call to Slice yields a sliced model slicei shown in the top block of

Fig. 5, originated from the component models mM and mJ shown in Fig. 2. The five sliced

models are appended to ma using Append, resulting in a system-level model ma,1 shown

at the bottom of Fig. 5. The state names of ma,1 show how the initial and final states of

the sliced models were merged. For example, s10,14,10 is generated by merging s10 (i.e., the

final state of slice3), s14 (i.e., the initial and final state of slice4), and s10 (i.e., the initial

state of slice5). Note that each slicei accepts the corresponding lc,i ∈ P and, as a result,

ma,1 accepts l1. The algorithm ends the iteration for l1 by adding ma,1 into A and moves on

to the next iteration to process log l2. After this second iteration completes, the newly built

model ma,2 for l2 is added to A; the call to Union yields a system model muni , shown at the

top of Fig. 6. We can see that muni is composed of ma,1 (i.e., the upper subgraph enclosed

with a blue dashed line) and ma,2 (i.e., the lower subgraph enclosed with a red dashed line).

In the above example, we can see that the output model muni accepts the input logs Lsys

as expected. However, muni is actually not equivalent to mS shown in Fig. 2a: there exist

potential logs that only mS can accept, but muni cannot. We will see how muni can be further

2To be precise, merging two states is not equivalent to introducing an epsilon-transition from one to another,

but equivalent to introducing bi-directional epsilon-transitions between the two states.

Page 11 of 32 87Empir Software Eng (2022) 27: 87

muni s0 s1
start

s4s2 s3

s5

init

trypass

working end (ok)

s ss s s s
init try

wait

failworking end (err)

start

s0 s
start

s4s2 s3

s5

init

trypass

working end (ok)

ss s s s

init

try

wait

failworking end (err)

mint

s0 s
start

s4s s

s

init

trypass

working end (ok)

ss
wait fail end (err)

mdet

Merge s1 and s

(iteratively)

Fig. 6 Illustration of the determinization using state merges for the system model build for the running

example logs. The labels of nondeterministic transitions are highlighted in bold

transformed through the last stage of PRINS, i.e., determinization, described in detail in

Section 4.4.

4.4 Determinization

The last stage of PRINS post-processes the model yielded by the stitching stage for mainly

converting a non-deterministic model into a deterministic one.

Through the projection, inference, and stitching stages, we already get a system model

as an intermediate output. The non-determinism nature of such a model does not represent

an issue in many use cases (e.g., program comprehension (Cook and Wolf 1998), test case

generation Fraser and Walkinshaw, 2012). However, especially when a model is used as an

“acceptor” of (the behavior recorded in) a log (e.g., in the case of anomaly detection Chan-

dola et al., 2009), determinism is important for efficient checking. To broaden the use cases

of PRINS, we propose this determinization stage as an optional post-processing in PRINS.

The simplest way of converting a non-deterministic model into a deterministic one is

using standard algorithms, such as the powerset construction (Hopcroft et al. 2006), that

guarantee the equivalence between the non-deterministic model provided in input and the

deterministic one returned as output. However, the worst-case complexity of the power-

set construction is exponential in the size of the non-deterministic model, making it an

impracticable solution for many applications.

87 Page 12 of 32 Empir Software Eng (2022) 27: 87

To tackle this issue, we introduce a new approach inspired by the heuristic-based deter-

minization approach proposed by Damas et al. (2005). Unlike the powerset construction,

their heuristic-based approach recursively merges the target states of non-deterministic tran-

sitions starting from the given state of the input model. While the idea of this approach is

intuitive, since it simply merges states during the process of determinization, it may gener-

alize the model being determinized, meaning the determinized model may accept additional

logs that are not accepted by the original non-deterministic model. Our preliminary evalua-

tion found that this simple strategy of merging states can produce an over-generalized model

by merging too many states, especially when there are already many non-deterministic

transitions in the input model. To avoid such over-generalization, we propose a new algo-

rithm, called Hybrid Determinization with parameter u (HDu), by combining ideas from

the heuristic-based determinization and the powerset construction methods.

Our HDu merges the target states of non-deterministic transitions, similar to the heuristic-

based determinization. However, to prevent over-generalization it applies a heuristic: HDu

does not merge a state with other states3 if the former has already been merged u times. The

rationale behind this heuristic is to prevent the merging of too many states, which causes the

over-generalization. If non-deterministic transitions remain because their target states are

restricted from being merged because of the value of u, HDu uses the powerset construction

to remove the remaining non-determinism while preserving the level of the generalization.

The larger the u value is used, the more the model can be generalized. The u value can

also be seen as the weight between the heuristic-based determinization and the powerset

construction; HD∞ is the same as the heuristic-based determinization, while HD0 is the

same as the powerset construction.

Algorithm 3 shows the pseudocode of HDu. It takes as input a non-deterministic model

mn and a threshold u; it returns a deterministic model md that can accept all logs that can

be accepted by mn.

The algorithm iteratively merges the set of states Sn in md as determined by getTarget-

StatesWithLimit (described below) until it is empty (lines 3–5). After the iteration ends,

if md is still non-deterministic, the algorithm removes all the remaining non-determinism

using the powerset construction (lines 6–7). The algorithm ends by returning md .

3Regardless of the number of states to be merged, multiple states can be merged into one state at once, not

incrementally.

Page 13 of 32 87Empir Software Eng (2022) 27: 87

The heuristic to avoid the over-generalization is mainly implemented in function get-

TargetStatesWithLimit (whose pseudocode is shown in Algorithm 4). It takes as input a

non-deterministic model mn and a threshold u; it returns a set of states Sn to be merged to

reduce non-determinism in mn, which does not contain the states that are restricted from

being merged because of the threshold u.

For each guarded transition gt in the transition relation of mn (lines 1–5), the algorithm

gets the set of target states St (line 2), removes the states that have already been merged u

times from St to build Sn (line 3), and returns Sn (and ends) if it has more than one state

(lines 4–5). If there is no such Sn for all guarded transitions, the algorithm ends by returning

Sn = ∅ (line 6).

For example, let us consider the case where the getTargetStatesWithLimit algorithm

begins the iteration for a non-deterministic (guarded) transition whose target states are

sabc, sd , and se, with u = 1. If sabc was generated by merging three states sa , sb, and sc,

St becomes {sabc, sd , se} but Sn becomes {sd , se} because removeAlreadyMergedStates

excludes sabc (since it has been already merged once, given u = 1). Since |Sn| = 2, the

algorithm ends by returning Sn = {sd , se}.

Figure 6 shows how HD works for our running example. Recall that muni is the interme-

diate output of the stitching stage. Starting from the initial state, HD iteratively merges the

target states of non-deterministic transitions, such as s1 and s′
1 in muni and then s2 and s′

2

in mint , until no more non-deterministic transition remains; the resulting model is mdet . We

can see that mdet is exactly the same as (i.e., is graph-isomorphic to) the ideal model mS in

Fig. 2.

Notice that HDu causes a reduction in size of the models since it merges the target

states of non-deterministic transitions in the course of its heuristic determinization. How-

ever, a more important question is to what extent the accuracy of the resulting models varies

because of size reduction. In our empirical evaluation, we will assess the impact of using

HDu on the accuracy of the inferred models in PRINS with respect to the value of threshold

u. We will also investigate the execution time of HDu and devise practical guidelines for

choosing the value of u (see Section 5).

5 Evaluation

In this section, we report on the evaluation of the performance of PRINS in generating

models of a component-based system from system logs.

