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Abstract: To reduce the spread of COVID-19, lockdowns were implemented in almost every single
country in the world including Saudi Arabia. In this paper, the effect of COVID-19 lockdown on
O3, NO2, and PM10 in Makkah was analysed using air quality and meteorology data from five sites.
Two approaches were employed: (a) comparing raw measured concentrations for the lockdown
period in 2019 and 2020; and (b) comparing weather-corrected concentrations estimated by the
machine learning approach with observed concentrations during the lockdown period. According to
the first approach, the average levels of PM10 and NO2 decreased by 12% and 58.66%, respectively,
whereas the levels of O3 increased by 68.67%. According to the second approach, O3 levels increased
by 21.96%, while the levels of NO2 and PM10 decreased by 13.40% and 9.66%, respectively. The
machine learning approach after removing the effect of changes in weather conditions demonstrated
relatively less reductions in the levels of NO2 and PM10 and a smaller increase in the levels of O3.
This showed the importance of adjusting air pollutant levels for meteorological conditions. O3 levels
increased due to its inverse correlation with NO2, which decreased during the lockdown period.

Keywords: COVID-19 lockdown; air quality; Makkah; NO2; O3; PM10; intervention; machine learning

1. Introduction

In December 2019, Coronavirus Disease 2019 (COVID-19) was reported from Wuhan,
China, and spread quickly to the rest of the world [1]. To curtail the spread of COVID-19,
lockdowns were announced in different countries worldwide, and COVID-19 was officially
announced as a pandemic by WHO [2]. In April 2022, WHO confirmed over 500 million
victims of COVID-19, with over 6.2 million mortalities [3]. All sectors of life, including
scientists, medical doctors, decision makers, and establishments worked together for
the alleviation of COVID-19 [4]. The implemented lockdown was helpful to control the
transmission of the virus but equally, it significantly affected the global economies [5,6].
In addition to curtailing the transmission of the virus, the lockdown resulted in clean air
as reported by a number of researchers in many countries, e.g., [7–10]. Dutheil et al. [7]
reported a reduction in NO2 concentrations measured with the TROPOMI sensor on-board
ESA’s Sentinel-5 satellite before and after the COVID-19 pandemic. Sharma et al. [8]
analysed the concentrations of several pollutants, namely, PM10, PM2.5, CO, and NO2
during the lockdown period in India and reported about 43, 31, 10, and 18% reductions,
respectively, compared to previous years. Kroll et al. [9] argued that COVID-19 lockdown
not only affected emissions but also the chemical transformations of pollutants in the
atmosphere. Munir et al. [10] reported reductions in several pollutants and emphasised
that the approach used for quantifying the reduction was vital. However, the clean air
episode was not permanent and sustainable because of its unbearable socioeconomic
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cost [4]. The improved air quality helped avoid approximately 50,000 pollution-related
mortalities during the pandemic months [11], which showed the importance of clean air in
urban areas. On the other hand, poor air quality is reported to be associated with 4.2 million
deaths globally [12].

In India, several studies were conducted in different cities during the lockdown period
and showed an improvement in air quality and a reduction in the concentrations of PM10 by
58%, PM2.5 by 73.85%, SO2 by 58%, NH3 by 75%, CO by 60%, and NO2 by 79% [13,14]. Anil
and Alagha [15] conducted air quality monitoring at eight stations in the eastern province
of Saudi Arabia from September 2019 to July 2020. NO2 concentrations were reduced by
12–86% during lockdown and by 14–81% in the post-lockdown period. Concentrations of
CO were reduced by 5.8–55%, PM10 by 9–30%, and SO2 by 21–70% during the lockdown
period. Only O3 concentrations increased during lockdown (6.3–45%) and in the post-
lockdown (18–263%) period. Kumari and Toshniwal [16] conducted a worldwide study
in twelve cities and reported a decrease in the concentrations of PM2.5, PM10, and NO2
ranging from 20–64%. In Ecuador, the maximum reduction reported in NO2 concentration
was 23% [17]. A 12% global reduction in PM2.5 concentration during the lockdown period
was reported by Rodríguez-Urrego and Rodríguez-Urrego [18]. Another study concluded
a 30% decrease in the overall pollution level, particularly in some COVID-19 axis areas
such as the USA, Italy, Spain, and Wuhan [19]. Munir et al. [5] analysed the effect of
COVID-19 lockdown on NO, NO2, NOx, PM2.5, and PM10 in northern England, UK and
reported a reduction of 43.31 to 69.75% for NO, 37.13 to 55.54% for NO2, 41.52 to 63.99% for
NOx, 29.93 to 40.26% for PM2.5, and 2.36 to 19.02% for PM10. Morsy et al. [20] monitored
the concentration of air pollutants in the holy city of Makkah, Saudi Arabia, during the
lockdown period and compared the results with the pre-lockdown period. Considerable
reductions were observed in SO2, NO2, CO, O3, and PM10, i.e., 26.34%, 28.99%, 26.24%,
11.62%, and 30.03%, respectively, induced by the strict lockdown measures. Klara and
Maria [21] measured air quality in Portugal using 68 monitoring stations and covered
rural, urban, and suburban zones. This study reported a 15–71% and 10–70% reduction in
traffic-related NO2 and PM, respectively. A 35% reduction in SO2 was observed due to the
suspension of industrial activities.

