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Abstract: Air pollution has serious environmental and human health-related consequences; how-
ever, little work seems to be undertaken to address the harms in Middle Eastern countries, in-
cluding Saudi Arabia. We installed a continuous air quality monitoring station in Jeddah, Saudi
Arabia and monitored several air pollutants and meteorological parameters over a 2-year period
(2018–2019). Here, we developed two supervised machine learning models, known as quantile regres-
sion models, to analyze the whole distribution of the modeled pollutants, not only the mean values.
Two pollutants, namely NO2 and O3, were modeled by dividing their concentrations into several
quantiles (0.05, 0.25, 0.50, 0.75, and 0.95) and the effect of several pollutants and meteorological
variables was analyzed on each quantile. The effect of the explanatory variables changed at different
segments of the distribution of NO2 and O3 concentrations. For instance, for the modeling of O3, the
coefficients of wind speed at quantiles 0.05, 0.25, 0.5, 0.75, and 0.95 were 1.40, 2.15, 2.34, 2.31, and 1.56,
respectively. Correlation coefficients of 0.91 and 0.92 and RMSE values of 14.41 and 8.96, which are
calculated for the cross-validated models of NO2 and O3, showed an acceptable model performance.
Quantile analysis aids in better understanding the behavior of air pollution and how it interacts with
the influencing factors.

Keywords: extreme value analysis; quantile regression; air pollution; ozone; nitrogen oxides;
supervised machine learning; climate change

1. Introduction

Air pollution has emerged as a serious and growing environmental issue affecting
human health, natural environment, biodiversity, building materials, and visibility. The
increasing urbanization, population, and consumption of fossil fuels for energy and trans-
portation needs have resulted in significant increase in air pollution [1,2]. In 2015, air
pollution resulted in 6.4 million deaths worldwide [3]. Moreover, air pollution is known to
cause several respiratory diseases, cardiovascular problems, lung cancer, and asthma [4].
Long-term exposure to elevated levels of particulate matter and nitrogen dioxide (NO2)
may cause cardiovascular problems and lung cancer, resulting in premature death and
hospital admission [5]. It is reported that children, elderly, and people with long-term
health problems are more vulnerable to the negative effect of air pollution [6]. The adverse
impacts of air pollution are associated with the duration of exposure and levels of air
pollutants, and higher levels and long-term exposure cause more severe negative impacts.
Exposure to elevated levels of ground level ozone affects the respiratory and cardiovascular
system [7]. Furthermore, ozone increases DNA damage in epidermal keratinocytes and
leads to impaired cellular function [8]. For more details on the health effects of air pollution,
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see [7–12]. In addition to human health, air pollution reduces crop yield, affects the quality
of fresh produce, and damages monuments and historical buildings [6,13].

The main factors influencing air pollution are emission sources, meteorological con-
ditions, and geographical characteristic conditions [14]. In large urban cities, the main
emission sources of air pollutants are road traffics; however, point sources (e.g., industrial
emissions) and area sources (e.g., emissions from houses and other minor sources) also
contribute significantly to total emissions [15]. Atmospheric concentrations of air pollutants
are directly related to local emissions of air pollutants from various sources [16]; however,
urban and regional scale emissions also contribute significantly to background concen-
trations [17]. In regression models, the background concentration is represented by the
intercept of the model, whereas in dispersion models, it is directly added to the modeled
concentrations. Meteorological conditions, in addition to emission sources, play a vital role
in the dispersion and chemical transformation of pollutants; however, the effect of meteo-
rology is not straightforward and is compounded by local geographical conditions and the
type of pollution [18]. For example, the higher wind speed quickly disperses locally emitted
pollutants, but it may bring emissions from upwind areas. Similarly, high temperature and
solar radiation help in encouraging both vertical and horizontal dispersion of pollutants;
however, at the same time, this help in photochemical O3 formation. Furthermore, the
effect of temperature may vary at different levels of pollutant concentrations, which will be
explored further in this paper. For more details on the variable effect of temperature on the
ozone, see [19–21].