87 Page 14 of 32 Empir Software Eng (2022) 27: 87

First, we assess the execution time of PRINS in inferring models from large execu-

tion logs. This is the primary dimension we focus on since we propose PRINS as a viable

alternative to state-of-the-art techniques for processing large logs. Second, we analyze how

accurate the models generated by PRINS are. This is an important aspect because it is

orthogonal to scalability but has direct implications on the feasibility of using the generated

models to support software engineering tasks (e.g., test case generation). However, the exe-

cution time of PRINS and the accuracy of the models generated by PRINS might depend

on its configuration, i.e., the number of parallel inference tasks in the inference stage (see

Section 4.2) and the parameter u of HDu in the determinization stage (see Section 4.4).

Therefore, it is important to investigate the best configurations of PRINS before comparing

it to state-of-the-art techniques.

Summing up, we investigate the following research questions:

RQ1: How does the execution time of PRINS change according to the parallel inference

tasks in the inference stage?

RQ2: How does the execution time of HDu change according to parameter u?

RQ3: How does the accuracy of the models (in the form of gFSMs) generated by HDu

change according to parameter u?

RQ4: How fast is PRINS when compared to state-of-the-art model inference techniques?

RQ5: How accurate are the models generated by PRINS when compared to those

generated by state-of-the-art model inference techniques?

5.1 Benchmark and Settings

To evaluate PRINS, we assembled a benchmark composed of logs extracted from two

sources: the LogHub project (He et al. 2020) and a personal computer (PC) running desktop

business applications on a daily basis. Table 1 lists the systems we included in the bench-

mark (grouped by source) and provides statistics about the corresponding logs: the number

of components (column # Cmps), the number of logs4 (column # Logs), the number of event

templates (column # Tpls), and the total number of log entries5 (column # Entries).

LogHub (He et al. 2020) is a data repository containing a large collection of structured

logs (and the corresponding event templates) from 16 different systems. Among them, we

selected the logs of the five systems based on two conditions: (1) the component (name or

ID) for each log entry is available in the logs; (2) the number of logs for each system is more

than 10.

We set condition #1 because PRINS targets component-based systems; as for condition

#2, we require a minimum number of logs to validate the accuracy as part of RQ2 (see

Section 5.6).

To increase the diversity of our benchmark logs, we also included the logs of a per-

sonal computer running daily for office use. We collected the logs through the built-in

4In LogHub (He et al. 2020), the original dataset for HDFS contains 575061 logs (distinguishable by block-

ids), but we used only 1000 logs that are randomly sampled from all logs, since we found that the 1000 logs

are representative enough, as they contain all event templates that appear in all logs.
5When additional logging level information (e.g., info, warn, debug, error) was available for each log

entry, we only used the log entries of the two main levels, i.e., info and error, as the others provide

unnecessary details (e.g., the status of a specific internal variable) for building behavioral models.

Page 15 of 32 87Empir Software Eng (2022) 27: 87

Table 1 Subject systems and logs

Source System # Cmps # Logs # Tpls # Entries Conf

LogHub (He et al. 2020) Hadoop 19 68 41 3575 1.00

HDFS 8 1000 16 18741 0:95

Linux 31 42 115 11259 0:78

Spark 11 217 21 67725 0:98

Zookeeper 18 36 40 25298 0:91

PC CoreSync 54 1418 204 30223 0:94

NGLClient 27 42 70 892 0.89

Oobelib 12 250 147 56557 0:89

PDApp 10 787 75 47394 0:87

Console.app application of macOS 10.15. Among the many logs available on the PC,

we selected those fulfilling the same two conditions stated above, ending up with four sys-

tems. Additionally, to identify the events templates of the unstructured log messages in

these logs, we first used state-of-the-art tools for log message format identification (i.e.,

Drain (He et al. 2017) and MoLFI (Messaoudi et al. 2018)) to compute an initial set of tem-

plates and then manually refined them, e.g., by collapsing similar templates into a single

one. All the structured logs (anonymized to hide sensitive information) are available online

(see Section 5.8).

To additionally evaluate whether the benchmark logs are sufficient to infer models that

faithfully represent actual system behaviors, following another state-of-the-art model infer-

ence study (Emam and Miller 2018), we computed log confidence scores using the formula

provided by Cohen and Maoz (2015). Briefly speaking, a low confidence score (e.g., ≤ 0.2)

indicates that the logs are not sufficient, and therefore the model inferred from the logs are

likely not to be compatible with the actual behaviors of the system under analysis. On con-

trary, a high confidence score (e.g., ≥ 0.85) indicates that the logs are probably sufficient

for the inferred model to faithfully represent the actual system behaviors. Column Conf in

Table 1 shows the confidence scores calculated for our benchmark logs. The values suggest

that the logs are mostly sufficient to infer faithful models. Although the confidence score

for Linux (0.78) is lower than the other benchmarks scores, the Linux logs are from an exist-

ing benchmark (He et al. 2020) and cannot therefore be improved. Furthermore, since our

main focus is to compare PRINS and other model inference techniques using the same logs,

having a somewhat moderate confidence score is not a major threat to the validity of our

experiments.

We conducted our evaluation on a high-performance computing platform6, using nodes

equipped with Dell C6320 units (2 Xeon E5-2680v4@2.4 GHz, 128 GB). We allocated four

cores and 16 GB per job.

6The experiments presented in this paper were carried out using the HPC facilities of the University of

Luxembourg (Varrette et al. 2014) (see https://hpc.uni.lu for more details).

87 Page 16 of 32 Empir Software Eng (2022) 27: 87

https://hpc.uni.lu

5.2 RQ1: Parallel Inference

5.2.1 Methodology

To answer RQ1, we assessed the execution time of PRINS with different parallelization

configurations for its inference stage. Specifically, we varied the maximum number of par-

allel workers (i.e., the maximum number of parallel inference tasks) from one to four in

steps of one to investigate the relationship between the maximum number of parallel work-

ers and the execution time of PRINS. For example, when the number is set to four, at most

four workers are running in parallel to infer four component models at the same time in the

inference stage of PRINS.

To infer individual component models in the inference stage of PRINS, we used

MINT (Walkinshaw et al. 2016), a state-of-the-art model inference tool. We selected MINT

because other tools are either not publicly available or require additional information other

than just logs (e.g., source code or architectural design documents). In all experiments,

we used the same configuration of MINT (i.e., minimum state merge score k = 2 and

AdaBoost as data classifier algorithm), which we set based on the one used in a previous

study (Walkinshaw et al. 2016) conducted by the authors of MINT.

For each system in our benchmark, we ran the four configurations of PRINS to infer a

system model from the same logs and measured their execution time. To account for the

randomness in measuring execution time, we repeated the experiment 10 times.

We remark that we disabled the determinization stage of PRINS because it is not the main

focus of RQ1. Determinization configurations will be comprehensively investigated in RQ2

and RQ3.

5.2.2 Results

Figure 7 shows the relationship between the maximum number of parallel inference tasks

(workers) and the execution time of PRINS. None of the configurations was able to infer a

Fig. 7 Relationship between the maximum number of parallel workers and the execution time of PRINS

Page 17 of 32 87Empir Software Eng (2022) 27: 87

model for Spark on all ten executions due to out-of-memory errors. This occurred because

MINT (used by PRINS for inferring individual component models) could not process the

(huge) log of a component that is responsible for producing about 97% of all log messages

of the system.