On 2 March 2020, the first positive case of the coronavirus was reported in the Kingdom
of Saudi Arabia. Initially, three major steps were taken by the Kingdom of Saudi Arabia to
minimise the spread of the virus: the deferral of the Umrah visit (4 March 2020), closing
the educational institutions (8 March 2020), and stopping worldwide flight operations
(9 March 2020). Using these measures, the Kingdom succeeded to slow down the spread
of the pandemic but could not completely stop the spread; therefore, on 23 March 2020,
a partial lockdown was enforced and on 25 March 2020, inter-provincial transportation
was seized. Finally, a complete lockdown was enforced in the country on 6 April 2020. The
lockdown was relaxed on 31 May 2020 in Makkah and partial activities in mosques, restau-
rants, malls, parks, and cafes were allowed [15,20]. Such lockdowns were implemented in
many countries around the world, which resulted in improved environmental conditions
including air quality.

Makkah city hosts almost 10 million visitors of Umrah annually. The visitors for
Umrah are spread over the whole year but are more concentrated in the holy month of
Ramadan (9th month of the Islamic calendar). Another 3 million (approx.) visitors come
to perform the pilgrimage (Hajj) every year. The Hajj event takes place for 10 to 15 days
in the 12th month of the Islamic calendar. Furthermore, the population of Makkah has
been increasing rapidly and the city has been spreading out. Road traffic used for the
transportation of both residents and visitors is the key source of pollutant emissions that
compromise the air quality of Makkah. During the lockdown period, the number of visitors
was limited even during the holy month of Ramadan and Hajj. Visitors to Makkah were
only allowed from inside the Kingdom [20].

In this paper, the effect of COVID-19 lockdown on air quality was analysed using air
quality data from five monitoring stations in Makkah using parallel and machine learning
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approaches [10], focusing on three major pollutants, namely, NO2, O3, and PM10. These
pollutants are the most important from the public health point of view as they can cause
various health problems [22,23]. The main aim was to quantify the effect of lockdown on air
quality and present an improved methodology for assessing the impact of the interventions
compared to the previous studies conducted in the Kingdom of Saudi Arabia [15,20], which
employed only a sequential approach as described by Munir et al. [10]. The uniqueness of
this study is that, in contrast to a previous study using a sequential approach [10], it applied
a parallel approach using measured concentrations. Furthermore, the effect was analysed
using weather-corrected (meteorologically adjusted) data. Previous studies carried out in
Makkah have not deweathered the data and have simply compared pre-lockdown and
lockdown periods using raw data.

