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ABSTRACT 

 

This paper considers the optimal toll design problem that uses the Probit model to determine 

travellers’ route-choices. Under probit, the route flow solution to the resulting stochastic user 

equilibrium (SUE) is unique and can be stated implicitly as a function of tolls. This reduces 

the toll design problem to an optimisation problem with only nonnegativity constraints. 

Additionally, the gradient of the objective function can be approximated using the chain rule 

and the first order Taylor approximation of the equilibrium condition.  

 

To determine SUE, this paper considers two techniques. One uses Monte-Carlo simulation to 

estimate route choice probabilities and the method of successive averages with its prescribed 

step length. The other relies on the Clark approximation and computes an optimal step length. 

Although both are effective at solving the toll design problem, numerical experiments show 

that the technique with the Clark approximation is more robust on a small network.  

 

 

1. INTRODUCTION 

 

Transport can be considered as an economic market where travellers are economics agents 

with the aim of maximising (or minimising) their utility (or disutility). With the cross-effect of 

one user’s strategy on another through the congestion in the network, the concept of Nash’s 

equilibrium can be invoked to define the converged travellers’ strategies (e.g. route, mode, 

departure time, or destination choices).  The Nash equilibrium occurs when no individual 

(traveller) can change their strategy to decrease their own disutility. However, it is well known 

that under the assumption of individual utility maximization, the converged equilibrium point 

of the transport system may not be the optimal travel pattern for the overall system, nor for 
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other aggregated objectives of the traffic system manager (e.g. total travel time, environmental 

impact, or social welfare).  

 

Road pricing has been proposed as the means to direct the traffic equilibrium condition to a 

more desireable state (Knight 1924; Walters 1961). Early developments of the theory of road 

pricing have been mainly associated with the concept of deterministic user equilibrium, 

namely Wardrop’s user equilibrium (UE) principle (Wardrop, 1952). UE is a special case of 

Nash’s equilibrium condition and has been widely adopted as the modelling assumption for 

representing travellers’ behaviour. The key assumption of UE is that the traveller has perfect 

information regarding their travel choices and the alternatives. Despite questions about the 

realism of the assumption, the UE model has played a major role in the analysis of road 

pricing, in which a number of researchers over the years have focussed on deriving optimal 

toll patterns under the UE condition (e.g. Yang & Huang 1998; Santos et al. 2001; Verhoef 

2002; May et al. 2002; Shepherd and Sumalee 2004; Sumalee 2004).  

 

The key element of microeconomic theory lies in understanding the consumer’s behaviour. 

The concept of a random utility model (RUM) has been developed to better represent the 

individual’s choice making process. RUM may be integrated with the traffic equilibrium 

model by representing the payoff function, or disutility, as a random utility term. This random 

disutility of travel is widely referred to as the perceived disutility/cost of travel. The 

equilibrium point can then be defined as the situation where no traveller can switch his/her 

strategy to improve his or her perceived cost of travel. With this setting, we obtain the concept 

of Stochastic User Equilibrium (SUE). Apart from the enhanced realism of the behavioural 

model underlying the SUE model, the algorithmic advantage of using an SUE model in 

optimal toll design has also been previously implied (e.g. Davis, 1994; Patriksson & 

Rockafellar, 2003). This issue will be discussed later on in the paper.  

 

Many error structures have been proposed for SUE. They include the commonly used 

independent Weibull and multivariate normal that lead to the logit and probit models 

respectively (Sheffi, 1985), as well as more general cross-nested logit models (Prashker & 

Bekhor, 1999), mixed error component models (Nielsen et al, 2002) and gamma link 

component distributions (Cantarella & Binetti, 2002).  



 

Among the logit and probit models, the former is more popular because of its closed form 

expression for the choice probabilities. Several researchers (e.g., Smith et al., 1994, Akamatsu 

and Kuwahara, 1989, and Yang, 1999) have used the logit model to study toll pricing under 

SUE. However, the underlying assumption for the logit model is rather restrictive. In 

particular, it assumes that travel alternatives are uncorrelated and have no overlapping 

structure. Generally, this is referred to as the ‘independence of irrelevant alternatives’ 

assumption or IIA. On the other hand, despite its complexity the probit model can overcome 

the IIA issue of the overlapping routes. Thus, the probit SUE will be adopted as the model for 

travellers’ behaviour in this paper. 

 

The paper is organised into five further sections. The next section presents the formulation of 

the optimal toll design problem with SUE and the definition of SUE. Then, section 3 explains 

the treatment of variable demand (elastic demand) with the probit SUE and the different 

computational methods adopted for solving the probit SUE. Section 4 reformulates the optimal 

toll design with SUE in the form of an implicit program, and the algorithm for solving this 

problem is presented. Section 5 provides numerical results using a test network. Finally, 

section 6 concludes the paper.  