To successfully manage and control air pollution, it is important to first characterize
air quality in terms of air pollutant levels, spatial and temporal trends, and interaction
with other driving factors. For this purpose, air quality monitoring and modeling are the
two most important tools. Air quality monitoring informs us about the current status of
air pollution, whereas modeling helps us in predicting the future status of air pollutants.
Furthermore, air quality modeling is carried out to investigate how air pollution impacts
human health, how pollutants interact with each other and with weather conditions, how
different emission scenarios affect future pollution levels, how pollutants are dispersed
and transformed in the atmosphere, how to quantify their long-term temporal trends, and
finally, how to fill spatiotemporal gaps in monitored data [22–31]. Mainly, three approaches
are used for air quality modeling, including: (1) Dispersion models, such as ADMS-Urban
and Airviro, (2) statistical and machine learning models, such as multiple linear regression
models, generalized additive models, random forest, and quantile regression models, and
(3) chemical-dynamical models, such as WRF-Chem, GEOS-Chem, CMAQ, and CAMx. In
this paper, a supervised machine learning technique, known as quantile regression model,
has been employed to analyze the whole distribution of the modeled variable, rather than
only focusing on the mean value as compared with the multiple linear regression.

Jeddah is the second largest city of the Kingdom of Saudi Arabia, with a population
of around 3.5 million. It is a coastal city located in the middle of the eastern coast of the
Red Sea, known as the Bride of the Red Sea, and is considered the economic and tourism
capital of the country. Jeddah is the fourth largest industrial city in Saudi Arabia with a
dense transport infrastructure network [32,33]. Recently, several research studies have been
published on the levels of different air pollutants, mostly particulate matter, in Jeddah. For
example, the authors of [34] studied fine and coarse particulate matter sources in Jeddah
and reported higher levels of PM2.5 (21.9 µg/m3) and PM10 (107.8 µg/m3), which exceeded
the WHO guidelines for PM2.5 (10 µg/m3) and PM10 (20 µg/m3). Another study analyzed
particulate matter and number concentrations of particles larger than 0.25 µm in the urban
atmosphere of Jeddah [35]. Khodeir et al. [36] studied source apportionment and elemental
composition of PM2.5 and PM10 in Jeddah and reported overall mean concentration of
28.4 ± 25.4 µg m−3 for PM2.5 and 87.3 ± 47.3 µg m−3 for PM10, with significant temporal
and spatial variability. Khodeir et al. [36] only focused on PM and did not analyze the
levels of NO2 and O3 in their study. Porter et al. [37] analyzed the levels of O3, NO2, and
PM10 and studied their association with meteorological data in Jeddah. Similar to the
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current study, in Porter et al. [37], oxides of nitrogen (NO, NO2, and NOx) were measured
using chemiluminescent detectors (Environment S.A. France AC32M), O3 was measured
via ultraviolet absorption using O342 module ozone analyzers, and PM10 was measured by
beta gauge (Environment S.A. MP101M). The authors used only descriptive statistics and
graphical presentations in their study and did not use any modeling approaches.

Several authors reported low levels of O3 in Jeddah and stressed the need for further
assessments. Similarly, Hassan et al. [33] investigated the levels of ambient O3 and NO2
along with meteorological data in Jeddah. They found O3 to be highly dependent on the
NOx diurnal cycle and wind speed. Furthermore, they reported that NOx exceeded WHO
air quality standards, especially in industrial sites. Few other studies reported air pollution
data from the city of Makkah, Saudi Arabia with similar weather conditions [28,38,39].
However, none of these studies carried out advanced modeling, especially employing
the quantile regression model for NO2 and O3 to analyze how their whole distribution is
associated with other pollutants and meteorological conditions in Jeddah.