2. Materials and Methods

The basic research question was how COVID-19 lockdown affected air quality in hot
and dry climatic conditions and what method should be used to extract the impact of the
intervention. To answer this question, in this paper, the effect of the COVID-19 lockdown
on air pollution in Makkah, Saudi Arabia was assessed by employing a supervised machine
learning approach [10,24]. Air pollutants and meteorology data were used from five moni-
toring stations. Firstly, air pollutants levels were compared during the lockdown months
in 2019 with 2020 using measured data, and secondly, pollutant levels were predicted
for the lockdown months using a generalised additive model (GAM) and compared with
the measured concentrations, as described in the following sections. Figure 1 shows the
schematic diagram of the whole procedure followed in this paper.
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2.1. Air Quality Monitoring Stations

Hourly measured data of several air pollutants and meteorological variables for years
2019 and 2020 were collected at five air quality monitoring stations in Makkah, Saudi
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Arabia (Figure 2). The air quality monitoring stations were: Aziziah, Otibiah, Shawqiah,
Haram, and Umrah. The Aziziah site (21.40377, 39.87837) is close to the Holy Mosque
and is considered an urban traffic site. Aziziah district is famous for its busy roads and
the presence of many commercial centres including many shopping malls and restaurants.
The Shawqiah site (21.36589, 39.80747) is located in the southern part of Makkah city and
surrounded by an intensive residential complex. Shawqiah district is considered one of
the main residential districts of Makkah, belonging to the municipality of Al-Shawqiah.
Otibiah station (21.44222, 39.81189) experiences highly commercial activities due to its
closeness to the centre of Makkah city. Haram station (21.42464, 39.82917) is located in
the eastern yard of the Grand Holy Mosque (Figure 2) and can be considered an urban
background site. Finally, Umrah station (21.50847, 39.79339) is located on the north-western
side of Makkah city. Umrah district is the industrial city of Makkah. Umrah district has the
main electrical power station of Makkah, which is responsible for fulfilling the electrical
and power need of the city of Makkah.
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Figure 2. Map showing the location of monitoring sites in Makkah: Umrah, Otibiah, Aziziah,
Shawqiah, and Haram. No data were available from Shara’a for 2020; therefore, comparison was not
made for this site. The lower panel shows the location of the Haram site inside the Holy Mosque and
the equipment (Environment SA) used for collecting the data.
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The sensors used for the measurement of the pollutants on these sites are based on
automatic continuous detection techniques: SO2 (APSA370, UV fluorescence); NO and
NO2 (APNA370, chemiluminescence); CO (APMA370, IR Absorption); PM10 (BAM1020,
bray); and O3 (APOA370, UV photometric). The air quality stations used the Environment
SA monitoring station, which is a reference station. The quality control (QC) and quality
assurance (QA) of the observed air quality data were based on the standard operating
procedure published by the Presidency of Meteorology and Environment (PME).

2.2. Statistical Data Analysis, Modelling, and Software

In this paper, the concentrations of three pollutants, namely, ground-level ozone
(O3), nitrogen dioxides (NO2), and particulate matter of size 10 micron (PM10) were anal-
ysed during the COVID-19 lockdown period. To curtail the transmission of COVID-19,
a lockdown was announced in the Kingdom of Saudi Arabia, which was in place from
March–August 2020 [20]. The lockdown affected road traffic, working patterns, social
activities, and energy consumption, which indirectly affected atmospheric pollution in
urban areas. To extract the effect of lockdown on atmospheric pollution, hourly levels of
O3, NO2, and PM10 in the months of March–August in 2020 were compared with 2019.
Here, we employed two approaches:

(a) Comparing measured concentrations of 2020 with 2019 during the lockdown period, and
(b) Comparing the predicted and measured concentrations during the lockdown months

in 2020 by employing a supervised machine learning approach—generalised additive
model (GAM).

To extract the effect of the COVID-19 lockdown, several researchers have compared the
concentrations in the pre-lockdown period with the lockdown period (e.g., [20]); however,
this approach is not recommended as it does not take into account changes in the amount
of emissions and meteorological conditions in different times of the year [10]. Therefore,
the same months in previous years should be compared with the months during the
lockdown period [10]. Some researchers have used averaged data of the previous several
years, for example, the average of 2015–2019; however, due to data unavailability, this
was not possible and therefore, we only used data for 2019. The model was trained using
meteorological and temporal parameters for the year 2019 and then used to predict the
pollutant concentrations for the lockdown period using a business-as-usual scenario [24].

