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ABSTRACT 33 

This study assesses the ability of ten Earth System Models (ESMs) that 34 

participated in Phase 6 of the Coupled Model Intercomparison Project (CMIP6) to 35 

reproduce the present-day inhalable particles with diameters less than 2.5 micrometers 36 

(PM2.5) over Asia and discusses the uncertainty. PM2.5 accounts for more than 30% of 37 

the surface total aerosol (fine and coarse) concentration over Asia, except for Central 38 

Asia. The simulated spatial distributions of PM2.5 and its components, averaged for the 39 

period from 2005 to 2020, are consistent with the Modern-Era Retrospective Analysis 40 

for Research and Applications version 2 (MERRA-2) reanalysis. They are 41 

characterized by the high PM2.5 concentrations over eastern China and northern India 42 

where anthropogenic components such as sulfate and organic aerosol dominate, and in 43 

northwestern China where the mineral dust in PM2.5 fine particles (PM2.5DU) dominate. 44 

The present-day multi-model mean (MME) PM2.5 concentrations slightly underestimate 45 

ground-based observations in the same period of 2014-2019, although observations are 46 

affected by the limited coverage of observation sites and the impact of urban areas. 47 

Those model biases partly come from other aerosols (such as nitrate and ammonium) 48 

not involved in our analyses, and also are contributed by large uncertainty in PM2.5 49 

simulations on local scale among ESMs. The model uncertainties over East Asia are 50 

mainly attributed to sulfate and PM2.5DU; over South Asia they are attributed to sulfate, 51 

organic aerosol and PM2.5DU; over Southeast Asia they are attributed to sea salt in 52 

PM2.5 fine particles (PM2.5SS); and over Central Asia they are attributed to PM2.5DU. 53 

They are mainly caused by the different representations of aerosols within individual 54 

ESMs including the representation of aerosol size distributions, dynamic transport, 55 

physical and chemistry mechanisms.  56 

 57 
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1. Introduction 64 

Aerosol is a multiphase system composed of solid particles and liquid droplets, 65 

suspended in a gaseous carrier phase (e.g., air). Atmospheric aerosols can include 66 

minerals (e.g., silicates) originating from soils and rocks, carbonaceous components 67 

(black carbon and organic carbon), sulfates, nitrates, ammonium salts, sea salts and 68 

biogenic components (Wang and Zhang, 2001; Zhang Y. et al., 2019). Through either 69 

direct (Coakley et al., 1983; Jacobson, 2001; Bond et al., 2013; Li et al., 2017) or 70 

indirect effects on atmospheric radiation (Charlson et al., 1992; Guo et al., 2018; Liu et 71 

al., 2021), aerosols are well recognized to significantly influence weather and climate 72 

at regional and global scales (Menon et al., 2002; Lau et al., 2006; Zhang et al., 2007; 73 

Tosca et al., 2010; Bollasina et al., 2011; Li et al., 2011; Wang et al., 2011, 2013; 74 

Hwang et al., 2013; Wu et al., 2016a; Zhang et al., 2021). Aerosols can also cause 75 

serious environmental problems such as fog, haze, photochemical smog and acid rain, 76 

with significant impacts on the hydrological cycle, new energy development, 77 

agricultural production and transportation (Ramanathan et al., 2001; Haywood et al., 78 

2011; Singh et al., 2017; Sweerts et al., 2019). Fine particulate matter with particle 79 

diameters less than 2.5 µm, commonly termed PM2.5, are generally thought of as one of 80 

the main causes of air pollution and have an adverse effect on human health. According 81 

to the Global Burden of Disease 2010 comparative risk assessment (GBD, Lim et al., 82 

2012), roughly 3.2 million deaths per year are attributable to ambient PM2.5. 83 

Understanding and predicting PM2.5 and its spatial and temporal variations are therefore 84 

vital for reducing mortality and other impacts on the environment (Apte et al., 2015).  85 

With the development of Earth System Models (ESMs), the importance of 86 

coupling between multiple components of the Earth System, including atmosphere, 87 

ocean, land and sea ice, has gradually been recognized, and increasingly improved 88 
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within these ESMs. ESMs have become an important tool to simulate and forecast 89 

global aerosols (Collins et al., 2017) and can not only fill the gaps between historical 90 

observations, but also estimate the trends of aerosols in the future, and thus provide a 91 

basis for assessing the evolution of air pollution in both the past and future. The 92 

performance of ESMs to reproduce the observed aerosols is an important issue for 93 

climate modelling communities. In fact, the Atmospheric Chemistry and Climate 94 

Model Intercomparison Project (ACCMIP) was endorsed by the Fifth Coupled Model 95 

Intercomparison Project Phase 5 (CMIP5), and tended to focus on the atmospheric 96 

chemistry (Lamarque et al., 2013), with only a few models providing the simulation 97 

results for aerosols (Collins et al., 2017). The Aerosols and Chemistry Model 98 

Intercomparison Project (AerChemMIP, Collins et al., 2017), part of the Sixth Coupled 99 

Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016), provides an 100 

opportunity to understand the performance of the latest ESMs in simulating aerosols. 101 