Th present study focused on the analysis and modeling of ambient air pollution in
extreme meteorological conditions in Jeddah, the Kingdom of Saudi Arabia. For this
purpose, a continuous air quality monitoring station (AQMS) was designed and fabricated
at a local factory in Jeddah and deployed close to the Center of Excellence in Environmental
Studies at King Abdulaziz University, Jeddah. Several air pollutants (NO, NO2, NOx, O3,
CO, SO2) and meteorological parameters, namely wind speed (WS), wind direction (WD),
temperature (Temp), and relative humidity (RH), were measured during 2018 and 2019.
Finally, a supervised machine learning model known as quantile regression model was
developed in R programming language [40] and its package ‘quantreg’ [41]. NO2 and
O3, two of the most important gaseous pollutants from a public health perspective, were
analyzed to study their relationship with other gaseous pollutants and meteorological
parameters in Jeddah, focusing on the extreme values of the distribution of the modeled
variable. Unlike most of the current literature which focuses on the mean values, this study
diverts the focus to the whole distribution of the response variable, especially to the left and
right tails of the distribution, which are more important from a public health perspective.

2. Materials and Methods
2.1. Air Quality and Meteorological Data

A continuous air quality monitoring station (AQMS) was designed and fabricated
in a local workshop in Jeddah, the Kingdom of Saudi Arabia (Figure 1). Five different
gas analyzers were purchased from Horiba (Kyoto, Japan) and installed in the station.
These included top-of-the range systems, namely APNA-370 (NO2, NO, NOx), APSA-370
(SO2, H2S), APOA-370 (O3), APHA-370 (THC, NMHC, CH4), and APMA-370 (CO). The
calibration gases with high purity were purchased from a local supplier in Jeddah. The
AQMS was deployed close to the Center of Excellence in Environmental Studies at King
Abdulaziz University, Jeddah, which was used to collect hourly pollutant concentrations
during 2018 and 2019. The station is located a few meters from an internal university road,
but away from major congested roads. Moreover, traffic on this internal road significantly
reduces during evenings, weekends, and academic vacations, and is mostly limited to
university staff. Several pollutants were monitored, namely nitric oxide (NO), nitrogen
dioxide (NO2), nitrogen oxide (NOx), ozone (O3), carbon monoxide (CO), and sulphur
dioxide (SO2). A map of the monitoring site is shown in Figure 2. Furthermore, a weather
station was installed on top of the AQMS to measure meteorological parameters, includ-
ing wind speed (WS), wind direction (WD), temperature (Temp), and relative humidity
(RH). An AC was installed within the AQMS to maintain the inside temperature between
24–28 ◦C, which could otherwise increase to above 50 ◦C during the hot summer, with risks
of damaging the installed systems. The gas analyzers were calibrated on a regular basis to
achieve high quality data.
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Figure 1. Air quality monitoring station (AQMS): Outside (top) and inside (bottom) view. 
Figure 1. Air quality monitoring station (AQMS): Outside (top) and inside (bottom) view.

The data have been collected on a continuous basis in an hourly resolution and
recorded on a data logger installed inside the station, which is then transferred to a
PC as required through a modem. Pollutants were expressed in parts per billion (ppb),
except for CO, which was expressed in parts per million (ppm). Temperature was ex-
pressed in degree Celsius (◦C), relative humidity in percentage (%), wind speed in meter
per second (m/s), and wind direction in degrees from the north (◦N). The AQMS used the
reference techniques to measure the pollutant concentrations, using chemiluminescence
analyzer for the monitoring of NOx, NO2, and NO, UV fluorescence analyzer for the moni-
toring of SO2, UV absorption analyzer for the monitoring of O3, and infra-red absorption
analyzer for the monitoring of CO. The systems’ specifications, including measurement
principles and detection limits, are provided in Table 1.
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Figure 2. Map of the location of air quality monitoring station (AQMS) situated within King Abdu-
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Table 1. List of instruments for ambient air quality monitoring with their specifications, calibration,
and detection limits [42].