 

2. PROBLEM FORMULATION OF OPTIMAL TOLL DESIGN WITH 

STOCHASTIC USER EQUILIBRIUM 

 

The problem discussed in this paper is the optimal toll design problem where the response 

from the users to the toll imposed is assumed to follow a random utility model. We focus on 

the case of an automobile network with a single mode, single user class, and single time 

period. The underlying network is a directed graph with N nodes and a set of links denoted A . 

The demand matrix q has entries rsq , representing the travel demand from origin r to 

destination s, where r, s = 1…N. The vector of link flows is x , with link costs )(xt , so that 

)( aa xt  is the cost (without toll) of travelling along link aA  when the link flow is ax . Let a  

denote the toll level of link aA . Then the generalised travel cost on link a is ( )a a at x  .  In 

addition, let rsK be the set of routes connecting node r to node s. Associated with rsK  is the 



link-route incidence matrix, rs , whose element, ,

rs

a k , equals 1 if link a is on route k that 

connects node r to node s. An assignment of flows to all routes is denoted by the vector f , 

with 0  , ,rs

kf k r s  .The assignment f  is feasible for demand q  if and only if  

  ,
rs

rs

k rs

k

f q r s


 
K

,       

and the (convex) set of feasible route flows is denoted F. For any , ( )Ff c f  denotes the 

associated vector of route costs where 

   ,( ) ( ( ))  rs rs

k a a a k

a A

c t  


 f x f . 

Travellers are allowed to respond to the toll imposed by changing their routes or deciding not 

to travel (the precise mechanism for achieving this is described in section 3). The responses of 

the travellers are assumed to follow the Stochastic User Equilibrium condition (SUE). Let  

be a mapping from 
    that gives the vector f of feasible route flows satisfying the 

SUE condition, given a toll vector  . Let Z(f, β) be the objective function that we wish to 

optimise. We can then formulate the optimisation problem for determining the optimal toll as: 

 
 

 
,

max ,

. .

     

s t
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





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Note that this problem can be considered as a mathematical program with equilibrium 

constraints (MPEC). As noted previously by many authors, this formulation can also be 

applied to the UE case, but with a mapping between the link flow vector and the toll vector, 

since the route flow in UE is not unique.  

   

This paper assumes that the route choice behaviour follows a random utility model. In 

particular, the perceived cost of the k-th route is a random variable of the form: 

     k k kC c    

where ( )k kc c f  is the mean perceived route cost and the random errors 1 2( , ,...)   follow 

some joint probability density function with zero mean vector. These random error terms 

represent the fact that individual drivers have their own assessment of both network conditions 

and of the cost of taking different routes (including their personal preferences for some routes 

over others).  



 

Given the route cost vector c, ( )rs

kP c  denotes the proportion of drivers who perceive route k to 

be the cheapest route from r to s, i.e. 

 
 

Pr  ,

     Pr  , ,

rs rs rs

k k j rs

rs rs rs rs

k k j j rs

P C C j K j k

c c j K j k 

    

      
          

where Pr(.) denotes probability. Then, the stochastic user equilibrium (SUE) can be stated as 

follows: 

At SUE, no driver can improve their perceived travel cost by unilaterally changing route. 

 

The SUE route flow assignment (for Ff ) is, therefore, the solution to the following fixed-

point problem: 

( ( ))    ,  , .rs rs

k rs k rsf q P k K r s   c f             

This states that, for a given OD pair, the flow on the k-th route consists of those drivers who 

perceive this to be the best route. Since f is defined to be a feasible set of flows, the total 

number of drivers on all routes connecting r to s matches the total travel demand from this 

origin to this destination. A network route flow vector satisfying SUE will be denoted f*. This 

fixed-point condition defines the mapping   between the SUE flows and the toll vector. 

 

With the SUE, several properties that UE does not possess can be gained. Consider first a 

simplified network structure in which the only routes are non-overlapping and consist of 

single links, and that for given tolls the vector of link travel cost functions is continuous and 

strictly increasing in the vector of link flows. In this case, for given link tolls, there are unique 

UE link flows and route flows (see e.g. Smith, 1979).   