All data analyses were performed in R programming language [25] using several of
its packages: ‘openair’ [26], ‘mgcv’ [27], and lubridate [28]. ‘mgcv’ was used to develop the
GAM model and predict pollutant levels for the business-as-usual (BAU) scenario. The
‘openair’ package was used to calculate correlation coefficients and root mean squared
error (RMSE) values and produce various visualisations. The ‘lubridate’ package was used
to edit the date and add temporal variables to the model. In the first approach, the mean
concentration was calculated for the lockdown period in 2019 and 2020. Along with the
mean, minimum and maximum concentrations were also calculated to show the range of
the concentration. Using these values, the difference between 2019 and 2020 was calculated.

A GAM was developed using several meteorological and temporal parameters to
predict the levels of NO2, O3, and PM10 for the lockdown period. The model has been
previously employed for such analysis by several researchers, for instance, [10,29,30]. GAM
was implemented using the ‘mgcv’ package [27]. GAM is an interpretable supervised
machine learning approach, which is able to study the nonlinear association between the
modelled and explanatory variables. The three models are given below:

GAM (PM10 ~ s1 (temp) + s2 (ws) + s3 (wd) + s4 (rh) + s5 (hour) + s6 (yday) + s7 (wday)) (1)

GAM (NO2 ~ s1 (temp) + s2 (ws) + s3 (wd) + s4 (rh) + s5 (hour) + s6 (yday) + s7 (wday)) (2)

GAM (O3 ~ s1 (temp) + s2 (ws) + s3 (wd) + s4 (rh) + s5 (hour) + s6 (yday) + s7 (wday)) (3)
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where ‘rh’ stands for relative humidity, ‘ws’ for wind speed, ‘wd’ for wind direction, ‘temp’
for temperature, ‘hr’ for the hour of the day, ‘wday’ for the day of the week, and ‘yday’
for the day of the year. S1 to S7 are the smooth functions of the explanatory variables.
Firstly, the model was validated by splitting the 2019 hourly data into 25% randomly
selected testing data and 75% randomly selected training data. The model performance
was satisfactory for the cross-validated model. The model was refitted using the entire year
2019 data for training the model and then was used to predict the three pollutants for the
lockdown period in the BAU scenario.

3. Results
3.1. Comparison of the Measured Concentrations in 2019 and 2020 during the Lockdown Period

To calculate whether the concentrations of NO2, O3, and PM10 decreased or increased
during the COVID-19 lockdown, the levels of these pollutants in 2019 were deducted from
those in 2020; therefore, reductions in pollutant levels are shown by negative numbers,
whereas increases are shown by positive numbers (Table 1). Both absolute and percent
changes in pollutant levels were calculated. As an example, diurnal and weekly cycles
of O3 and NO2 concentrations at the Aziziah site are depicted Figure 3, which clearly
show a reduction in NO2 and an increase in O3 concentrations. However, the changes in
concentrations varied from day to day and hour to hour. According to the results presented
in Table 1, PM10 concentrations had decreased at the Aziziah, Otibiah, Shawqiah, and
Umrah sites, whereas the levels had slightly increased at the Haram site. In the case of NO2,
the concentrations decreased at the Aziziah, Otibiah, Umrah, and Haram sites, whereas
due to missing data changes, those at the Shawqiah site were not calculated. In contrast, the
levels of O3 increased at all sites, except at the Umrah site. When the levels were averaged
for all sites, the levels of PM10 decreased by 12%, the levels of NO2 decreased by 58.66%,
and the levels of O3 increased by 68.67%.

Table 1. Percent difference (year 2020–year 2019) in the concentrations of pollutants at different
monitoring sites. The negative sign shows a decrease, and the positive sign shows an increase in
pollutant concentrations.

Site Year O3 (µg/m3) NO2 (µg/m3) PM10 (µg/m3)

Aziziah

2019
Mean (min, max)

22.34
(1.4, 140)

31.15 (24.4)
(3.3, 340)

110.58
(7.2, 962)

2020
Mean (min, max)

40.98
(2.3, 115.4)

22.98 (21.4)
(1.7, 115)

105.68
(2, 821)

Difference 18.64
(−89, 95)

−8.17 (−3)
(−93, 97)

−4.36
(−838, 631)

% Difference 83.44
(−401, 68)

−35.55 (−14.04)
(−408, 85)

−3.95
(−757, 66)

Otibiah

2019
Mean (min, max)

42.74
(1.2, 154)

24.46
(3.1, 105.5)

123.80
(8.7, 914)

2020
Mean (min, max)

51.75
(2.3, 148.94)

20.70
(2.7, 101.5)

109.19
(5.4, 780)

Difference 8.03
(−97, 109)

−3.76
(−89, 91)

−14.61
(−664, 824)

% Difference 18.78
(−227, 70)

−15.37
(−363, 86)

−11.80
(−536, 90)
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Table 1. Cont.