There are few relevant assessments on the performance of CMIP6 ESMs in simulating 102 

aerosols (Mulcahy et al., 2020; Wu et al., 2020). They show that most of the current 103 

generation of ESMs such as BCC-ESM1 and UKESM1 can reproduce the global spatial 104 

distributions of most aerosol components (e.g., sulfate) concentrations, although there 105 

are some model biases for certain components.  106 

It is important to understand the evolution of ground-level PM2.5 over Asia as it 107 

is one of the most heavily polluted regions on the globe, and has the highest mortality 108 

rate attributed to atmospheric pollution (Apte et al., 2015). Previous studies show that 109 

most of the CMIP6 ESMs can capture the spatial distributions of surface PM2.5 110 

concentrations across the globe but underestimate the absolute magnitude (Turnock et 111 

al., 2020). However, the ability of the CMIP6 ESMs to simulate PM2.5 in Asia has 112 

not been carefully explored so far largely due to the lack of ground-based surface 113 
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aerosol observations in Asia. In addition, the various components of PM2.5 have 114 

seldom been utilized in previous studies, leading to the differences among models 115 

being poorly understood. 116 

Here, simulations of surface PM2.5 and its component concentrations from 117 

ten CMIP6 ESMs are evaluated in detail against observations from surface sites 118 

over Asia. Based on the ratio of PM2.5 to main aerosol mass and the relative 119 

contributions of each component to PM2.5, differences among models are revealed. 120 

The remaining parts of this manuscript are as follows: the research data and methods 121 

are presented in section 2; in section 3, we assess the ability of the CMIP6 ESMs to 122 

simulate the spatial distribution of PM2.5 and its main components in Asia; in section 4, 123 

we analyze their model-spread among 10 ESMs; uncertainties in evaluating PM2.5 124 

concentrations is discussed in section 5; a summary is given in section 6. 125 

 126 

2. Data and Methods 127 

The monthly mean PM2.5 components, including sulfate, organic aerosol (OA), 128 

black carbon (BC), dust, and sea salt, from ten ESMs participated in CMIP6 are 129 

employed in this study. The model information is described in Table 1 and all the model 130 

data can be freely download from the Earth System Grid Federation (ESGF) nodes 131 

(https://esgf-node.llnl.gov/search/cmip6/, last access: 10 January 2022). All the models 132 

use the same anthropogenic emission inventory from the Community Emissions Data 133 

System (CEDS, Hoesly et al., 2018, http://www.globalchange.umd.edu/ceds/ceds-134 

cmip6-data/) and their own schemes for simulating natural emissions such as dust and 135 

sea salt aerosols, which have different representations of the aerosol size distribution 136 

(Collins et al., 2017). The model data is obtained from the CMIP6 historical 137 
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experiments (Eyring et al., 2016) before 2015 and from the SSP370 experiments in 138 

AerChemMIP (Collins et al., 2017) afterward.  139 

  140 
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Table1. CMIP6 Earth system models used in this study 141 

CMIP6 
ESMs 

Institution Resolution and 
Vert levels in 
Atmosphere 

Aerosol 
Component 
Name and 
References 

Natural aerosols 
size bins (µm) 

Model and 
Data 
References 

BCC-ESM1 Beijing Climate Center, 
China Meteorological 
Administration, China 

2.813°  2.813°;  
L26; top level at 
2.91hPa. 

BCC-
AGCM3-
Chem,  
Wu et al., 
2020. 

Dust (4 size bins: 
0.1–1, 1–2.5, 2.5–5, 
5–10µm); Sea salt 
(4 size bins: 0.2–1, 
1–3, 3–10, 10–
20µm) 

Wu et al., 
2020;  
Zhang et al., 
2018, 2019a 

CESM2-
WACCM 

National Center for 
Atmospheric Research, 
United States  

0.9°  1.25°;  
L70; top level at 
6x10-6 hPa. 

MAM4,  
Liu et al., 
2016. 

Dust and sea salt 
(log-normal size 
distribution) 

Danabasoglu 
et al., 2020; 
Danabasoglu, 
2019a, 2019b 

EC-Earth3-
AerChem 

European consortium of 
meteorological services, 
research institutes, and 
high-performance 
computing centers 

3° 2°; L34; top 
level: 0.1 hPa. 

TM5, Krol 
et al., 2005; 
Huijnen et 
al., 2010. 

Dust and sea salt (7 
size bins, log-
normal size 
distributions) 

Van Noije et 
al., 2021; EC-
Earth 
Consortium, 
2020a, 2020b 

GFDL-ESM4 NOAA Geophysical 
Fluid Dynamics 
Laboratory, United 
States  

Cubed-sphere 
(c96) grid, with 
~100 km native 
resolution, 
regridded to 1.0° 
 1.25°;  
L49; top level at 
0.01 hPa. 

GFDL 
AM4.1,  
Horowitz et 
al., 2020. 

Dust (5 size bins: 
0.1–2, 2–4, 4–6, 6–
12, 12-20µm); Sea 
salt (5 size bins) 
 

Dunne et al., 
2020; 
John et al., 
2018; 
Krasting et al., 
2018 

IPSL-
CM5A2-
INCA 

Institut Pierre Simon 
Laplace, Paris, France 

3.75° 1.875°；
L39；top level 
80km. 

INCA v6 
NMHC-
AER-S 

Dust and sea salt 
particles are 
partitioned into 3 
size classes (< 1 
μm, 1-10μm, >10 
μm), Szopa et al., 
2013 

Sepulchre et 
al., 2020; 
Boucher et al., 
2020a, 2020b 

MIROC-
ES2L 

University of Tokyo, 
National Institute for 
Environmental Studies, 
and Japan Agency for 
Marine-Earth Science 
and Technology, Japan  

2.813°  2.813°;  
L40; top level at 
3.0 hPa. 