 

In UE, a route will be used if and only if the travel cost on this route is the minimum O-D 

travel cost (compared to all other routes connecting the same O-D pair). This can be 

represented as a complementarity condition:  *0 0rs rs rs

k kf C C    , where *rs
C is the 

minimum travel cost from origin r to destination s and 0x y x y    . This 

complementarity condition is non-differentiable when  * 0rs rs rs

k k
f C C   . Thus, when 



including this condition into the optimal toll design problem, one may face a non-

differentiable optimisation problem. This is an example of a wider phenomenon arising from 

the complementarity condition as constraints to optimisation problems (Patriksson & 

Rockafellar, 2002, Luo et al. 1996).  

 

In general network structures, while the set of link flow solutions to the UE model at given 

tolls is a singleton under the assumption that the vector of link travel cost functions is 

continuous and strictly monotonic (Smith, 1979), it is well known that the UE route flow 

solutions are typically non-unique. Therefore, route-based solution strategies are commonly 

faced with an additional hurdle of selecting a single UE route flow solution from a convex set, 

for example by an arbitrary choice of extreme point (e.g. Tobin & Friesz, 1988) or by an 

additional model selecting the ‘most likely’ route flows (e.g. Larsson et al, 2001). Still, 

establishing desirable properties of a sequence of such ‘unique’ UE route flow solutions, as 

the tolls are altered, may be extremely problematic. 

 

For problems with continuous and strictly monotone link cost functions as above, under mild 

conditions on the choice probability model, SUE is know to give rise to solutions (a) in which 

all routes are active, at least in theory, and (b) that are unique in the route flow domain (e.g. 

Cantarella & Cascetta, 1995). Therefore, it is natural to ask, is solving the optimal toll problem 

with an SUE network model actually easier than with a UE? At the same time, one is adopting 

a model that, from a behavioural perspective, is arguably superior in terms of its representation 

of the uncertainty and heterogeneity that surely exists in traveller decisions. 

 

 

3. PROBIT EQUILIBRIUM WITH VARIABLE DEMAND: FORMULATION AND 

SOLUTION ALGORITHM 

 

The probit model assumes that perceived route costs are derived from normally distributed 

perceived link costs: 

srkTC
a

rs

kaa

rs

k ,,,    



with  2,~ aaa tNT  , with 2

a  constant. In this paper we assume that the perceived link costs, 

 aT , are independent. The distribution of perceived route costs is therefore multivariate 

normal,  ,~ cMVNC , centred on the deterministic route costs. This results in a variance-

covariance matrix,  , where the perceived costs of routes that have links in common are 

correlated. 

 

The SUE model in section 2 assumes that travel demands are fixed. In this section, we allow 

demands to vary. Maher et al (1999) assumes that the demand for OD pair (r,s) is a function of 

the expected minimum travel time between the origin and destination, i.e. 
rs

q depends on 

 min :rs

k rs
E C k K   . When the logit route-choice is used, the demand function resulting 

from the assumption can be mathematically expressed in a closed form (see, e.g. Ben-Akiva et 

al. 1986, Gentile & Papola 2001) but this is not the case for probit. 

 

To make our model more manageable under probit, we add to the original network a pseudo-

link (r,s) for each OD pair. The amount of flow on pseudo link (r,s) represents the number of 

drivers who decide not to travel from r to s. The perceived travel cost on each pseudo link (or 

link zero) is 0 0

rs rs
c  , where 0

rs
c represents the deterministic disutility of not travelling and 

0

rs is the associated random error in accordance with the probit model. Then, the proportion of 

drivers who decide not to travel is given by the following expressions: 

 
  

0 0 0

0 0

Pr  

Pr min ,
rs

rs rs rs rs rs

k k rs

rs rs rs rs

k k
k K

P c c k K

c c

 

 


     

   
 

and the condition for SUE can be written in the same manner for those with fixed demand: 
0( ( ))    ,  , ,rs rs

k rs k rsf q P k K r s   c f      

 

where 0 {0}rs rsK K  , with 0

rs
f the number of drivers electing to not travel. Moreover, rsq now 

represents the number of potential drivers, some of whom choose the pseudo link, i.e. decide 

not to travel.  

 



To determine a solution that satisfies the above equilibrium condition, any algorithm that 

solves a probit-based SUE problem with fixed demand can be used. In Section 5, we consider 

the following algorithms: 

 

1. The method of successive averages (MSA) algorithm (see Sheffi, 1985) with probit choice 

fractions estimated by a Monte Carlo (MC) simulation. 

2. A step-length algorithm recently proposed by Maher and Hughes (1997) that uses the 

equivalent optimisation formulation of SUE (Daganzo & Sheffi, 1977) with the Clark 

approximation (Clark, 1961; Horowitz et al, 1982) for computing probit choice 

probabilities. 