For all systems in our benchmark, it is clear that execution time decreases as the maxi-

mum number of parallel inferences increases. This is consistent with the general expectation

for parallelization.

However, doubling the maximum number of parallel inferences does not decrease the

execution time in half. For example, there is no clear difference in execution time between

two workers and four workers for Linux, Zookeeper, CoreSync, and PDApp. A detailed

analysis of the results found that it is mainly because there are at most two major com-

ponents that take up more than 70% of all log messages. For example, Linux has two

major components that represent around 50% and 34% of all log messages, while the third-

largest component takes up only 9.4% of all messages. This implies that, for systems like

Linux, inferring component models is fast enough, except for a few major components, and

therefore having more than three parallel workers does not significantly reduce execution

time.

The answer to RQ1 is that the execution time of PRINS can be significantly reduced

by the parallel inference of individual component models. However, the magnitude of the

reduction in execution time is not linear with respect to the maximum number of par-

allel inferences, because not all components are equally sized in their logs. In practice,

an engineer can set the maximum number of parallel inferences considering both avail-

able resources (e.g., the number of CPUs and the total size of memory) and the log size

distribution of components.

5.3 RQ2: Execution Time of Hybrid Determinization

5.3.1 Methodology

To answer RQ2, we assessed the execution time of HDu with different parameter values for

u. Specifically, we varied the value of u from one to ten in steps of one to investigate the

relationship between the value of u and the execution time of HDu. To additionally compare

HDu to the standard powerset construction, we also set u = 0 (see Section 4.4 for more

details).

For each system in our benchmark, we first ran PRINS without the determinization stage

to infer a non-deterministic system model. PRINS internally used the same configuration

of MINT as used in RQ1. For each non-deterministic model, we ran HDu for all u =

0, 1, . . . , 10 and measured their execution time. To account for the randomness in measuring

execution time, we repeated the experiment 10 times.

5.3.2 Results

Figure 8 shows the relationship between the value of u and the execution time of HDu. We

have no results for Spark because its non-deterministic system model was not available for

the reasons explained in Section 5.2.2.

For all the cases in which PRINS completed their execution for generating non-

deterministic system models, HDu (with u ≥ 1) took less than a minute. This implies

that our hybrid determinization can efficiently determinize non-deterministic models gen-

erated by PRINS. On the other hand, the powerset construction (i.e., u = 0) took more

87 Page 18 of 32 Empir Software Eng (2022) 27: 87

Fig. 8 Relationship between the value of u and the execution time of HDu

than an hour for Zookeeper. This is due to the worst-case complexity of the powerset con-

struction as discussed in Section 4.4. Interestingly, for the same non-deterministic model of

Zookeeper, using u ≥ 1 significantly reduces the determinization time. This clearly high-

lights the benefit of hybrid determinization, i.e., combining the powerset construction and

the heuristic-based determinization.

The answer to RQ2 is that the execution time of HDu is practically the same for all

u ≥ 1 because all of them are completed in less than a minute. This implies that the best

value of u can be selected mainly based on the accuracy of the resulting models, which will

be investigated in RQ3. On the other hand, the powerset construction is indeed very time-

consuming in extreme cases, which is consistent with its well-known theoretical worst-case

complexity. Since this cannot be predicted before running the determinization algorithms,

in practice, we can conclude that HDu with u ≥ 1 is to be recommended over the standard

powerset construction.

5.4 RQ3: Accuracy of Models Generated by Hybrid Determinization

5.4.1 Methodology

To answer RQ3, we first ran PRINS without the determinization stage to infer a non-

deterministic system model for each system in our benchmark, as we did for RQ2. For each

of the non-deterministic models, we then ran HDu for all u = 0, 1, . . . , 10 and measured

the accuracy of the deterministic models generated by HDu.

We measured the accuracy in terms of recall, specificity, and Balanced Accuracy (BA),

following previous studies (Damas et al. 2005; Walkinshaw et al. 2016; Mariani et al. 2017;

Emam and Miller 2018) in the area of model inference. Recall measures the ability of the

inferred models of a system to accept “positive” logs, i.e., logs containing feasible behaviors

that the system may exhibit. Specificity measures the ability of the inferred models to reject

“negative” logs, i.e., logs containing behaviors that the system cannot exhibit. BA measures

the balance between recall and specificity and provides the summary of the two.

However, it is intrinsically difficult to evaluate the accuracy of inferred models when

there is no ground truth, i.e., reference models. To address this issue, we computed the

Page 19 of 32 87Empir Software Eng (2022) 27: 87

metrics by using the well-known k-fold cross validation (CV) method with k = 10, which

has also been used in previous model inference studies (Walkinshaw et al. 2016; Mariani

et al. 2017; Emam and Miller 2018). This method randomly partitions a set of logs into k

non-overlapping folds: k−1 folds are used as “training set” from which the model inference

tool infers a model, while the remaining fold is used as “test set” to check whether the

model inferred by the tool accepts the logs in the fold. The procedure is repeated k times

until all folds have been considered exactly once as the test set. For each fold, if the inferred

model successfully accepts a positive log in the test set, the positive log is classified as True

Positive (TP); otherwise, the positive log is classified as False Negative (FN). Similarly, if an

inferred model successfully rejects a negative log in the test set, the negative log is classified

as True Negative (TN); otherwise, the negative log is classified as False Positive (FP). Based

on the classification results, we calculated recall =
|T P |

|T P |+|FN |
, specif icity =

|T N |
|T N |+|FP |

,

and the BA as the average of the recall and the specificity.

As done in previous work (Walkinshaw et al. 2016; Mariani et al. 2017; Emam and Miller

2018), we synthesized negative logs from positive logs by introducing small changes (muta-

tions): (1) swapping two randomly selected log entries, (2) deleting a randomly selected

log entry, and (3) adding a log entry randomly selected from other executions. The changes

should be small, because the larger the change is, the easier an inferred model can detect

the deviation of negative logs. To further increase the probability7 that a log resulting from

a mutation contains invalid behaviors of the system, we checked whether the sequence of

entries around the mutation location (i.e., the mutated entries and the entries immediately

before and after the mutants) did not also appear in the positive logs.

5.4.2 Results

Figure 9 shows the relationship between the value of u and the accuracy of the determin-

istic models generated by HDu. Again, Spark is not shown for the reasons explained in

Section 5.2.2.

For Hadoop, CoreSync, NGLClient, Oobelib, and PDApp, there is no change in recall,

specificity, and BA when the value of u changes. This means that, for these five systems,

the accuracy of deterministic models generated by HDu does not change when the value

of parameter u changes (for u = 0, 1, . . . , 10). Furthermore, considering the fact that the

powerset construction (i.e., HD0) guarantees the equivalence between the non-deterministic

model provided in input and the deterministic one returned as output, identical accuracy

for u = 0, 1, . . . , 10 also implies that, regardless of the value of u, HDu can convert non-

deterministic models into deterministic ones without sacrificing model accuracy for five out

of the eight systems in our benchmark, regardless of the value of u.

For HDFS, Linux, and Zookeeper, as the value of u increases, recall values increase while

specificity values decrease. This means that, for the deterministic models generated by HDu,

if we increase the value of u, then the ability to correctly accept positive logs is improved

whereas the ability to correctly reject negative logs is diminished. This is intuitive because

increasing the value of u merges more states to remove non-deterministic transitions,

yielding a generalized model that accepts more logs than the original, non-deterministic

model.

7Recall that there are no reference models for the subject systems, and therefore we cannot verify if a

synthesized log correctly contains an invalid system behavior.