SPRINTAR
S,  
Takemura et 
al., 2000, 
2005, 2009. 

Dust (10 size bins: 
from 0.1 to 10 µm); 
Sea salt (10 size 
bins: from 0.05 to 
10 µm, lognormal 
distribution) 

Hajima et al., 
2020;  
Hajima et al., 
2019; Tachiiri 
et al., 2019 

MPI-ESM-1-
2-HAM 

Max Planck Institute 
for Meteorology, 
Germany 

1.875°  1.875°;  
L47; top level at 
0.01 hPa. 

HAM2.3,  
Tegen et al., 
2019. 

Dust and sea salt 
size distribution is 
represented by 7 
lognormal modes 

Neubauer et 
al., 2019a, 
2019b 

MRI-ESM2-0 Meteorological 
Research Institute, 
Japan  

1.125°  1.125°;  
L80; top level at 
0.01 hpa. 

MASINGA
R mk-2r4c, 
Yukimoto et 
al., 2019a;  
Oshima et 
al., 2020. 

Dust and sea salt 
(10 size bins: from 
0.1 to 10 µm) 

Yukimoto et 
al., 2019a; 
Yukimoto et 
al., 2019b, 
2019c 

NorESM2-
LM 

Norwegian Climate 
Center, Norway  

1.9°  2.5°;  
L32; top level at 
3.64 hPa. 

OsloAero6, 
Kirkeväg et 
al., 2018; 
Seland et 
al., 2020. 

Dust and sea salt, 
lognormal 
distribution 

Kirkeväg et 
al., 2018; 
Seland et al., 
2019a, 2019b 

UKESM1-0-
LL 

Natural Environment 
Research Council, and 
Met office, United 
Kingdom 

1.25°  1.875°;  
L85; top level at 
85km. 

GLOMAP-
Mode,  
Mulcahy et 
al., 2020. 

Dust (6 size bins); 
Sea salt (5 size bins) 

Sellar et al., 
2019; 
Good et al., 
2019; Tang et 
al., 2019 

 142 
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Not all CMIP6 ESMs provide PM2.5 concentrations, even for some ESMs with 143 

available PM2.5, they use different methods to calculate it. In order to uniformly 144 

evaluate the ability of ESMs to simulate PM2.5, it is necessary to find a consistent 145 

method to calculate PM2.5. Therefore, following the methods used in other studies 146 

(Silva et al., 2013; Turnock et al., 2020), the formula used to estimate PM2.5 mass 147 

concentrations from the ESMs data is expressed as  148 

  PMଶ.ହ = BC + OA + SOସ + (0.1 × DU) + (0.25 × SS) ,                     (1) 149 

where BC, OA, SO4, DU, SS represent the black carbon (CMIP6 diagnostic identifier: 150 

mmrbc), organic aerosol (mmroa), sulfate (mmrso4), dust (mmrdust) and sea salt 151 

(mmrss) mass mixing ratio (kg kg-1), respectively. All the aerosol mass concentrations 152 

in the lowest layer of each ESM are taken as the near surface values from simulations 153 

in this work. The particles for BC, OA and SO4 aerosols are generally less than 2.5 µm 154 

in diameter.  155 

In Eq. (1), 10% and 25% of dust and sea salt particles are assumed to be present 156 

within the fine size fraction of less than 2.5 µm in diameter. We validated this 157 

assumption for dust and sea salt from additional BCC-ESM1 simulations which 158 

provided output across four-size bins of dust (DST01: 0.1-1.0 µm, DST02: 1.0-2.5 µm, 159 

DST03: 2.5-5.0 µm, DST04: 5.0-10 µm) and sea salt (SSLT01: 0.2-1.0 µm, SSLT02: 160 

1.0-3.0 µm, SSLT03: 3.0-10 µm, and SSLT04: 10-20 µm) aerosols (Wu et al., 2020). 161 

Only the ESGF provides total aerosol mass mixing ratios so we only have access to full 162 

size resolved aerosol data from BCC-ESM1. As shown in Figure 1, the estimated PM2.5 163 

fine particles concentrations for dust (hereafter PM2.5DU) and sea salt (PM2.5SS) from 164 

the Eq. (1) are nearly consistent to that from the original BCC-ESM1 simulations (fine 165 

size fraction less than 2.5 µm in diameter calculated by summing by DST01 and 166 

DST02, SSLT01 and SSLT02, respectively). 167 
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 168 

Fig. 1. Annual mean of near surface PM2.5DU and PM2.5SS concentrations in Asia (70–140o E, 5–55o N) 169 

during 2005–2020 from BCC-ESM1 simulations. (a) and (b) denotes the estimated values by Eq. (1) for 170 

PM2.5DU and PM2.5SS, respectively. (c) and (d) show the original model data for total of dust and sea 171 

salt with fine size fraction less than 2.5 µm in diameter. Units: µg·m-3.  172 

 173 

To evaluate the present-day PM2.5 climatology in ESMs, the following ground-174 

based observations are used: monthly mean surface PM2.5 observations during 2014–175 

2019 at 25 sites in Asia from the Acid Deposition Monitoring Network in East Asia 176 