Analyzer NOx SO2 O3 CO

Model APNA-370 APSA-370 APOA-370 APMA-370

Application NO2, NO, NOx SO2, H2S O3 CO

Principle Cross flow modulation,
Chemiluminescence

UV fluorescence Cross flow modulation,
UV absorption

Cross flow modulation,
non-dispersive
IR absorption

Range (ppm) 0–10 0–10 0–10 0–100

Lower Detectable
limit (LDL)

0.5 ppb (3 sigma) 0.5 ppb (3 sigma) 0.5 ppb (3 sigma) 0.02 ppm (3 sigma)

Repeatability ±1.0% of F. S. ±1.0% of F. S. ±1.0% of F. S. ±1.0% of F. S.

Linearity ±1.0% of F. S. ±1.0% of F. S. ±1.0% of F. S. ±1.0% of F. S.

Zero drift
(at lowest range)

<LDL/day
±1.0 ppb/week

<LDL/day
<LDL/week

<LDL/day
<LDL/week

<LDL/day
<0.2 ppm/week

Span drift
(at lowest range)

<LDL/day
±1.0% of F. S./week

<LDL/day
<LDL/week

<LDL/day
<LDL/week

<LDL/day
±1.0% of F. S./week

Response time
(T90) (s)
(at lowest range)

Within 90 s Within 120 s Within 75 s Within 50 s

Sample gas

flow rate (L/min) 0.8 0.7 0.7 1.5
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2.2. Statistical Analysis

This paper employed a quantile regression approach for the modeling of O3 and NO2 using
several predictors of gaseous pollutants and meteorological parameters (Equations (1) and (2)).
Multiple linear regression specifies the conditional mean function, which analyzes the
effect of covariates (predictors) on the mean of the response variable, whereas quantile
regression specifies the conditional quantile function. This indicates that quantile regression
allows the covariates to have different effects at different quantiles of the response variable
distribution. For more details on quantile regression, see [25,28,43,44]. To assess the model
performance, the data were divided into randomly selected training (75%) and testing
dataset (25%). The model was fitted on the training and cross-validated on the testing data.
As reported by [25], quantile regression is robust (insensitive) to departures from normality
and to skewed tails. In this paper, two models were developed for the modeling of O3
(Equation (1)) and NO2 (Equation (2)).

O3 = βo
(p) + β1

(p)NO + β2
(p)NO2 + β3

(p)CO + β4
(p)SO2 + β5

(p)WS + β6
(p)WD + β7

(p)RH + β8
(p)Temp + εi (1)

NO2 = βo
(p) + β1

(p)NO + β2
(p)O3 + β3

(p)CO + β4
(p)SO2 + β5

(p)WS + β6
(p)WD + β7

(p)RH + β8
(p)Temp + εi (2)

In Equations (1) and (2), βo represents the intercept, β1 to β8 represent coefficients
(slopes) of the covariates, and ε shows the error terms of the models, which is the difference
between the modeled and measured concentrations. The (p) shows the p-th quantile, and
its value lies between 0 and 1. In this study, we used five quantiles 0.05, 0.25 (first quartile),
0.5 (median), 0.75 (third quartile), and 0.95. To assess the model performance, several statis-
tical metrics were used, including correlation coefficient (r), coefficient of determination
(R2), root mean squared error (RMSE), and factor of two (FAC2). For more details regarding
these metrics and how to calculate them, see [45,46].

The R programming language [40] and the packages ‘openair’ [47] and ‘quantreg’ [41] were
used to develop the models, perform general statistical data analysis, and develop visualizations.

3. Results and Discussion

A summary of the data is provided in Table 2 and more details are depicted in Figure 3,
where levels of various variables are shown at different quantiles (0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, and 0.95) of their distribution.

Table 2. Summary of the air pollutants and meteorology data for 2018–2019. All of the pollutants
were measured in ppb, except for CO, which was measured in ppm. In the table, WS stands for wind
speed (m/s), WD for wind direction (degree from the north), Temp for temperature (◦C), and RH for
relative humidity (%).