87 Page 20 of 32 Empir Software Eng (2022) 27: 87

Fig. 9 Relationship between the value of u and the accuracy of the models generated by HDu

However, we can distinguish the increase in recall and the decrease in specificity, because

the former happens when the recall values of the input non-deterministic models are close

to zero (i.e., Linux and Zookeeper), whereas the latter happens when the specificity val-

ues of the non-deterministic models are around 0.8. Since the non-deterministic models of

Linux and Zookeeper were already incapable of correctly accepting positive logs, slightly

improving them with determinization is not practically significant. In fact, the logs of Linux

and Zookeeper were already inadequate for model inference in general, which will be dis-

cussed in detail in Section 5.6.2. On the other hand, the decrease in specificity for HDFS is

Page 21 of 32 87Empir Software Eng (2022) 27: 87

significant for HDu since it should preserve the high specificity of the non-deterministic

model provided in input as much as possible. As a result, practically speaking, the

smaller the value of u, the better. Indeed, this supports our idea that using u to limit

over-generalization in hybrid determinization is helpful to avoid a significant accuracy loss.

The answer to RQ3 is that, for five out of eight systems in our benchmark, the value

of u does not affect the accuracy of the deterministic models generated by HDu. However,

for one system, the accuracy practically decreases as the value of n increases. Additionally

considering the high execution time of HD0 (RQ2), we can therefore conclude that u = 1

is the best configuration trade-off for HDu in terms of both execution time and accuracy in

practice.

5.5 RQ4: Execution Time of PRINS Compared to State-of-the-Art

5.5.1 Methodology

To answer RQ4, we assessed the scalability of PRINS, in terms of execution time, in com-

parison with MINT (Walkinshaw et al. 2016), the same tool that is used internally by PRINS

to generate component-level models. In other words, we used two instances of MINT: the

one used for the comparison in inferring system models; the other one used internally by

PRINS. By doing this, we investigated to what extent the execution time of model inference

can be improved by using the divide-and-conquer approach of PRINS compared to using a

vanilla model inference.

Recall that PRINS can naturally infer many component models in parallel at the inference

stage, which can further improve the execution time of PRINS as shown by the result of

RQ1. To further investigate this aspect, we used two configurations of PRINS: PRINS-P

where the parallel inference is enabled and PRINS-N where no parallelization is used. For

PRINS-P, we set the maximum number of parallel inferences to four, based on the result

of RQ1 and the number of allocated nodes (as described in Section 5.1). For both PRINS-

P and PRINS-N, we used the determinization stage (i.e., HDu), since MINT produces a

deterministic model. For the value of u, we used u = 1 based on the results of RQ2 and

RQ3.

We also varied the size of input logs to better understand the impact of using larger

logs on the execution time of PRINS and MINT. To systematically increase such size while

preserving the system behaviors recorded in individual logs, we duplicated each of the

logs following the experiment design of Busany and Maoz (2016). For example, when the

duplication factor is set to eight for the 250 logs (56 557 log entries) of Oobelib, each

of the 250 logs is duplicated eight times, and therefore a total of 250 × 8 = 2000 logs

(8 × 56 557 = 452 456 log entries) are given as input both to PRINS and to MINT. Notice

that the system characteristics, such as the number of components and the number of event

templates, remain the same when using duplicated logs. Since MINT could not infer models

for large logs due to out-of-memory failures or timeout (after 10 hours) in our preliminary

evaluation, we only varied the duplication factor from 1 to 8 in steps of 1.

For each set of duplicated logs for each system in our benchmark, we ran MINT, PRINS-

P, and PRINS-N to infer a deterministic system model from the same logs and measured the

execution time of the tools. To account for the randomness in measuring execution time, we

repeated the experiment three times and computed the average results.

87 Page 22 of 32 Empir Software Eng (2022) 27: 87

Fig. 10 Comparison between MINT, PRINS-P, and PRINS-N in terms of execution time for various log sizes

(obtained by varying the duplication factor of the benchmark logs)

5.5.2 Results

Figure 10 shows the comparison results between MINT, PRINS-P, and PRINS-N in terms of

execution time. Because MINT (both the standalone instance and the one used by PRINS)

could not process the log of Spark, as explained in Section 5.2.2, we have no results for it.

Also, due to the same reason, we have no results for Zookeeper with a duplication factor

above 5.

For all the cases in which at least one of the tools completed their execution, we can

see two distinct patterns in MINT’s execution time: for all of the duplicated logs, MINT

completed its execution only in two cases (Hadoop and NGLClient) out of eight; otherwise,

MINT could not complete its execution (HDFS, Linux, Zookeeper, CoreSync, Oobelib, and

PDApp).

However, for Hadoop and NGLClient, for which MINT completed its execution for all

of the duplicated logs, we can see that MINT was quite fast (the execution time is less

than 5s); this can be attributed to the small size of the logs (28 600 entries for Hadoop and

7136 entries for NGLClient even with a duplication factor of 8). When the (standalone)

MINT instance is already fast, PRINS is actually slower than MINT due to the overhead for

projection, stitching, and determinization. Nevertheless, even in these cases, using PRINS

instead of MINT is still practical since PRINS-P took less than 15s. Also, we want to remark

that such small logs are not really representative of the large logs targeted by PRINS.

For the remaining six cases (HDFS, Linux, Zookeeper, CoreSync, Oobelib, and PDApp)

with larger log sizes, the execution time of MINT increases steeply as the duplication factor

increases. Furthermore, with a duplication factor above a certain value (5 for HDFS, 4 for

Zookeeper and PDApp, and 3 for Linux, CoreSync, and Oobelib), MINT could not com-

plete its execution due to out-of-memory failures (Zookeeper) or timeouts after 10 hours

(HDFS, Linux, CoreSync, Oobelib, and PDApp). In contrast, for the same logs, the execu-

tion time of PRINS-N increases slowly as the duplication factor increases, and there is no

Page 23 of 32 87Empir Software Eng (2022) 27: 87

case where PRINS-N could not complete its execution (except for Zookeeper in which the

MINT instance internally used by PRINS for component model inference caused an out-of-

memory failure when the duplication factor is greater than 5). This means that the scalability

of model inference can be greatly improved by using the divide-and-conquer approach of

PRINS. Furthermore, for Zookeeper with a duplication factor of 5, though MINT could not

complete its execution due to out-of-memory failures, PRINS, on the other hand, completed

successfully due to its divide-and-conquer approach.

Interestingly, for the six cases with larger log sizes, the difference between PRINS-P

and PRINS-N is very small compared to the difference between PRINS-N and MINT. This

means that the key factor in the scalability improvement of PRINS is the divide-and-conquer

approach, not the parallel inference of component models.

The answer to RQ4 is that the divide-and-conquer approach of PRINS greatly improves

the scalability of model inference for component-based system logs and can even enable

model inference when MINT leads to out-of-memory failures.

5.6 RQ5: Accuracy of PRINS Compared to State-of-the-Art

5.6.1 Methodology

To answer RQ2, we assessed the accuracy of the models inferred both by PRINS and by

MINT for each system in our benchmark, using the same configuration for PRINS and

MINT used as part of RQ4. We measured the accuracy in terms of recall, specificity and

BA as we did for RQ3 (see Section 5.4.1 for more details).

5.6.2 Results

The accuracy scores of PRINS and MINT are shown in Table 2. Under the Recall column,

sub-columns M and P indicate the recall of MINT and PRINS, respectively, and sub-column

�R indicates the difference in recall between PRINS and MINT in percentage points (pp).