(hereafter EANET data, http://www.eanet.asia, last access: 16 December 2020) and 348 177 

urban sites in China available from the Chinese National Environmental Monitoring 178 

Center (hereafter CNEMC data, http://www.cnemc.cn, last access: 16 December 2020). 179 

The CNEMC data have been used in previous studies (Wei et al., 2019; Wei et al., 180 

2020). In order to examine the observation uncertainty due to the impact of urban 181 

effects, monthly mean PM2.5 concentrations at two atmospheric background stations 182 
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from the Meteorological Observation Center, China Meteorological Administration 183 

(hereafter CMA data, Zhang et al., 2020) are compared with the nearby urban sites from 184 

CNEMC data, as well as from a pair of urban and suburban ground-based observations 185 

in Thailand (Pathumwan and KlongHa) from the Asia-Pacific Aerosol Database 186 

(APAD, Cohen and Atanacio, 2015). The geographic distributions of all the observation 187 

sites and division of Asian subregions used in the study are shown in Figure 2. 188 

Considering the sparsely covered and unevenly distributed ground-based 189 

observation, the Modern-Era Retrospective Analysis for Research and Applications, 190 

version 2 (MERRA-2) data, a high-resolution (0.5o×0.625o) assimilation data product 191 

(including sulfate, organic aerosols, black carbon, dust and sea salt) developed by 192 

combining satellite observations with the Goddard Earth Observing System 193 

atmospheric model and atmosphere data assimilation system (Buchard et al., 2016; 194 

Randles et al., 2017) is further used. The MERRA-2 data is widely used by many 195 

studies in evaluation of aerosols simulations (Turnock et al., 2020; Ukhov et al., 2020; 196 

Li et al., 2021; Zhao et al., 2021). For inter-comparison between ESMs and MERRA-197 

2, we derive the monthly MERRA-2 PM2.5 data from 2005 to 2020 using the same 198 

equation (1), on the basis of the monthly sulfate, organic aerosols, black carbon, and 199 

total mass of dust and sea salt aerosols mass data that are directly downloaded from the 200 

website (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/, last access: 16 201 

December 2020). In this study, all model data were interpolated to the same horizontal 202 

resolution of 0.5°×0.625° latitude/longitude grids as in MERRA-2, and onto the site 203 

locations when compared with the ground-based observations. 204 
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 205 

Fig. 2. Locations of observation sites in Asia (70–140o E, 5–55o N) from EANET (blue triangles, 25 206 

sites), CNEMC (red circles, 348 urban sites), CMA (green circles, 2 background stations) and APAD 207 

(purple hollow squares, 2 adjacent sites). The dashed areas represent the various parts of Asia, including 208 

Central Asia (CA), East Asia (EA), South Asia (SA) and Southeast Asia (SEA). 209 

 210 

3. The present-day climate of PM2.5 and its components in 211 

Asia  212 

3.1 PM2.5 concentrations 213 

In this section, we will focus on the spatial features of present-day climate mean 214 

PM2.5 from 2005 to 2020. Figure 3 shows the percentage contribution of PM2.5 to the 215 

total aerosol (fine and coarse) concentration in Asia, including sulfate, OA, BC, and all 216 

particle sizes of dust and sea salt. The results from MERRA-2 (Fig. 3l) shows a 217 

relatively high proportion of PM2.5 over East Asia and Southeast Asia and the 218 

contribution is up to 60%–80% over the southeastern coast of China. Central Asia is an 219 

arid or semi-arid region and has the lowest proportion (less than 30%) of PM2.5, where 220 
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mineral dust is generally the main source of aerosols, and coarse particles dominate. 221 

For the multi-model mean (MME, Fig. 3k), the PM2.5 ratio is in overall a good 222 

agreement with MERRA-2, except for MIROC-ES2L (Fig. 3f). MIROC-ES2L shows 223 

the largest proportion of fine particulate matter in eastern China, which is about 20% 224 

higher than in MME and MERRA-2. 225 

 226 

  227 

Fig. 3. The 2005–2020 mean PM2.5 ratios to main aerosol (including all particle sizes of dust and sea salt, 228 

sulfate, organic aerosol and black carbon) in Asia (70–140o E, 5–55o N) for (a-j) the 10 ESMs, (k) their 229 

MME, and (l) MERRA-2. Units: %. 230 

Figure 4a shows the spatial distribution of present-day mean of surface PM2.5 231 

concentrations in the 373 ground-based observations from CNEMC and EANET, 232 
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averaged for the period of 2014-2019. Annual mean surface PM2.5 concentrations in 233 

most parts of eastern China can be over 40 µg m-3, and the highest values are mainly 234 

centered over the Beijing-Tianjin-Hebei region where PM2.5 concentration may be over 235 

60 µg m-3. High annual mean PM2.5 concentrations are also present over northwestern 236 

China, mainly contributed by mineral dust. In the area south of 25oN, the annual mean 237 

PM2.5 concentrations are generally smaller, which may be caused by strong wet 238 

deposition and lower emissions. Japan and Korea are also regions with values of annual 239 

mean PM2.5 concentrations less than 20 µg m-3. Figures 4b-4k show the point-to-point 240 

comparisons between ten ESMs simulations separately with 373 ground-based 241 

observations in the same period from 2014 to 2019. They illustrate that most models 242 

underestimate the observations, although all ESMs show high spatial correlations of 243 