Variable
Metric

Min 1st Qu Med Mean 3rd Qu Max SD

NO 0.01 2.04 5.43 13.5 13.92 146.36 21.57
NO2 0.82 17.84 26.60 28.25 37.97 93.39 13.29
NOx 1.32 21.85 32.86 41.74 51.02 197.34 30.80
O3 0 13.86 35.91 36.31 55.24 122.94 25.11

SO2 0 1.31 4.74 13.19 15.20 194.07 21.14
CO 0.03 0.18 0.26 0.32 0.37 2.38 0.23
WS 0 0.65 1.27 1.46 2.07 7.20 0.97
WD 0.84 251.61 336.63 292.39 340.96 350.20 78.19

Temp 18.98 27.19 30.61 30.47 33.80 47.74 4.45
RH 6.44 39.74 54.16 52.69 66.13 98.50 17.02
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distributions. All of the pollutants are measured in ppb, except for CO, which was measured in ppm.
In the figure, WS stands for wind speed (m/s), WD for wind direction (degree from the north), Temp
for temperature (◦C), and RH for relative humidity (%).

NO2, SO2, O3, and CO are important pollutants from human health and environmental
perspectives. CO, SO2, and NO2 are combustion-related pollutants, mainly emitted by the
combustion of fossil fuels used in road traffic and different industries. O3 is predominantly
a secondary pollutant, formed in the atmosphere by the photochemical reaction of its
precursors in the presence of solar radiation. These pollutants have the strongest evidence
for public health concern. Health problems can occur as a result of both short- and long-
term exposure to these pollutants [48]. Exposure to the elevated levels of ozone can cause
problems in breathing, trigger asthma, reduce lung function, and lead to lung disease. NO2
and SO2 are related to asthma and other respiratory conditions. CO, once inhaled, diffuses
into the lung tissues and bloodstreams, which affect the oxygen levels of blood resulting in
tissue and cell damage [48–50].

The results of simple correlation between different air pollutants and meteorological
parameters are shown in Figure 4, which shows how various variables are related to each
other. Figure 4 shows that combustion-related species, such as NO, NO2, NOx, and CO,
are strongly positively correlated with each other. These pollutants are predominantly
emitted by road traffic. Their correlation coefficient (r-values) range from 0.53 to 0.93.
These species are clustered in the middle of the plot. SO2 is also a combustion-related
pollutant, but is mostly emitted by industrial activity, which processes materials that
contain sulphur, mainly from the combustion of coal and oil-containing sulphur. In the
past, road traffic was considered a major source of SO2, but since the desulphurization
of vehicle fuels, this is not the case anymore. Therefore, SO2 has shown weak correlation
with NOx and CO species (Figure 4). O3 is strongly negatively correlated with traffic-
related air pollutants and the r-values between O3 and traffic-related pollutants range
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from −0.50 for CO to −0.71 for NO2. Negative correlation between O3 and these species
is well known [28,51,52]. O3 is a secondary air pollutant and predominantly produced
in the atmosphere by the photochemical reaction of its precursors, such as NOx and
hydrocarbons, in the presence of solar radiation. This is possibly the reason that O3 is
positively correlated with meteorological parameters, especially temperature and solar
radiation. In contrast, high wind speed and high temperature help in the dispersion of
locally emitted air pollutants (e.g., NOx and CO), which explains the negative association
between them.
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The problem with correlation analysis is that it shows only a linear relationship be-
tween the two variables, due to the fact that the relationship of pollutants with other
pollutants and with meteorological parameters is not always linear and may change at
different levels of the variables. Therefore, correlation analysis or simple linear regression
cannot fully describe the association between different variables. Therefore, an advance
approach is required to analyze the association at various levels of the variables. A quantile
regression approach is used to view how the relationship of explanatory variables (covari-
ates) changes at different levels of the response variables (modeled pollutants), as shown
in Figure 4.