The sub-columns under the Specificity and Balanced Accuracy columns follow the same

Table 2 Comparison between MINT (M) and PRINS (P) in terms of accuracy

Recall Specificity Balanced accuracy

System M P �R M P �S M P �B LDS

Hadoop 1.00 1.00 0.0 0.91 0.88 −3.1 0.96 0.94 −1.5 0.015

HDFS 0.98 0.98 −0.1 0.37 0.72 34.9 0.68 0.85 17.4 0.007

Linux 0.36 0.12 −23.5 0.89 0.98 9.5 0.62 0.55 −7.0 0.561

Zookeeper 0.22 0.10 −11.7 0.93 1.00 7.5 0.57 0.55 −2.1 0.571

CoreSync 0.95 0.93 −1.6 0.85 0.89 4.2 0.90 0.91 1.3 0.048

NGLClient 0.86 0.86 0.0 1.00 0.98 −2.5 0.93 0.92 −1.3 0.195

Oobelib 0.98 0.98 0.0 1.00 1.00 0.0 0.99 0.99 0.0 0.016

PDApp 0.97 0.95 −2.3 0.98 0.98 −0.1 0.97 0.96 −1.2 0.014

Average 0.79 0.74 −4.9 0.87 0.93 6.3 0.83 0.83 0.7 0.178

Differences between recall (�R), specificity (�S), and balanced accuracy (�B) values are expressed in

percentage points (pp); LDS is the log-component diversity score

87 Page 24 of 32 Empir Software Eng (2022) 27: 87

structure, with sub-column �S indicating the difference in specificity between PRINS and

MINT, and sub-column �B indicating the difference in BA between PRINS and MINT.

Again, none of the tools was able to infer a model for Spark, for the reasons explained in

Section 5.5.2.

For all the cases in which the 10-fold CV completed without error, the average difference

in BA between PRINS and MINT is only 0.7 pp, meaning that, on average, PRINS is as accu-

rate as MINT in inferring system models in terms of BA. However, the average difference

in recall between PRINS and MINT is -4.9 pp, while the average difference in specificity

between PRINS and MINT is 6.3 pp. This implies that, on average, PRINS tends to infer

models that are relatively less capable of accepting positive logs but more capable of reject-

ing negative logs than those inferred by MINT. The intuitive explanation is that a model built

by PRINS could be, in certain cases discussed below, more specific to the flows of events

recorded in individual input logs, due to the way PRINS builds the model. As described in

Section 4.3, PRINS first builds an intermediate system-level model for each execution log

and then merges these intermediate models by merging only their initial states at the end

of the stitching. Though determinization after stitching might further merge the other states

for removing non-determinism, it does so only for the states related to non-deterministic

transitions. Therefore, the execution-specific flows of events captured in the intermediate

system-level models can be maintained (without being merged with the others) in the final

system model built by PRINS. In contrast, since MINT infers a model for all system execu-

tion logs at once, it tends to merge the execution-specific flows of events to a larger extent

than PRINS. As expected, such characteristics also impact the size of inferred models. As

shown in Table 3, the models inferred by PRINS have on average 3.6 times more states and

5.5 times more transitions than the models inferred by MINT. Since larger models are more

difficult to manually analyze and comprehend, this might be interpreted as a drawback of

PRINS. However, the models inferred by MINT are already too large to be manually ana-

lyzed and understood, especially for systems with large logs. Thus, automated techniques,

such as model abstraction (Polyvyanyy et al. 2008), should be utilized in practice anyway.

Furthermore, inferred models can be used for other important applications, such as test case

generation (Fraser and Walkinshaw 2012) and anomaly detection (Chandola et al. 2009),

which do not require minimally sized models. Therefore, the increased model size can be

considered acceptable given the significant scalability improvement reported in Section 5.5.

Table 3 Comparison between MINT and PRINS in terms of model size

States Transitions

System MINT PRINS ratio MINT PRINS ratio

Hadoop 67 65 1.0 70 66 0.9

HDFS 76 392 5.2 177 1308 7.4

Linux 342 1990 5.8 476 3322 7.0

Zookeeper 376 3184 8.5 553 10667 19.3

CoreSync 3876 7524 1.9 4318 10798 2.5

NGLClient 148 154 1.0 160 195 1.2

Oobelib 447 1195 2.7 545 1484 2.7

PDApp 1301 3523 2.7 1466 3801 2.6

Average 829 2253 3.6 971 3955 5.5

Page 25 of 32 87Empir Software Eng (2022) 27: 87

Looking at the results for individual systems, results differ significantly in terms of �R

and �S and it is important to understand why to draw conclusions. For instance, for HDFS,

the value of �S is high (34.9pp), while the value of �R is negligible. This shows that

PRINS, compared to MINT, can significantly increase the accuracy of the inferred mod-

els by increasing their ability to correctly reject negative logs, without compromising their

ability to correctly accept positive logs.

On the other hand, for Linux and Zookeeper, the values of �R are negative and prac-

tically significant (-23.5pp for Linux and -11.7pp for Zookeeper) while the values of �S

are positive and practically significant as well (34.9pp for Linux and 7.5pp for Zookeeper).

Furthermore, the recall values of both MINT and PRINS are relatively lower for Linux and

Zookeeper compared to the recall values for the other systems. In terms of the 10-fold CV,

this means that the positive logs in the test set are not properly accepted by the models

inferred from the logs in the training set for Linux and Zookeeper. Experimentally, this is

mainly due to the logs in the training set being too different from the logs in the test set, this

being caused by the highly diverse logs of Linux and Zookeeper overall. From a practical

standpoint, this implies that, regardless of the model inference technique, a model inferred

from existing logs may not be able to correctly accept unseen (but positive) logs if the lat-

ter are too different from the former. However, for the reasons mentioned above, the issue

of highly diverse logs has a moderately larger impact on PRINS than on MINT. Practical

implications are discussed below.

Before running model inference, to effectively predict and avoid cases where PRINS is

likely to be worse than MINT and where both techniques fare poorly, we propose a new

and practical metric to measure the diversity of logs. Our log diversity metric is based on

the combination of components appearing in the individual logs because (1) PRINS targets

component-based systems considering not only the individual components’ behaviors but

also their interactions, (2) it is much simpler than using, for example, the flows of log entries

in the logs, and (3) it does not require any extra information other than the logs. More

formally, let L be a set of logs of a system and let C(l) be the set of components appearing

in a log l ∈ L. We define log-component diversity score (LDS) of the system logs Lsys as

LDS(Lsys) = U−1
N−1

, where U = |{C(l) | l ∈ Lsys}| (i.e., the total number of unique C(l)s

for all l ∈ Lsys) and N = |Lsys | (i.e., the total number of logs in Lsys). In other words, LDS

indicates the ratio of logs that are unique (i.e., different from the others) in terms of the set of

components appearing in the individual logs, ranging between 0 and 1; the higher its value,

the higher the diversity of the logs in terms of recording different component interactions.

For instance, LDS(LS) = 0 for our running example logs LS = {l1, l2} because N = 2 and

U = |{C(l1), C(l2)}| = 1 (since C(l1) = C(l2) = {Master,Job}). This means that LS is

not diverse at all in terms of the appearing components. Notice that LDS is a characteristic

of logs, which can be calculated before model inference takes place.