 

 

4.  IMPLICIT PROGRAMMING APPROACH TO OPTIMAL TOLL DESIGN 

 

Assume that the travel cost of link a,  at x is continuous for each a and the travel cost vector, 

 t x , is strictly monotone. Then, the route-flow solution of the probit-based SUE problem is 

unique (see e.g. Cantarella and Cascetta, 1995) and the optimal toll design problem can be 

formulated as follows: 

   *max , :


   x 0  

where  * x denotes a link flow solution to the probit SUE problem at toll vector  . 

 

As stated above, the optimal toll design problem is an optimisation problem with simple 

bounds. Many algorithms for such a problem typically require, at minimum, calculating the 

gradient of the objective function at the current solution. When Z is relatively simple, its 

gradient can be approximated. To illustrate, consider the revenue function, i.e. 

    * *, T     x x . In this case,  

      * * *, T

         x x x , 

where  *

  x denotes the Jacobian of *x at  . 

 

From the relationship between link and route flow, we can define the Jacobian of *x at  as: 

   * *

    x f , 



where  * f is a vector of SUE route flow solution at  ,  is the link-route incidence matrix 

whose element, ,a k , equals 1 if link a is on route k, and  *

  f denotes the Jacobian of *f at 

 . To approximate  *

  f , consider the ‘gap’ function: 

 , ( ( , ))    f f q P c f , 

where P is the route-choice probability operator as defined in Section 2. Assuming all 

functions are differentiable, the first order Taylor approximation of   * ,  f  

at     *

0 0, ,  f f  is: 

         * *

0 0 1 0 2 0, , J J          f f f f , 

where 1J and 2J are the Jacobians of   evaluated at   *

0 0, f  with respect to f at  , 

respectively, i.e.,   *

1 0 0,J    f f  and   *

2 0 0,J      f . (See Bell and Iida, 1997, 

Daganzo, 1979, and Clark and Watling, 2002 for the calculation of 1J and 2J ). Because 

  * , 0  f  for all  , the above reduces to 

    *

1 0 2 00 0 J J      f f . 

When 1J is non-singular, the above implies that 1

1 2J J
 is an approximation of the Jacobian of 

 * f at 0 , i.e.,  

           
0

* * 1

* * 1 0 1 2 0

0 1 2 0

0

 or lim 0.
J J

J J
 

   
   

 






  
    


f f

f f  

For the above example,     * * 1

1 2, .J J       x x  

 

 

5.  NUMERICAL EXPERIMENTS  

 

5.1 Definition of the test network 

 

The network adopted for the test has seven nodes connected by 18 links, with six pseudo-links 

representing the no-travel options for each OD movement (as required in the variable demand 

probit SUE model). Figure 1 shows the topology of the network. There are six OD pairs: (1, 

5), (1, 7), (5, 1), (5, 7), (7, 1), and (7, 5). Table A.1 in the Appendix gives the origin-



destination ‘potential demand’ matrix. The link cost functions are based on the BPR function 

in

i

i

iiii

x
baxt 










)( where 
i

a , 
ib , 

i
n , and 

i
 are given in Table A.2 in the Appendix. Note 

that for the ‘no travel’ or ‘pseudo’ links, there is only a constant parameter associated with the 

disutility of not conducting a trip, i.e. bi = 0 for such links. As in , e.g. Sheffi (1985), the probit 

link error terms are independent and normally distributed with zero mean and standard 

deviations as listed in Table A.2 in the Appendix.  

 

Tolls are implemented by adding the tolls to the free flow costs. When an additional cost is 

added to the free flow parameter for a pseudo-link, this can be thought of as representing an 

increase in the no-travel cost (for that OD movement) representing the increase in the utility of 

conducting a trip rather. There are 36 routes among the six OD pairs. 

 

The variance-covariance matrix is constructed by setting the probit variance for link j to be 

2 2

j ja    where α  is a scaling factor and aj is the free flow cost (see Sheffi 1985). The 

entire link cost is written into the free flow parameter for the pseudo-links, leading to huge 

variances on these links, relative to the rest of the network This seems unrealistic, and is 

problematic for the Clark approximation, so we set each pseudo-link variance to be the mean 

of the real link variances. 

 

Different values of can be used to define different levels of the perception error of the 

travellers on the travel time/cost resulting in different behavioural models. Several values 

 are adopted to investigate effect of the behavioural model on the route choice behaviour, the 

resulting flows, and the optimal toll levels (  = 0, 0.3, 1, 3). 



 
Figure 1: The topology of the test network (without the pseudo-links) 

 

The objective function adopted in the test is a combination of the revenue and the actual total 

travel time. The revenue, R, is simply calculated by summing the tolls multiplied by the 

relevant link flows for the tolled links. The total travel time, TTT, is calculated from only the 

real links (since the flow on the pseudo-links does not travel); it is the sum of the link flows 

multiplied by the link travel times (without the toll included). 