0.52 to 0.74 and 0.69 for MME (Fig. 4l). The underestimation of PM2.5 concentrations 244 

by CMIP6 models in this study partly comes from the use of the approximate method 245 

to calculate PM2.5 (Equation (1)), in which nitrate (NO3
-) and ammonium (NH4

+) 246 

aerosols are not involved. Those underestimations also exist in CMIP5 models (Wu et 247 

al., 2016b; Liu et al., 2017). 248 
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 249 

Fig. 4. (a) 2014–2019 averaged annual mean surface PM2.5 concentrations for 373 sites from EANET 250 

(triangles, 25 sites) and CNEMC (circles, 348 urban sites) in Asia. (b-m) Scatterplots of surface PM2.5 251 

concentrations for each ESMs and their MME, and MERRA-2, separately comparing to the 252 

observations from EANET and CNEMC sites during the same period. RMSE stands for root-mean-253 

square error, and COR for correlation coefficient. The grey lines represent the 1:1 line, 1:2 line and 2:1 254 

line, respectively. Units: μg m−3. 255 

 256 

As shown in Figure 4m, the MERRA-2 data also underestimate the observed 257 

PM2.5 concentrations at 373 sites. Nevertheless, MERRA-2 can provide the overall 258 

spatial distribution of PM2.5 in Asia with better temporal and spatial coverage and 259 

compensate for the gaps not covered by site observations. As shown in Fig. 5l, the 260 

spatial distribution of annual mean surface PM2.5 concentrations averaged for 2005 to 261 

2020 from MERRA-2 is similar to that from ground-based observations (Fig. 4a). 262 

Except for the two regions with high surface PM2.5 concentrations in eastern China and 263 
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northwestern China that can be found from ground-based observations, MERRA-2 (Fig. 264 

5l) also shows a third region of high-concentration centered in northern India where 265 

there are high local emissions and where the Himalayas plays a large role in preventing 266 

dispersal of aerosols (Shi et al., 2018). The PM2.5 concentrations are less than 5µg m-3 267 

over the Tibetan Plateau (about 73–104o E, 26–39o N) and Mongolia Plateau (about 87–268 

122o E, 37–53o N), where human activities are weak.  269 

 270 

  271 

Fig. 5. 2005–2020 averaged annual mean surface PM2.5 concentrations in Asia (70–140o E, 5–55o N) 272 

from (a-j) 10 ESMs, (k) their MME, and (l) MERRA-2. Units: µg m-3. 273 

The main spatial features of surface PM2.5 concentrations are generally well 274 

captured by the ESMs (Fig. 5a-k) in comparison with MERRA-2 (Fig. 5l), except over 275 



17 

17 
 

the offshore area where MERRA-2 data overestimated sea salt as pointed out in 276 

Buchard et al. (2017). However, there exists a large diversity among models, especially 277 

over the three PM2.5 centers (eastern China, northern India, and in the northwestern 278 

China and Mongolia, Fig. 6a). The amplitude of model-spread (that is denoted by the 279 

standard deviation of simulated PM2.5 concentration among 10 ESMs in the study) over 280 

the northwestern China and Mongolia are close to the MME regional PM2.5 281 

concentration (Fig. 6b). Specifically, CESM2-WACCM (Fig. 5b) overestimates PM2.5 282 

in Taklimakan desert of central Xinjiang (> 60µg m-3), and MRI-ESM2-0 (Fig. 5h) has 283 

an abnormally high-value center in the Mongolian plateau. The dominant species of 284 

PM2.5 vary with regions as well as the one responsible for the model-spread in PM2.5 285 

simulation, which will be discussed in detail in section 4. 286 

 287 

  288 
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Fig. 6. The model-spread (units: µg m-3) among the 10 ESMs and the ratio (units: %) of model-spread to 289 

MME for annual mean of surface PM2.5 concentration during 2005-2020. 290 

 291 

3.2 The main components of PM2.5 concentrations  292 

Sulfate, OA, and BC are the main PM2.5 aerosols from anthropogenic emissions 293 

in Asia and are the main PM2.5 species over eastern China and northern India (Fig. 7-294 

9). In MERRA-2, sulfate (Fig. 7l) and BC (Fig. 9l) concentrations in eastern China are 295 

higher than those in northern India, whereas the spatial distribution for OA shows the 296 

opposite (Fig. 8l). The MME can generally reproduce the spatial distribution for sulfate 297 

(Fig. 7k), OA (Fig. 8k), and BC (Fig. 9k) although their magnitudes are underestimated 298 

for sulfate but overestimated for OA and BC. There are significant differences in the 299 

simulations of sulfate and OA among various ESMs. MRI-ESM2-0 (Fig. 7h) has the 300 

highest concentration of sulfate in southeastern China, while IPSL-CM5A2-INCA (Fig. 301 

7e) has the lowest sulfate concentrations. CESM2-WACCM (Fig. 8b) and UKESM1-302 

0-LL (Fig. 8j) have larger concentrations of OA than other ESMs, which may be caused 303 

by different volatile organic compounds (VOC) and secondary organic aerosol (SOA) 304 

formation mechanisms in the ESMs. UKESM1-0-LL also shows the largest BC 305 

concentration than the others (Fig. 9j).  306 

  307 
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  308 

Fig. 7. The same as in Fig. 5, but for the sulfate. 309 
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  310 

Fig. 8. The same as in Fig. 5, but for the organic aerosol. 311 
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  312 