We measured LDS for the logs of each system in our benchmark. Column LDS in

Table 2 shows the results. We can see that the resulting LDS values of Linux (0.561) and

Zookeeper (0.571) are much higher than those of the other systems, which range between

0.007 (HDFS) and 0.195 (NGLClient). This confirms that LDS can be effectively used to

predict whether the models inferred from the existing logs can correctly accept unseen (but

positive) logs or not before running model inference.

In practice, if LDS is high (e.g., > 0.2) for the logs of a system, it implies that these logs

do not sufficiently exercise, in a comprehensive way, the potential behaviors of the system.

As a result, there is a high probability that many component interactions have not been

recorded or too rarely so. Therefore, an engineer can address this problem by collecting

more system logs until LDS is low enough.

87 Page 26 of 32 Empir Software Eng (2022) 27: 87

The answer to RQ5 is that, compared to MINT, PRINS tends to infer models that are more

capable of rejecting negative logs (i.e., yielding a higher specificity value) while sometimes

being less capable of accepting positive logs (i.e., yielding a lower recall value). The latter

happen anyway only in cases where logs are not adequate for both techniques to work

well. In practice, an engineer can compute the diversity score of the logs before running

model inference, and easily determine whether more logs should be collected, either through

testing or usage, until the score is acceptable.

5.7 Discussion and Threats to Validity

From the results above, we conclude that PRINS is an order of magnitude faster than MINT

in model inference for component-based systems, especially when the input system logs

are large and the individual component-level logs are considerably smaller than the sys-

tem logs, without significantly compromising the accuracy of the models. Furthermore,

since the large majority of modern software systems is composed of many “components”,

which can be modules, classes, or services, depending on the context, the logs typically

encountered in practice will satisfy the best conditions for PRINS to fare optimally: the

system logs are large but the individual component-level logs are considerably smaller.

There are situations where PRINS exhibits a poorer recall than MINT. However, this is

the case when the system logs are inadequate for model inference in general, regardless

of the technique, and we have proposed a way to detect such situations and remedy the

problem.

One drawback of the divide-and-conquer approach in PRINS is the increased size of

inferred models. In this sense, PRINS can be seen as sacrificing model size for improving

the execution time of model inference. Nevertheless, it is worth to note that PRINS does

not significantly compromise the accuracy of the inferred models. Furthermore, given the

significant execution time reduction in model inference on large logs, increasing model size

can be considered acceptable.

In terms of threats to validity, using a specific model inference tool (MINT) is a poten-

tial factor that may affect our results. However, we expect that applying other model

inference techniques would not change the trends in results since the fundamental prin-

ciples underlying the different model inference techniques are very similar. Furthermore,

MINT is considered state-of-the-art among available tools. Nevertheless, an experimental

comparison across alternative tools would be useful and is left for future work.

We used k-fold cross validation to evaluate the accuracy of inferred models due to

the lack of ground truth (i.e., reference models) for our benchmark systems. Therefore,

the computed accuracy scores might not faithfully represent the similarity between the

inferred models and their (unknown) ground truths, especially when the collected logs do

not sufficiently represent the system behaviors. To mitigate this issue, we calculated the

log-confidence values, following existing studies, and these results suggested that the logs

in our benchmarks are sufficient to derive faithfully inferred models. Furthermore, since the

same logs are used for both PRINS and MINT, not relying on ground truth does not severely

affect our empirical evaluation results.

5.8 Data Availability

The implementation of PRINS is available as a Python program. The replication package,

including the benchmark logs and our implementation of PRINS, is at https://github.com/

SNTSVV/PRINS.

Page 27 of 32 87Empir Software Eng (2022) 27: 87

https://github.com/SNTSVV/PRINS
https://github.com/SNTSVV/PRINS

6 RelatedWork

Starting from the seminal work of Biermann and Feldman (1972) on the k-Tail algorithm,

which is based on the concept of state merging, several approaches have been proposed

to infer a Finite State Machine (FSM) from execution traces or logs. Synoptic (Beschast-

nikh et al. 2011) uses temporal invariants, mined from execution traces, to steer the FSM

inference process to find models that satisfy such invariants; the space of the possible

models is then explored using a combination of model refinement and coarsening. InvariM-

INT (Beschastnikh et al. 2015) is an approach enabling the declarative specification of

model inference algorithms in terms of the types of properties that will be enforced in the

inferred model; the empirical results show that the declarative approach outperforms pro-

cedural implementations of k-Tail and Synoptic. Nevertheless, this approach requires prior

knowledge of the properties that should hold on the inferred model; such a pre-condition

cannot be satisfied in contexts (like the one in which this work is set) where the knowl-

edge about the system is limited and the only information about the system is provided by

logs. mk-Tails (Busany et al. 2019) is a generalization of the k-Tail algorithm from single to

many parameters, which enables fine-grained control over the abstraction (generalization)

on different subsets of the events. It allows users to deal with the trade-off between size and

accuracy in model inference.

Other approaches infer other types of behavioral models that are richer than an FSM. GK-

tail+ (Mariani et al. 2017) infers guarded FSM (gFSM) by extending the k-Tail algorithm

and combining it with Daikon (Ernst et al. 2007) to synthesize constraints on parameter

values; such constraints are represented as guards of the transitions of the inferred model.

MINT (Walkinshaw et al. 2016) also infers a gFSM by combining EDSM (Evidence-Driven

State Merging) (Cheng and Krishnakumar 1993) and data classifier inference (Witten

et al. 2016). EDSM, based on the Blue-Fringe algorithm (Lang et al. 1998), is a pop-

ular and accurate model inference technique, which won the Abbadingo (Lang et al.

1998) competition; it is also utilized in DFASAT (Heule and Verwer 2013) that won the

StaMinA competition (Walkinshaw et al. 2013). Data-classifier inference identifies patterns

or rules between data values of an event and its subsequent events. Using data classifiers, the

data rules and their subsequent events are explicitly tied together. ReHMM (Reinforcement

learning-based Hidden Markov Modeling) (Emam and Miller 2018) infers a gFSM extended

with transition probabilities, by using a hybrid technique that combines stochastic modeling

and reinforcement learning. ReHMM is built on top of MINT; differently from the latter, it

uses a specific data classifier (Hidden Markov model) to deal with transition probabilities.

Model inference has also been proposed in the context of distributed and concurrent

systems. CSight (Beschastnikh et al. 2014) infers a communicating FSM from logs of

vector-timestamped concurrent executions, by mining temporal properties and refining the

inferred model in a way similar to Synoptic. MSGMiner (Kumar et al. 2011) is a framework

for mining graph-based models (called Message Sequence Graphs) of distributed systems;

the nodes of this graph correspond to Message Sequence Chart, whereas the edges are deter-

mined using automata learning techniques. This work has been further extended (Kumar

et al. 2012) to infer (symbolic) class level specifications. However, these approaches require

the availability of channel definitions, i.e., which events are used to send and receive

messages among components.

Liu and Dongen (Liu et al. 2016) use a divide-and-conquer strategy, similar to the one

in our PRINS approach, to infer a system-level, hierarchical process model (in the form of

a Petri net with nested transitions) from the logs of interleaved components, by leveraging

the calling relation between the methods of different components. This approach assumes

87 Page 28 of 32 Empir Software Eng (2022) 27: 87

the knowledge of the caller and callee of each component methods; in our case, we do not

have this information and rely on the leads-to relation among log entries, computed from

high-level architectural descriptions and information about the communication events.