 

The objective function is   1Z R TTT      where  is a weighting factor with 

0 1  . The gradient of the objective function with respect to tolls can be derived as 

follows: 

              * 1 1 * * *

1 2 1 21 diag
T

Z J J J J                    xx t x x t x , 

where xt denotes the Jacobian of the travel cost with respect to flows, and 1 2 and J J are as 

defined in Section 4. 

 

To demonstrate the behaviour of the test network, the revenue generated and total travel time 

for different toll levels applied to each link in turn are shown in Figure 2 below. In these tests 

the covariance scaling factor, α, is set to 1. From the figures, the revenue levels generated are 

most sensitive to tolls on links 1,4, 21 and 24. The network diagram above shows that these 
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are the links that cannot be avoided (by the relevant OD movements); the only alternative 

“route” is the no-travel option. Thus, it is no surprise to observe that these links can generate 

the highest revenues. For the other links in the network, travellers can avoid the tolled link by 

changing route. For the total travel time, tolling on certain links (e.g. link 8) increases the total 

travel time as we increase the toll. For other links (e.g. link 4) the opposite occurs. With the 

weighting factor  = 0.5 the objective function values as each link is tolled individually are 

shown in Figure 3. 

  
Figure 2: Revenue and total travel time for different toll levels on each link 

 

 
Figure 3: Objective function levels for different toll levels applied to each link in turn 

 

5.2 Comparison of different SUE solution algorithms 

 

In this section, the two alternative algorithms proposed for solving the SUE problem 

(described in section 3.2) are tested. We consider the case of tolling links 14, 15, and 16 



simultaneous with a uniform toll. For this one-dimensional problem the gradient of the 

objective function at each toll level can be plotted as shown in Figures 4 and 5. Three different 

levels of   are adopted for the test (  = 0.3, 1, and 3). Six curves are plotted, three for each 

method with different   in each figure. Figure 4 compares the gradient of the objective as 

calculated by ‘numerical differencing’ (a finite difference approximation) and by sensitivity 

analysis (see Section 4) in which the SUE flows are calculated by the first method (MSA + 

MC-estimated choice probabilities). Figure 5 shows the same comparison but the SUE flows 

are calculated by the second method (Clark’s approximation + optimal step length). In both 

figures, the curves with the bold line are the gradients calculated from numerical differencing 

and the broken lines are the gradients from the sensitivity analysis.  

 

In both cases, the gradients calculated by the sensitivity analysis method are reasonably 

smooth. In Figure 4, the numerical differencing produces a non-smooth gradient that is caused 

by the non-smooth objective function as calculated from the MC simulation and pre-defined 

step length. Although the Clark’s approximation does have disadvantages (in terms of where 

this approximation is valid) the resulting link flows (and hence objective function values) are 

much smoother than the corresponding values calculated on the basis of the MC simulation. 

The gradients calculated by numerical differencing of the SUE flows resulting from the 

Clark’s approximation based approach (bold line in Figure 5) are visually as smooth as the 

gradients calculated via  sensitivity analysis in the same figure (broken line). 

 



 
Figure 4: Gradients of the objective at different toll levels calculated from the numerical 

differencing (solid line) and sensitivity analysis (broken line). MSA calculations using the MC 

simulation and predefined step-length. 

 

Obviously, different methods significantly influence the smoothness of the objective function. 

The MC based method does suffer from the unpredictability of the random trial process which 

may not guarantee the same SUE flows/route choice probabilities with different runs. On the 

other hand, the benefit of the MC based method is that with a high number of the trials the 

accuracy of the estimation of the route choice probability may be improved, but one can never 

be sure what constitutes a sufficient number of trials. The Clark approximation, despite its 

possible drawback on the accuracy of the approximation, does produce very good results in 

terms of the smoothness of the objective function. Nevertheless, in both cases the sensitivity 

analysis method can eventually define a smooth trend of the gradient reflecting the real 

property of the problem. The reason is that the sensitivity analysis method estimates the 

gradient based on a single point (see previous section). Thus, it does not suffer from the poor 

convergence of the SUE flows from one toll level to another whereas the numerical 

differencing, which uses two points of SUE flows, suffers from this error. 
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Figure 5: Gradients of the objective at different toll levels calculated from the numerical 

differencing (solid line) and sensitivity analysis (broken line). MSA calculations using the 

Clark’s approximation and optimal step-length. 