Figure 5 shows the output of a quantile regression model using O3 as a response
variable and NO, NO2, CO, SO2, Temp, RH, WD, and WS as explanatory variables (also
known as predictors or covariates). The values on x-axis show different quantiles used in
the model (0.05, 0.25, 0.50, 0.75, 0.95), whereas the values on y-axis show coefficients of the
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predictors. Positive coefficients indicate a positive association, whereas negative coefficients
show a negative association between the response (modeled) and explanatory variables.
Furthermore, the larger the values of coefficients, the stronger the effect of the explanatory
variable on the response variable. Figure 5 shows that NO, NO2, and RH have a negative
association with O3, whereas the rest of the parameters have a positive association with
O3. It is shown (Figure 5) that values of the coefficients change at different quantiles of the
distributions. The red solid line is the mean line, which can be considered as the coefficient
of the ordinary least square model. Grey area around the black line and dashed red lines
around the solid-red line show the confidence intervals of the quantile coefficients and
mean coefficient, respectively. It should be noted that the effect of all covariates (predictors)
at all quantiles is significant as the confidence intervals do not overlap with the zero line.
When the confidence intervals of mean coefficient overlap with the confidence intervals
of any quantile, this indicates that the mean effect is not significantly different from the
quantile effect. NO2 has a significantly different effect from the mean effect at quantile 0.05,
whereas SO2 has a significantly different effect on quantiles 0.05, 0.1, and 0.95. Both WS
and Temp have a significantly different effect from the mean effect. The effect of CO is not
significantly different from the mean effect at any quantile. WS, Temp, and CO have larger
coefficient values, and thus, have a stronger association with the modeled variable. The
coefficients in Figure 5 are presented in Table 3.

Table 3. Model coefficients at different quantiles (tau) of O3 concentrations.

Parameter
Tau

0.05 0.25 0.50 0.75 0.95

Intercept 24.29 20.65 14.61 13.02 14.50
NO −0.27 −0.20 −0.21 −0.24 −0.22
NO2 −0.91 −1.12 −1.19 −1.12 −1.15
CO 21.41 19.91 22.68 21.99 23.37
SO2 0.05 0.06 0.10 0.15 0.45
WS 1.40 2.15 2.34 2.31 1.56
WD 0.04 0.04 0.04 0.02 0.01

Temp 0.28 1.00 1.62 2.14 2.72
RH −0.19 −0.21 −0.22 −0.23 −0.25

Figure 6 shows the outputs of quantile regression model using NO2 as a response
variable and O3, NO, CO, SO2, WS, WD, RH, and Temp as explanatory variables. Figure 6
shows how the association between response and explanatory variables varies at different
quantiles of the modeled variable. Coefficients of different variables at different quantiles
are shown in Table 4. It is shown that the effect of all covariates at all quantiles is significant
as the confidence intervals do not overlap with the zero line, except for the temperature
at quantile 0.05. Ground level O3, NO, relative humidity, and wind speed have shown
negative associations, whereas the other variables have shown a positive association with
NO2 at all quantiles. O3 concentrations have shown a significantly different effect from the
mean effect only at quantiles 0.05 and 0.95, whereas NO has only shown a significantly
different effect from the mean effect at quantile 0.05. Moreover, CO has shown a positively
significant difference from the mean effect at quantiles 0.05 and 0.95. This shows the
importance of studying the effect of the predictors on both left and right tails of the
distribution of the modeled variable. From a public health perspective, it is important to
analyze the effect of explanatory variables on atypically high pollution levels, rather than
only analyzing the mean effect.
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Figure 5. Outputs of the quantile regression model for analyzing O3 concentrations (ppb) using
several explanatory variables in Jeddah, Saudi Arabia, 2018–2019. The black dotted dashed lines show
coefficients at different quantiles of the covariates and the shaded areas show the confidence intervals.
The red solid lines show the coefficients of ordinary multiple linear regression model, whereas the
red dotted lines show the confidence intervals of the mean coefficients. x-axes show quantiles of the
dependent variable and y-axes show the regression coefficients for specified independent variables.