Nevertheless, all the aforementioned approaches cannot avoid scalability issues due to

the intrinsic computational complexity of inferring FSM-like models; the minimal con-

sistent FSM inference from logs is NP-complete (Gold 1967) and all the more practical

approaches are approximation algorithms with polynomial complexity.

One way to tackle the intrinsic scalability issue of (automata-based) model inference is to

rely on distributed computing models, such as MapReduce (Dean and Ghemawat 2008), by

transforming the sequential model inference algorithms into their corresponding distributed

version. In the case of the k-Tail algorithm, the main idea (Wang et al. 2015) is to parallelize

the algorithm by dividing the traces (sequences of log messages) into several groups, and

then run an instance of the sequential algorithm on each of them. A more fine-grained

version (Luo et al. 2017) parallelizes both the trace slicing and the model synthesis steps.

Being based on MapReduce, both approaches require to encode the data to be exchanged

between mappers and reducers in the form of key-value pairs. This encoding, especially in

the trace slicing step, is application-specific; for instance, to correctly slice traces recorded

by an online shopping system, different event parameter values, such as user id, order

id, and item id, must be correctly identified and categorized from individual messages

beforehand. Notice that this is more challenging than just identifying parameter values from

free-formed messages, since different types of parameters must be distinguished. Hence,

MapReduce cannot be used in contexts in which the system is treated as a black-box, with

limited information about the data recorded in the log entries. Furthermore, though the

approach can infer a FSM from large logs of over 100 million events, the distributed model

synthesis can be significantly slower for k ≥ 3 (of k-Tail), since the underlying algorithm is

exponential in k.

Another way of taming scalability is to reduce the size of input logs by sampling them

from the entire set of collected logs using statistical analysis and provide statistical guaran-

tees on the inferred models. This is called statistical log analysis and was first presented by

Busany and Maoz (2016). Its key idea is to iteratively sample new logs until the probabil-

ity of adding new system behaviors into the model inferred by sampled logs is less than a

given level of confidence threshold. While the idea of using statistical analysis to address

the scalability of model inference is promising, as already noted by the authors, it is only

applicable to sequential model inference algorithms, where each log can be processed inde-

pendently (Busany and Maoz 2016). PRINS, on the other hand, is applicable to all model

inference algorithms as only the inference target is changed from systems to components.

Therefore, all model inference algorithms can benefit from using the divide-and-conquer

approach in PRINS.

7 Conclusion

In this paper, we addressed the scalability problem of inferring the model of a component-

based system from system logs, assuming that the only information available about the

system is represented by the logs. Our approach, called PRINS, first infers a model of each

system component from the corresponding logs; then, it merges the individual component

models together taking into account the flow of events across components, as reflected in

the logs. Our evaluation, performed on logs from nine datasets, has shown that PRINS can

process large logs an order of magnitude faster than a publicly available and well-known

Page 29 of 32 87Empir Software Eng (2022) 27: 87

state-of-the-art technique without significantly compromising the accuracy of inferred

models. While there are some cases where PRINS achieves a moderately lower recall than

the state-of-the-art, this happens when the logs are inadequate for model inference in gen-

eral, regardless of the technique. Furthermore, we have proposed an easy way to detect such

cases and remedy the problem.

As part of future work, we plan to evaluate PRINS on different datasets, especially col-

lected from real-world industrial applications, and to integrate it with other model inference

techniques. We also aim to assess the effectiveness of the inferred models when applied to

support software engineering activities, such as test case generation.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included in the

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aghajani E, Nagy C, Vega-Márquez OL, Linares-Vásquez M, Moreno L, Bavota G, Lanza M (2019) Soft-

ware documentation issues unveiled. In: 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE Press, Piscataway, pp 1199–1210

Beschastnikh I, Brun Y, Schneider S, Sloan M, Ernst MD (2011) Leveraging existing instrumentation to

automatically infer invariant-constrained models. In: Proceedings of the 19th ACM SIGSOFT Sympo-

sium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE 2011).

ACM, New York, pp 267–277

Beschastnikh I, Brun Y, Ernst MD, Krishnamurthy A (2014) Inferring models of concurrent systems from

logs of their behavior with CSight. In: Proceedings of the 36th International Conference on Software

Engineering (ICSE 2014). ACM, New York, pp 468–479

Beschastnikh I, Brun Y, Abrahamson J, Ernst MD, Krishnamurthy A (2015) Using declarative specification

to improve the understanding, extensibility, and comparison of model-inference algorithms. IEEE Trans

Softw Eng 41(4):408–428

Biermann AW, Feldman JA (1972) On the synthesis of finite-state machines from samples of their behavior.

IEEE Trans Comput C-21(6):592–597. https://doi.org/10.1109/TC.1972.5009015

Busany N, Maoz S (2016) Behavioral log analysis with statistical guarantees. In: 2016 IEEE/ACM 38th Inter-

national Conference on Software Engineering (ICSE), pp 877–887. https://doi.org/10.1145/2884781.

2884805

Busany N, Maoz S, Yulazari Y (2019) Size and accuracy in model inference. In: 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE Press, Piscataway, pp 887–

898. https://doi.org/10.1109/ASE.2019.00087

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3).

https://doi.org/10.1145/1541880.1541882

Cheng K, Krishnakumar AS (1993) Automatic functional test generation using the extended finite state

machine model. In: Proceedings of the 30th Design Automation Conference (DAC 1993). ACM, New

York, pp 86–91

Clarke Jr, EM, Grumberg O, Kroening D, Peled D, Veith H (2018) Model checking. MIT Press, Cambridge

Cohen H, Maoz S (2015) Have we seen enough traces? (t). In: 2015 30th IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), pp 93–103. https://doi.org/10.1109/ASE.2015.62

87 Page 30 of 32 Empir Software Eng (2022) 27: 87

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1145/2884781.2884805
https://doi.org/10.1145/2884781.2884805
https://doi.org/10.1109/ASE.2019.00087
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/ASE.2015.62

Cook JE, Wolf AL (1998) Discovering models of software processes from event-based data. ACM Trans

Softw Eng Methodol 7(3):215–249. https://doi.org/10.1145/287000.287001

Damas C, Lambeau B, Dupont P, van Lamsweerde A (2005) Generating annotated behavior models from

end-user scenarios. IEEE Trans Softw Eng 31(12):1056–1073. https://doi.org/10.1109/TSE.2005.138

Dean J, Ghemawat S (2008) Mapreduce: Simplified data processing on large clusters. Commun ACM

51(1):107–113

El-Masri D, Petrillo F, Guéhéneuc YG, Hamou-Lhadj A, Bouziane A (2020) A systematic literature review

on automated log abstraction techniques. Inf Softw Technol 122:106276. https://doi.org/10.1016/j.

infsof.2020.106276

Emam SS, Miller J (2018) Inferring extended probabilistic finite-state automaton models from software

executions. ACM Trans Softw Eng Methodol 27(1). https://doi.org/10.1145/3196883

Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C (2007) The Daikon system

for dynamic detection of likely invariants. Sci Comput Program 69(1):35–45

Fraser G, Walkinshaw N (2012) Behaviourally adequate software testing. In: 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation. IEEE Press, Piscataway, pp 300–309.

https://doi.org/10.1109/ICST.2012.110

Gold EM (1967) Language identification in the limit. Inf Control 10(5):447–474

He P, Zhu J, Zheng Z, Lyu MR (2017) Drain: an online log parsing approach with fixed depth tree. In:

2017 IEEE International Conference on Web Services (ICWS). IEEE Press, Piscataway, pp 33–40.

https://doi.org/10.1109/ICWS.2017.13

He S, Zhu J, He P, Lyu MR (2020) Loghub: A large collection of system log datasets towards automated log

analytics. arXiv:2008.06448

Heule MJH, Verwer S (2013) Software model synthesis using satisfiability solvers. Empir Software Eng

18:825–856. https://doi.org/10.1007/s10664-012-9222-z

Hopcroft JE, Motwani R, Ullman JD (2006) Introduction to automata theory, languages and computation,

3rd edn. Addison-Wesley Longman Publishing Co., Inc., USA

Kumar S, Khoo SC, Roychoudhury A, Lo D (2011) Mining message sequence graphs. In: Proceedings of

the 33rd International Conference on Software Engineering (ICSE 2011). ACM, New York, pp 91–

100

Kumar S, Khoo SC, Roychoudhury A, Lo D (2012) Inferring class level specifications for distributed sys-

tems. In: Proceedings of the 34th International Conference on Software Engineering (ICSE 2012). IEEE,

Piscataway, pp 914–924

Lang KJ, Pearlmutter BA, Price RA (1998) Results of the Abbadingo One DFA learning competition and

a new evidence-driven state merging algorithm. In: Proceedings of the 4th International Colloquium on

Grammatical Inference (ICGI 1998), LNCS, vol 1433. Springer, Berlin, pp 1–12

Liu C, van Dongen B, Assy N, van der Aalst WMP (2016) Component behavior discovery from software

execution data. In: Proceedings of the Symposium Series on Computational Intelligence (SSCI 2016).

IEEE, Piscataway, pp 1–8

Luo C, He F, Ghezzi C (2017) Inferring software behavioral models with mapreduce. Sci Comput Pro-

gramm 145:13–36. https://doi.org/10.1016/j.scico.2017.04.004, http://www.sciencedirect.com/science/

article/pii/S0167642317300795

Mariani L, Pezzè M, Santoro M (2017) Gk-tail+ an efficient approach to learn software models. IEEE Trans

Softw Eng 43(8):715–738. https://doi.org/10.1109/TSE.2016.2623623

Messaoudi S, Panichella A, Bianculli D, Briand L, Sasnauskas R (2018) A search-based approach for

accurate identification of log message formats. In: 2018 IEEE/ACM 26th International Conference on

Program Comprehension (ICPC). IEEE Press, Piscataway, pp 167–16710

Palmer JD, McAddis N (2019) Documentation as a cross-cutting concern of software. In: Proceedings of the

37th ACM International Conference on the Design of Communication, SIGDOC ’19. Association for

Computing Machinery, New York. https://doi.org/10.1145/3328020.3353949

Polyvyanyy A, Smirnov S, Weske M (2008) Process model abstraction: A slider approach. In:

2008 12th International IEEE Enterprise Distributed Object Computing Conference, pp 325–331.

https://doi.org/10.1109/EDOC.2008.17

Rios N, Mendes L, Cerdeiral C, Magalhães APF, Perez B, Correal D, Astudillo H, Seaman C, Izurieta

C, Santos G, Oliveira spı́nola R (2020) Hearing the voice of software practitioners on causes, effects,

and practices to deal with documentation debt. In: Requirements engineering: Foundation for software

quality. Springer International Publishing, Cham, pp 55–70

Varrette S, Bouvry P, Cartiaux H, Georgatos F (2014) Management of an academic hpc cluster: The ul

experience. In: Proc. of the 2014 intl. Conf. on high performance computing & simulation (HPCS 2014).

IEEE, Bologna, pp 959–967

Page 31 of 32 87Empir Software Eng (2022) 27: 87

https://doi.org/10.1145/287000.287001
https://doi.org/10.1109/TSE.2005.138
https://doi.org/10.1016/j.infsof.2020.106276
https://doi.org/10.1016/j.infsof.2020.106276
https://doi.org/10.1145/3196883
https://doi.org/10.1109/ICST.2012.110
https://doi.org/10.1109/ICWS.2017.13
https://arxiv.org/abs/2008.06448
https://doi.org/10.1007/s10664-012-9222-z
https://doi.org/10.1016/j.scico.2017.04.004
http://www.sciencedirect.com/science/article/pii/S0167642317300795
http://www.sciencedirect.com/science/article/pii/S0167642317300795
https://doi.org/10.1109/TSE.2016.2623623
https://doi.org/10.1145/3328020.3353949
https://doi.org/10.1109/EDOC.2008.17

Walkinshaw N (2018) mintframework. https://github.com/neilwalkinshaw/mintframework, accessed: 2020-

03-05

Walkinshaw N, Bogdanov K, Damas C, Lambeau B, Dupont P (2010) A framework for the competitive

evaluation of model inference techniques. In: Proceedings of the First International Workshop on Model

Inference In Testing (MIIT 2010). ACM, New York, pp 1–9

Walkinshaw N, Lambeau B, Damas C, Bogdanov K, Dupont P (2013) Stamina: a competition to encourage

the development and assessment of software model inference techniques. Empir Softw Eng 18(4):791–

824

Walkinshaw N, Taylor R, Derrick J (2016) Inferring extended finite state machine models from software

executions. Empir Softw Eng 21(3):811–853. https://doi.org/10.1007/s10664-015-9367-7

Wang S, Lo D, Jiang L, Maoz S, Budi A (2015) Scalable parallelization of specification mining using dis-

tributed computing. In: Bird C, Menzies T, Zimmermann T (eds) The Art and Science of Analyzing

Software Data. Morgan Kaufmann, Boston, pp 623–648. https://doi.org/10.1016/B978-0-12-411519-4.

00021-5, http://www.sciencedirect.com/science/article/pii/B9780124115194000215

Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: Practical machine learning tools and techniques,

4th edn. Morgan Kaufmann, San Francisco

Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR (2019) Tools and benchmarks for auto-

mated log parsing. In: Proceedings of the 41st International Conference on Software Engineer-

ing: Software Engineering in Practice, , ICSE-SEIP ’10. IEEE Press, Piscataway, pp 121–130.

https://doi.org/10.1109/ICSE-SEIP.2019.00021

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

87 Page 32 of 32 Empir Software Eng (2022) 27: 87

https://github.com/neilwalkinshaw/mintframework
https://doi.org/10.1007/s10664-015-9367-7
https://doi.org/10.1016/B978-0-12-411519-4.00021-5
https://doi.org/10.1016/B978-0-12-411519-4.00021-5
http://www.sciencedirect.com/science/article/pii/B9780124115194000215
https://doi.org/10.1109/ICSE-SEIP.2019.00021

	PRINS: scalable model inference for component-based system logs
	Abstract
	Introduction
	Background
	Logs
	Models

	Motivating Example
	Scalable Model Inference
	Projection
	Inference
	Stitching
	Partition
	Slice
	Append
	Union
	Application of Stitch to the running example

	Determinization

	Evaluation
	Benchmark and Settings
	RQ1: Parallel Inference
	Methodology
	Results

	RQ2: Execution Time of Hybrid Determinization
	Methodology
	Results

	RQ3: Accuracy of Models Generated by Hybrid Determinization
	Methodology
	Results

	RQ4: Execution Time of PRINS Compared to State-of-the-Art
	Methodology
	Results

	RQ5: Accuracy of PRINS Compared to State-of-the-Art
	Methodology
	Results

	Discussion and Threats to Validity
	Data Availability

	Related Work
	Conclusion
	References