 

Based on this comparison, we decided to adopt the second approach (Clark’s approximation + 

optimal step length) for the tests in the following sections.  

 

5.3 Effect of probit variances on the optimal toll policy 

 

This section presents some numerical results using the optimization approach explained in 

Section 4 to find the optimal tolls for different cases. The sequential quadratic programming 

(SQP) algorithm in MATLAB (‘fmincon’ solver) is adopted to solve the problem, with the 

Jacobian of the objective function supplied (using the approach described in Section 4). Before 

applying the optimization algorithm to the test, we explore the effect of the behavioural model 

parameters on the objective function. Three different sets of tests are conducted. In the first set 

of tests, we apply the uniform toll level on link 8, 11, 14, and 15 with four different values of 

 . Similarly, the second set of tests involves imposing the uniform tolls on link 14, 15, and 16 

making a pricing cordon around node 5. The third set of tests is to put the toll on link 4 only.  
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For all tests, we provide the plots the corresponding objective function values (see Figure 6, 7, 

and 8 below). Different values of the scaling parameter   show the influence of the 

behavioural model on the objective function profile. The first observation is the smoothing 

effect of the   parameter on the objective function. When  = 0 (UE case), non-smoothness 

of the objective function is apparent. This property of the MPEC with UE is well documented 

where the objective function can be non-differentiable at some point.  

 

On the other hand, the objective function curves with  > 0 appear to be smooth. As the probit 

variances increase (with ), so drivers become less reactive to changes due to the toll and 

there is non-zero probability for each route to be used. This property of the SUE model 

contributes to the smoothness of the objective function with respect to the toll. As mentioned 

earlier, although the main incentive of introducing the probit SUE in place of UE is to increase 

the realism of the lower level model for the optimal toll problem, the SUE model may also 

make the optimal toll problem become easier to deal with. The other observation is the 

possible change of the optimal toll solution for the different values of  . With all tests, the 

value of the optimal toll levels do change according to the level of  . 

 

 



 

Figure 6: Revenue, total travel time, and objective function curves with different values of 

 and different uniform toll levels on link 8, 11, 14, and 15 

 
Figure 7: Revenue, total travel time, and objective function curves with different values of 

 and different uniform toll levels on link 14, 15, and 16 



 
Figure 8: Revenue, total travel time, and objective function curves with different values of 

 and different toll levels on link 4 

 

Table 1 shows the results from applying the optimization algorithm to find the optimal 

uniform toll applied to links 14, 15, and 16 with different values of . 

  Optimal Toll Objective at optimal toll 

0.0001 0.68867 114.7479 

0.3 0.65346 80.7625 

1 0.64773 55.7007 

3 0.6566 33.6732 

10 0.7 25.6591 

Table 1: Optimal toll on links 14, 15, 16 with different  found by the optimization algorithm 

 

Figure 7 can be used to verify that the optimization algorithm can find the real optimal toll 

level for each case. Again, as mentioned the optimal toll levels change with the levels of  . 

Unfortunately, we cannot observe any clear relationship between the optimal toll and the level 

of   from the results.  

 

The optimization algorithm is also applied to the find the optimal toll level on all links (except 

the pseudo links) simultaneously and the optimal toll level on each link in turn, again with 



different levels of  . Table 2 shows the result with the optimal toll on each link 

simultaneously and Table 3 shows the results with the toll on each link in turn.  

 

  Link Number Optimal toll (for this link) Objective function at optimal toll Benefit 

0.3 

1 0.0621 

570.7513 886.44 

4 0.2431 

5 0.0688 

6 0.0660 

7 0.2001 

8 0.0815 

9 0.0688 

10 0.1930 

11 0.0839 

12 0.0659 

14 0.2149 

15 0.2171 

16 0.1028 

18 0.1228 

19 0.1242 

20 0.0952 

21 0.0430 

24 0.0449 

1 

1 0.0379 

554.0486 896.30 

4 0.2224 

5 0.0527 

6 0.0551 

7 0.2003 

8 0.0696 

9 0.0617 

10 0.2053 

11 0.0726 

12 0.0646 

14 0.2256 

15 0.2231 

16 0.1177 

18 0.1494 

19 0.1468 

20 0.0935 

21 0.0395 

24 0.0492 

3 

1 0.0572 

564.7796 
933.9598 

 

4 0.2412 

5 0.0723 

6 0.0749 

7 0.2185 

8 0.0794 

9 0.0827 

10 0.1902 

11 0.0791 

12 0.0846 

14 0.1627 

15 0.1913 

16 0.1134 

18 0.1510 

19 0.1798 

20 0.0577 

21 0.0543 

24 0.0649 

 