Fig. 9. The same as in Fig. 5, but for the black carbon. 313 

PM2.5DU and PM2.5SS are the natural components in PM2.5. As shown in Fig. 314 

10, PM2.5DU is responsible for the PM2.5 center (Fig. 5) over the northwestern China 315 

and Mongolia. The PM2.5DU concentrations from MME (Fig. 10k) is similar to that 316 

from MERRA-2 (Fig. 10l). But there are large differences in PM2.5DU simulations 317 

among 10 ESMs. CESM2-WACCM (Fig. 10b) and GFDL-ESM4 (Fig. 10d) simulated 318 

larger PM2.5DU concentrations than other models. And the PM2.5DU in MIROC-ES2L 319 

(Fig. 10f) is much smaller than MERRA-2 (Fig. 10l), with PM2.5DU differences up to 320 

20 µg m-3. In MRI-ESM2-0 (Fig. 10h), the high PM2.5DU center extends eastward to 321 

north China and the amplitude of PM2.5DU is about twice of that in the east, which is 322 
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not evident in MERRA-2 (Fig. 10l). In addition, MPI-ESM-1-2-HAM (Fig. 10g) 323 

simulated excessive amount of PM2.5DU in northern part of Tibetan plateau, which is 324 

distinctive from other models. PM2.5SS is another important natural aerosol mainly 325 

distributed over oceans and coastal regions. The PM2.5SS concentration over land is 326 

lower than the other species in PM2.5, and the differences among ESMs are generally 327 

small (Fig. 11). Due to the known overestimation of sea salt in MERRA-2 (Buchard et 328 

al., 2017), there are significant differences between the MME and MERRA-2 (Fig. 11k 329 

and Fig. 11l). 330 

  331 

Fig. 10. The same as in Fig. 5, but for the PM2.5 fine particles of dust. 332 
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  333 

Fig. 11. The same as in Fig. 5, but for the PM2.5 fine particles of sea salt. 334 

 335 

4. Uncertainties in simulated PM2.5 concentrations from 336 

ESMs 337 

4.1 The uncertainty in the anthropogenic and natural PM2.5 species 338 

Figure 12 shows the model-spread among ten ESMs for main anthropogenic 339 

components of PM2.5, sulfate, OA, and BC. The regions of large model-spread are 340 

evident over eastern China, northern India, and Sichuan Basin, the main anthropogenic 341 

emission centers in Asia. All the ESMs used the same anthropogenic emissions 342 
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inventory (Hoesly et al., 2018). Large model-spread for anthropogenic aerosols in 343 

individual ESMs thus mainly comes from the different way that individual models 344 

represent chemical and physical processes relevant for aerosols including dynamic 345 

transport, dry deposition, gravitational settling, wet scavenging by clouds and 346 

precipitation, and even their chemical processes (Textor, et al., 2007; Wu et al., 2020). 347 

For example, the sulfate (Fig. 12a) uncertainty is generally larger over eastern China 348 

and the Sichuan Basin than over northern India, which probably results from different 349 

gas-phase and aqueous-phase conversion from SO2 except for the above reasons. Large 350 

uncertainty over the Sichuan Basin is also caused by unique topography (Liu et al., 351 

2021). The BC (Fig. 12c) uncertainty is relatively weaker as the results are mainly 352 

determined by the prescribed anthropogenic emissions. For OA (Fig. 12b), the 353 

concentration differences also may be caused by the way that models represent various 354 

natural biogenic VOC (SOA precursors) emissions. 355 

Natural aerosols are important sources of uncertainty in PM2.5 simulation among 356 

ESMs. The PM2.5DU uncertainty prevails over the northwestern China and Mongolia, 357 

the Mongolian plateau, and the Northwestern part of Indian Peninsula (Fig. 13a). There 358 

are many reasons for the significant model-spread in dust simulations. In addition to 359 

the effects of dynamic transport, and wet and dry depositions, large model-spread is 360 

mainly caused by the difference in driving mechanisms of dust emissions that depend 361 

on the meteorological drivers (winds and precipitation), especially in East China and 362 

South Asia, associated with large-scale monsoonal circulations (Wilcox et al., 2020; 363 

Zhao et al., 2022), the land surface conditions (Aryal et al., 2021), and the 364 

representation of aerosol size distributions (Zhao et al., 2022). And the model 365 

complexities also have the influence on dust concentrations (Zhao et al., 2022). As for 366 

sea salt aerosols (Fig.13b), it has lower concentrations than other species, and its 367 
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spreads among models are less than 1 µg m-3 over land. Sea salt emissions are mainly 368 

determined by near surface wind across the ocean (Wu et al., 2020). It is possible that 369 

there is a small model-spread in surface winds across the ocean leading to less spread 370 

in sea salt emissions, although inter-model differences in advective transport, and wet 371 

or dry deposition will be similar to those for dust (Witek et al., 2007; Wu et al., 2020), 372 

which can also affect the simulation of sea salt.  373 

 374 

  375 

Fig. 12. The model-spread of annual mean concentrations for anthropogenic aerosols during 2005-2020. 376 

(a) sulfate, (b) OA, and (c) BC. Units: µg m-3. 377 
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   378 

Fig. 13. The same as in Fig. 12, but for the natural aerosols. (a) PM2.5DU and (b) PM2.5SS. Units: µg m-379 