Table 4. Model coefficients at different quantiles (tau) of NO2.

Parameter
Tau

0.05 0.25 0.50 0.75 0.95

(Intercept) 12.69 11.70 13.25 20.17 26.54
NO −0.22 −0.15 −0.08 −0.08 −0.05
O3 −0.24 −0.30 −0.31 −0.30 −0.24
CO 40.89 35.34 30.58 34.55 41.26
SO2 0.10 0.09 0.09 0.10 0.08
WS −0.52 −1.07 −1.77 −2.51 −3.63
WD 0.02 0.03 0.03 0.03 0.03

Temp 0.03 0.25 0.41 0.39 0.34
RH −0.03 −0.01 −0.02 −0.03 −0.05
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Figure 6. Outputs of quantile regression model analyzing NO2 concentrations (ppb) using several
explanatory variables in Jeddah, Saudi Arabia, 2018–2019. The black dotted dashed lines show
coefficients at different quantiles of the covariates and the shaded areas show the confidence intervals.
The red solid lines show the coefficients of ordinary multiple linear regression model, whereas the
red dotted lines show the confidence intervals of the mean coefficients. x-axes show quantiles of the
dependent variable and y-axes show the regression coefficients for specified independent variables.

The performance of the two models for O3 (Figure 5) and NO2 (Figure 6) was assessed
by comparing predicted and observed concentrations. Graphical comparison of predicted
and observed concentrations of both NO2 and O3 is shown in Figure 7. Comparison was
carried out for 25% of testing dataset (cross-validation), which was randomly selected and
not included in the model fitting process. Observed and predicted concentrations showed
a strong association with each other for both NO2 and O3. To quantify the relationship
between observed and predicted concentrations, several statistical metrics were calculated,
including correlation coefficient (r), coefficient of determination (R2), root mean square
error (RMSE), and factor of two (FAC2). The factor of two (FAC2) is the percentage of
the predictions within a factor of two of the observed values. Correlation coefficients of
0.92 and 0.91 between modeled and observed concentrations show a strong correlation
between observed and predicted O3 and NO2 concentrations, respectively. Furthermore,
coefficient of determination of 0.86 and 0.83 shows that with the help of the predictors
used in the models, quantile regression model was able to explain 86% of the variation
in O3 concentration and 83% of the variation in NO2 concentration. These statistical
metrics (Table 5) indicate an acceptable model performance. Metrics calculated for multiple
linear regression models are provided for comparison only, which showed that quantile
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regression models outperformed the multiple linear regression models. The authors of [46]
modeled PM10 concentrations in Makkah and compared the performance of several models,
including multiple linear regression, generalized additive model, and quantile regression
model. They showed that the quantile regression model outperformed the other models,
which justifies the use of this model for air pollution modeling. In this paper, the purpose is
not to compare the performance of quantile regression model with other models, rather the
aim is to show that it is important to analyze the whole distribution of the modeled variables,
especially the atypically high concentrations of air pollutants, which are important from a
public health perspective.
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Figure 7. Graphical comparison of observed and predicted O3 concentrations (ppb) (right-panels)
and NO2 concentrations (ppb) (left-panels) for testing data.

Table 5. Statistical metrics for cross-validated models using 25% of the randomly selected testing
dataset. The values outside of the parenthesis are for quantile regression (QRM) and inside are for
multiple linear regression model (MLRM).

Metrics O3 QRM (MLRM) NO2 QRM (MLRM)

Correlation Coefficient (r) 0.92 (0.78) 0.91 (0.81)
Coefficient of determination (R2) 0.86 (0.61) 0.83 (0.66)

RMSE (ppb) 14.42 (15.13) 8.96 (7.97)
FAC2 0.79 (0.73) 0.96 (0.91)

Harkey et al. [53] analyzed the relationship between several meteorological parameters
and NO2 using ground-level and satellite-based observations employing the Environmental
Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) model. They found
that the boundary layer height, wind speed, temperature, and relative humidity were the
most important variables in determining near-surface NO2 variability. NO2 concentration
was negatively associated with planetary boundary height, wind speed, and insolation,
and positively associated with temperature. Wang et al. [54] analyzed the spatiotemporal
trends of NOx in relation to land use and meteorological factors in Accra Metropolis during
April 2019 to June 2020. They found strong correlations between NO2 and NO2/NOx with
mixing layer depth, incident solar radiation, and water vapor mixing ratio.