Table 2: Results from optimizing all link tolls simultaneously 



 
  Link Number Optimal toll (for this link) Objective function at optimal toll Benefit 

0.3 

1 0.9550 -193.856 121.8355 

4 0.6384 352.121 667.8127 

5 0.0401 -306.689 9.0025 

6 0.0368 -309.498 6.1935 

7 0.0594 -298.020 17.6715 

8 0.0253 -309.705 5.9865 

9 0.0164 -314.148 1.5435 

10 0.0490 -303.654 12.0375 

11 0.0283 -310.685 5.0065 

12 0.0207 -314.074 1.6175 

14 0.0315 -306.840 8.8515 

15 0.0263 -308.624 7.0675 

16 0.0423 -296.542 19.1495 

18 0.0206 -313.947 1.7445 

19 0.0245 -314.716 0.9755 

20 0.0373 -301.445 14.2465 

21 0.9550 -199.047 116.6445 

24 0.6218 20.640 336.3316 

1 

1 0.2057 -202.250 139.9976 

4 0.6436 314.731 656.9788 

5 0.0686 -327.319 14.9282 

6 0.0596 -329.466 12.7816 

7 0.0740 -320.685 21.5622 

8 0.0445 -332.526 9.7215 

9 0.0521 -334.390 7.8575 

10 0.0618 -325.366 16.881 

11 0.0507 -333.555 8.6921 

12 0.0464 -333.641 8.6059 

14 0.0344 -331.960 10.2877 

15 0.0348 -333.117 9.1302 

16 0.0559 -319.686 22.5609 

18 0.0561 -332.115 10.1319 

19 0.0561 -333.399 8.8488 

20 0.0468 -328.318 13.9294 

21 0.7388 -215.222 127.0258 

24 0.6284 -6.2829 335.9649 

3 

1 0.2637 -216.123 153.0572 

4 0.6656 272.968 642.1482 

5 0.0908 -348.657 20.5232 

6 0.0999 -349.395 19.7852 

7 0.1001 -342.819 26.3612 

8 0.0728 -362.081 7.0992 

9 0.1252 -356.680 12.5002 

10 0.0995 -348.549 20.6312 

11 0.0728 -363.206 5.9742 

12 0.1001 -356.138 13.0422 

14 0.0635 -361.323 7.8572 

15 0.0586 -361.701 7.4792 

16 0.0816 -346.962 22.2182 

18 0.1000 -357.077 12.1032 

19 0.0990 -356.783 12.3972 

20 0.0786 -360.340 8.8402 

21 0.2648 -195.343 173.8372 

24 0.6630 -33.8258 335.3544 

 

Table 3: Results from optimizing each tolled link individually  

 

Note that the column ‘objective function at optimal toll’ shows the absolute value of the 

objective function at that toll level. The objective function adopted here, as explained, is a 

weighted sum of the revenue and negative total travel time. Therefore, it is possible that the 

objective function may become negative even at the optimal toll. This does not mean the 

optimal toll generate dis-benefit, since the objective at the no toll scenario is a negative figure 



as well. Column ‘benefit’ in both tables presents the relative improvement of the objective of 

each toll policy compared with the no-toll situation. The optimization algorithm successfully 

solved all the scenarios reported here.  

 

For the case with the tolls on all links, the improvement of the overall objective function 

increases as   increases. When all links are tolled, the links with the highest toll levels are 

links 4, 14, and 15. However, when each link is tolled individually, the links with the highest 

optimal tolls are links 1, 4, 21, and 24. Imposing the tolls on one of these link individually is 

actually equivalent to imposing the toll on all of the demand for some OD movement since 

these links are the feeding links of the demand from different OD pairs to the network (hence 

there is no alternative routes that avoid the tolls). The link generating the highest objective is 

link 4. The result may be that link 4 imposes the toll directly to a significant level of the 

demand in the network (the level of the demand coming from node 1 is highest compared to 

the other origin nodes, see Table A1 in the Appendix).  

 

6. CONCLUSIONS  

 

The traditional assumption of travellers’ response to a road toll is the deterministic user 

equilibrium model. We have argued in this paper that a better representation of travellers’ 

responses may be achieved through an improved behavioural model following random utility 

theory, as achieved through the probit SUE model. Optimal toll design with the probit SUE is 

then formulated, with the probit SUE framework extended in a novel way to include variable 

demand, by adding pseudo links to the network. The optimal toll problem with probit SUE can 

be categorised as an MPEC. However, the uniqueness and smoothness of the route choice 

probabilities in probit SUE, given a toll vector, help us in developing an optimisation 

algorithm for tackling this problem, by reformulating the MPEC as an implicit programming 

problem. The key element in developing an algorithm to solve the reformulated optimal toll 

problem is the Jacobian of the objective function with respect to the tolls, which can be 

estimated in practice by applying the sensitivity analysis method.  