3. 380 

The Taylor diagram in Figure 14 statistically examines the spatial distribution 381 

as well as the spatial variability of the differences between ESMs and MERRA-2 for 382 

main species of PM2.5. The spatial distribution of BC concentrations simulated by ESMs 383 

are the best captured with spatial correlation coefficients of 0.9-0.97, followed by 384 

sulfate, OA, PM2.5DU, and PM2.5SS. For PM2.5DU, there are large differences between 385 

the individual ESMs and MERRA-2, with normalized standard deviations ranging from 386 

0.2 to 3.5 and spatial correlation coefficients from 0.4 to 0.87. The normalized standard 387 

deviations of CESM2-WACCM and MRI-ESM2-0 are greater than 2, indicating that 388 

the spatial variability of PM2.5DU is largely overestimated in the two models. Although 389 

the spatial correlation coefficient of PM2.5SS can be 0.95 or higher, the normalized 390 

standard deviations of less than 0.6 in all ESMs, resulting from the overestimation of 391 

PM2.5SS in MERRA-2. In general, although there are differences between individual 392 



27 

27 
 

ESMs, the MME can still capture the spatial distributions of five components from 393 

PM2.5 well compared to MERRA-2. The spatial variations in ESMs are larger than 394 

MERRA-2 for OA, BC and PM2.5DU. 395 

 396 

  397 

 398 

Fig. 14. Taylor diagram of the annual mean surface components (sulfate, organic aerosols, black carbon, 399 

PM2.5DU, PM2.5SS) concentrations simulated by the 10 ESMs compared with the MERRA-2 reanalysis 400 

data during 2005-2020 in Asia (70–140o E, 5–55o N). The radial coordinate shows the standard deviation 401 

in the spatial pattern, normalized by the observed standard deviation. The azimuthal variable shows the 402 

correlation of the modeled spatial pattern with the observed spatial pattern. 403 

 404 

 405 

4.2 The uncertainty in dominant PM2.5 components over different subregions  406 
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Each component of PM2.5 has different contributions to the PM2.5 concentrations 407 

in various regions, and the contributions vary between the individual ESMs. Here we 408 

analyzed four regions as illustrated in Fig. 2, Central Asia (CA), East Asia (EA), South 409 

Asia (SA) and Southeast Asia (SEA). In the whole Asian region (70°–140° E, 5°–55° 410 

N), the area-averaged MME PM2.5 is smaller than for MERRA-2 (by 3.7 µg m-3, Fig. 411 

15), which is largely attributed to their difference in PM2.5SS. The main PM2.5 412 

components in Asia are sulfate and OA, accounting for 28% and 32% of the PM2.5 in 413 

the MME, respectively. PM2.5DU is the third main PM2.5 components in Asia, 414 

accounting for 21% of the PM2.5 in the MME. The largest model-spread among the five 415 

main PM2.5 species comes from PM2.5DU (Fig. 16), indicating its largest contribution 416 

to the PM2.5 uncertainty over Asia. 417 

 418 

  419 

 420 

Fig. 15. Histograms of 2005–2020 averaged concentrations of PM2.5 and their components (sulfate, 421 

organic aerosols, black carbon, PM2.5DU, PM2.5SS) from 10 ESMs, their MME, and MERRA-2 for Asia 422 
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(70–140o E, 5–55o N). Units: µg m-3. The mean value in MME and model diversity for the five main 423 

PM2.5 species are 3.5 ±1.23 µg m-3 for sulfate, 3.98 ±0.98 µg m-3 for OA, 0.86 ±0.15 µg m-3 for BC, 2.59 424 

±1.57 µg m-3 for PM2.5DU and 1.5 ±0.83 µg m-3 for PM2.5SS. 425 

 426 

The proportion of each PM2.5 component has large regional characteristics (Fig. 427 

16). PM2.5DU plays a dominant role over Central Asia, accounting for 70% of the PM2.5 428 

concentration. There are also considerable differences in PM2.5DU model results over 429 

Central Asia and the uncertainty range is almost 25 µg m-3. In East Asia, sulfate and 430 

OA are the main PM2.5 species, and the uncertainty is mostly attributed to PM2.5DU and 431 

sulfate. In South Asia, the uncertainty ranges are comparable for sulfate, OA and 432 

PM2.5DU. In Southeast Asia, PM2.5SS accounts for 35% of the PM2.5 in the MME, and 433 

it has the largest contribution to the PM2.5 uncertainties. Overall, it appears that the 434 

regions of large model diversity are consistent with high concentrations areas for the 435 

five components. 436 

 437 

 438 
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Fig. 16. The distribution of differences for PM2.5 and their components (sulfate, OA, BC, PM2.5DU, 439 

PM2.5SS) concentrations from 10 ESMs in Asia and four subregions during 2005-2020. The box plots 440 

show the 25th and 75th percentiles as solid boxes, median values as solid lines, dots represent the 441 

concentrations from MME, and whiskers extending to the minimum and maximum. Units: µg m-3. 442 