Hu et al. [55] conducted a detailed analysis on ground level O3 and developed several
generalized additive models (GAMs) to predict the maximum daily 8-h O3 concentration
in 334 cities in China. The correlation between O3 and meteorological variables varied
spatially; however, generally temperature, relative humidity, and sunshine hours were the
most important three influencing factors for O3. Furthermore, Hu et al. [55] reported that
the influence of these meteorological factors on O3 concentration was nonlinear, which
agreed with our findings. The average R2 of the GAMs model for all cities was 0.72. In
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another study, Camalier et al. [56] collected data from 39 major eastern US urban areas
and developed a generalized linear model (GLM) for modeling the effect of meteorology
on ground level O3. The GLM model explained 80% of the variations in O3 and reported
that O3 generally increased with increasing temperature and decreased with increasing
relative humidity.

4. Conclusions

In this paper, we modeled the concentrations of ground level O3 and NO2, which
are two important atmospheric pollutants from a public health perspective. Several air
pollutants (CO, NO, NO2, NOx, O3, and SO2) and meteorological parameters (WS, WD,
Temp, and RH) were measured in the city of Jeddah, the Kingdom of Saudi Arabia during
2018–2019. First, the correlation analysis was performed to determine the simple correla-
tion between different pollutants and meteorological parameters. Combustion-related air
pollutants (e.g., NO, NO2, and CO) showed a positive correlation with each and a negative
correlation with O3, temperature, and wind speed. O3 was positively correlated with
temperature and wind speed and negatively correlated with relative humidity. However,
the simple correlation analysis is unable to present a holistic picture of the association
between different pollutants and meteorological parameters. This is due to the fact that
the association between different pollutants and meteorology varies at different levels
of the pollutants and meteorological parameters. Quantile regression model was able to
explore this association further and showed how the strength of the relationship changed
at different levels of the pollutants. Ground level O3 and NO2 were modeled employing
quantile regression model using several air pollutants and meteorological parameters as
predictors. The models demonstrated the importance of analyzing both tails of the distri-
bution, e.g., at quantile 0.95 and 0.05. Finally, the model performance was assessed using
graphical presentation and several statistical metrics, including correlation coefficients, R2,
RMSE, and FAC2. The values of these metrics demonstrated a strong association between
predicted and observed concentrations and outperformed the counterpart multiple linear
regression model. This paper emphasizes the use of these models, which can analyze the
whole distribution of the pollutants, including both tails of the distribution, which are
important from a public health perspective. Furthermore, it emphasizes that in addition
to emission sources, meteorological parameters play an important role in controlling the
levels of air pollution in urban areas, which should be considered when preparing an air
quality management plan, particularly in hot climatic conditions, such as Jeddah.

This paper provides a robust methodology for O3 and NO2 modeling with improved
model performance; however, the study overall has several limitations, which should
be considered: (a) The results of this study are based on data from only one air quality
monitoring station. To better aid public health planning and air quality management
strategy, future work should aim to use data from considerably more monitoring stations
over a wide area, possibly with diverse emission sources. (b) Both models for NO2 and
O3 have no solar radiation data, which is one of the weaknesses of this study. Given
that past work shows how solar radiation affects both NO2 and O3 concentrations, future
work should consider including this important meteorological parameter in their modeling.
(c) In urban areas, both NO2 and O3 levels are closely linked with traffic composition and
flow; therefore, traffic characteristics should be included in future models or described
in detail.
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