 

In particular, we used the Sequential Quadratic Programming (SQP) algorithm in MATLAB to 

solve the optimal toll problems. The algorithm was applied to a test network (with 18 links 



and six OD pairs). Firstly, we tested the accuracy of two different algorithms for solving the 

probit SUE, one combining MSA with MC-based choice probabilities, and a second using 

Clark’s approximation method with optimal step length computation. The results show the 

instability of the MC based method. This is thought to be due to the lack of consistency in the 

convergence properties of the MC method at ‘adjacent’ (very similar) tolls. Clark’s 

approximation, on the other hand, produces a smoother objective function. However, there 

exists some uncertainty regarding the accuracy of the Clark approximation in estimating the 

probit route choice probabilities. Nevertheless, with both methods the sensitivity analysis can 

produce a reasonably smooth gradient due to the fact that in deriving the gradient of the 

objective, the sensitivity analysis method is only based on a single point of solution, hence 

reducing the uncertainty of the converged solution between two toll levels.  

 

The second test concerned the influence of the behavioural parameters on the optimal toll 

solution. Different scaling parameters, which determine the magnitude of terms in the 

variance-covariance matrix of the probit model, were tested. The results showed some changes 

of the objective function curves with different scaling parameters, resulting in changes to the 

optimal toll solution. This result highlights the importance of calibrating the behavioural 

model in order to accurately determine the optimal toll policy. The last set of tests applied the 

optimisation algorithm to the test (tolls on all links simultaneously and tolls on each link 

individually). The optimisation algorithm successfully solved all test problems.  

 

Despite encouraging results from these tests, further research is still required in order to make 

the algorithm work efficiently with a large scale application. Firstly, although the theory of the 

probit model suggests that all routes will always be used, in practice some routes may have a 

very small probability of being used, and these routes will be eliminated from the choice set 

due to the limitation of machine precision. In the current algorithm, we assume a fixed set of 

predetermined used routes, even when the toll is varied. This assumption can be relaxed easily 

within the iterative procedure to allow the set of used routes to be changed dynamically with 

the toll level, updating the route set at each iteration. The second issue is concerned with the 

computational burden of the calculation of the probit SUE. A more efficient algorithm 

exploiting other estimation techniques of the multi-dimensional integral is being investigated 



in order to increase the efficiency of the algorithm in solving a large scale SUE problem. Last 

but not least, we wish to explore the development of the optimisation algorithm itself, aiming 

to improve it by better exploiting the structure of the problem, or through alternative 

reformulations of the problem.  
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Appendix 

 
O/D 1 5 7 

1 - 1125 1050 

5 675 - 850 

7 1050 850 - 

Table A1: OD potential demand matrix for the test network 

 
Link Number  i ai bi ci ni σi 

1 0.0125 0.0026515 1800 4.5 0.0125 

2 0.16 0 1 1 0.041498 

3 0.25 0 1 1 0.041498 

4 0.0125 0.0026515 1800 4.5 0.0125 

5 0.03 0.03 1100 3 0.03 

6 0.033333 0.033333 1100 3.1 0.033333 

7 0.03 0.03 1100 3 0.03 

8 0.025 0.025 1100 3.2 0.025 

9 0.075 0.015909 1100 3.5 0.075 

10 0.033333 0.033333 1100 3.1 0.033333 

11 0.026667 0.026667 1100 3.1 0.026667 

12 0.07625 0.016174 1100 3 0.07625 

13 0.8 0 1 1 0.041498 

14 0.025 0.025 1100 3.2 0.025 

15 0.026667 0.026667 1100 3.1 0.026667 

16 0.02 0.02 1100 3.1 0.02 

17 0.2 0 1 1 0.041498 

18 0.075 0.015909 1100 3.5 0.075 

19 0.07625 0.016174 1100 3 0.07625 

20 0.02 0.02 1100 3.1 0.02 

21 0.0125 0.0026515 1800 4.5 0.0125 

22 0.8 0 1 1 0.041498 

23 0.2 0 1 1 0.041498 

24 0.0125 0.0026515 1800 4.5 0.0125 

 

*links 13 and 22 are the pseudo links for O-D 1-5 and 1-7 respectively. links 2 and 23 are the pseudo links for O-D 5-1 and 5-

7 respectively. links 3 and 17 are the pseudo links for O-D 7-1 and 7-5 respectively. 

Table A2: Link travel time parameters for the test network 
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