 443 

5. Uncertainties in evaluating PM2.5 concentrations  444 

The above analyses have shown that surface PM2.5 concentrations from ESMs 445 

simulations are lower than those from individual observations at CNEMC and EANET 446 

sites. One possible reason is the spatial heterogeneity of ground-based observations and 447 

the urban effect on PM2.5 concentrations. It is noticed that all the CNEMC sites are 448 

located in urban areas, whereas ESMs simulate average PM2.5 concentrations across a 449 

coarse model grid larger than 100 km and is hard to identify the differences between 450 

urban and suburban area. Figure 17a shows time series of surface PM2.5 concentrations 451 

at one city and its neighboring suburban site in Thailand from APAD data (Cohen et 452 

al., 2015). It is clear that the surface PM2.5 concentrations at the urban location are 453 

evidently higher than those at the neighboring suburban site. The urban site in Thailand 454 

is in a residential-university-shopping district containing commercial buildings and 455 

small industrial factories. The emissions mainly come from human activities (including 456 

automobile exhausts, residential cooking and heating from buildings). By contrast, the 457 

suburban site is surrounded by residential areas with brick-timbered houses, trees and 458 

grass. Urban observatories are more polluted than suburban ones, even when they are 459 

geographically close to each other. This is also evident in the two pairs of urban and 460 

neighboring suburban sites in China (Fig. 17b and 17c). Differences between 461 

downtown and suburban sites in the same city may be higher than 10 µg m -3, and the 462 

results in ESMs are closer to those at suburban sites.  463 
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 464 

  465 

Fig. 17. Time series of surface PM2.5 concentrations in neighboring city and suburb from APAD, CMA, 466 

CNEMC and MME. Red and blue lines represent observations at urban and suburban sites, respectively. 467 

Black lines represent the simulations from MME. Units: µg m-3. 468 

Another important reason for the uncertainty in evaluation is the method to 469 

calculate PM2.5 concentrations. Firstly, Eq. (1) used in this study does not include all 470 

the aerosol components that constitute PM2.5, such as ammonium and nitrate aerosols, 471 

which are generally included in observations but not model derived PM2.5, especially 472 

important over eastern China where nitrate aerosols may be responsible for over 20% 473 

of PM2.5 mass concentrations in winter (Liu et al., 2017). In addition, Eq. (1) assumes 474 

fixed percentages of the total mass of dust (10%) and sea salt (25%) aerosols present 475 
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within the fine size fraction (i.e., less than 2.5 microns in diameter), which are not 476 

consistent among ESMs, and also is not suitable for the MERRA-2 data.  477 

 478 

6. Summary 479 

This study uses five main components of aerosols (i.e., sulfate, organic aerosol, 480 

black carbon, dust and sea salt) that are simulated by ten CMIP6 ESMs to calculate 481 

surface PM2.5 concentrations over Asia. Ground-based observation networks as well as 482 

the MERRA-2 reanalysis are used to evaluate the ability of current ESMs to simulate 483 

PM2.5 and its components. In Asia, PM2.5 accounts for more than 30% of the total 484 

aerosol (including all particle sizes), except for Central Asia. The spatial distribution of 485 

PM2.5 and its main components in the MME are in a good agreement with MERRA-2 486 

and available ground-based observations. High PM2.5 concentrations (> 40 µg m-3 in 487 

MERRA-2) are simulated in three regions located in eastern China and in northern India 488 

mainly consisting of anthropogenic aerosols, and in northwestern China due to high 489 

concentrations of mineral dust. The contribution of each aerosol component to the 490 

MME PM2.5 across Asia are mainly from sulfate (28%), OA (32%), and PM2.5DU 491 

(21%). The proportions of components making up the MME PM2.5 are also regionally 492 

dependent. PM2.5DU accounts for more than 70% of PM2.5 in Central Asia and PM2.5SS 493 

for about 35% of PM2.5 in Southeast Asia in the MME.  494 

Our analysis shows that PM2.5 from ESMs are biased low in the comparison 495 

with ground-based observations. It may be partly due to the unevenly distributed 496 

ground-based observations and the effect of urban areas, as well as the formula used to 497 

derive the PM2.5 concentrations in this work which does not consider the contributions 498 

of nitrate and ammonium compounds. Compared to the MERRA-2 reanalysis data, the 499 

MME underestimates PM2.5 concentrations averaged across Asia by about 3.7 µg m-3, 500 
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which is possibly due to large PM2.5SS overestimation in MERRA-2.  501 

There are large uncertainties in simulations of PM2.5 and its components among 502 

the 10 ESMs. Inter-model differences in PM2.5 are mainly attributed to sulfate and 503 

PM2.5DU over East Asia, and PM2.5DU over Central Asia. For South Asia, the 504 

uncertainty ranges are comparable for sulfate, OA and PM2.5DU. PM2.5SS has the 505 

largest uncertainty range in Southeast Asia. The differences in the simulation of PM2.5 506 

and its components amongst the 10 ESMs to a large extent reflect the different 507 

algorithms used to prognose aerosol variations in the individual ESMs including the 508 

dynamic transport, dry deposition, gravitational settling, wet scavenging, chemical 509 

processes, meteorological drivers, land surface conditions, and the representation of 510 

aerosol size distributions. 511 

 This work is the first to highlight ESM model biases in the simulation of 512 

PM2.5 concentrations across Asia using observations and a reanalysis dataset. 513 

Analyzing the individual aerosol components highlights the potential 514 

improvements to ESMs and the certain aspects of their individual aerosol schemes 515 

to target. It is noted that the ground-based observations used in this work are relatively 516 

sparse. The regional feature for PM2.5 and its components in ESMs still needs further 517 

investigations using more data with high spatial and time resolutions that retrieved from 518 

satellite observations (Wei et al., 2020; Yan et al., 2020, 2021) in the future. 519 
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