Site Year O3 (µg/m3) NO2 (µg/m3) PM10 (µg/m3)

Shawqiah

2019
Mean (min, max)

15.90
(4.5, 105.4)

47.66
(1.6, 305.8)

125.13
(7.3, 975)

2020
Mean (min, max)

39.00
(3.1, 129.9) NA 120.42

(7.3, 783)

Difference 23.10
(−106, 80) NA −4.71

(−515, 896)

% Difference 145
(−668, 76) NA −3.71

(−411, 92)

Umrah

2019
Mean (min, max)

55.23
(1.8, 190)

14.80
(0.4, 44.2)

118.11
(9.2, 1013)

2020
Mean (min, max)

48.78
(1.7, 117.4)

13.83
(0, 96)

117.4
(8, 985)

Difference −6.45
(−76, 129)

−0.82
(−78, 33)

−0.40
(−827, 845)

% Difference −11.68
(−138, 68)

−5.54
(−528, 75)

−0.34
(−704, 83)

Haram

2019
Mean (min, max)

25.52
(2.1, 180)

34.98
(2.7, 108.7)

91.10
(6.7, 687)

2020
Mean (min, max)

53.90
(2.3, 285)

34.20
(3.1, 258.6)

98.15
(3, 728)

Difference 27.52
(−285, 128)

−0.78
(−168, 86)

7.05
(−665, 645)

% Difference 107.82
(−943,71)

−2.2
(−480,79)

7.74
(−731, 94)

3.2. Comparing Predicted and Measured Concentrations

Firstly, the models were validated to show that the fitted models performed well. For
this purpose, the 2019 data were split into randomly selected training (75%) and testing data
(25%). The model was fitted using the training data and validated using the independent
testing data, which was not seen by the model during the training process. To assess
the model performance, the two most widely used metrics, namely, root mean squared
error (RMSE) and coefficient of determination (R-squared) were calculated by comparing
measured and predicted concentrations of the modelled pollutant. The calculated metrics
for both training (fitted model) and testing data (cross-validated) are provided in Table 2.
R-squared and RMSE values showed acceptable model performance. The values for the
other sites were in the same range, but slightly varied from site to site. Furthermore,
the values slightly decreased for the cross-validation; however, they did not demonstrate
abrupt reduction, which showed acceptable model transferability.

After the model validation, the models were refitted using pollutant and meteoro-
logical data along with temporal parameters for the year 2019. The trained models were
reused to predict the pollutant concentrations for the BAU scenario. The concentrations
predicted by the models were subtracted from the observed concentrations during the
COVID-19 lockdown period. Positive difference (observed–predicted = positive difference)
meant that the concentration was higher than what the model predicted; therefore, it
meant the concentrations had increased during the lockdown period. In contrast, if the
difference was negative between the observed and the predicted concentrations, that meant
the concentration had decreased during the lockdown period. Table 3 shows the detailed
results of the machine learning analysis of the three pollutants at all five monitoring sites.
As an example, Figure 4 shows weekly and diurnal cycles of predicted and measured
concentrations at Aziziah site. According to the model outputs, mean levels of O3 con-
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centration increased by 42.45%, whereas the levels of NO2 and PM10 decreased by 12.30%
and 10.75%, respectively. At the Otibiah site, the level of O3 increased by 19.69%, while
the levels of NO2 and PM10 decreased by 4.08% and 7.90%, respectively. At the Shawqiah
site, the level of O3 increased by 11.69%, the level of PM10 decreased by 6.01%, and the
changes in NO2 were not calculated due to missing data. At the Umrah site, the levels
of O3, NO2, and PM10 decreased by 13.93%, 35.79%, and 13.99%, respectively. Finally, at
the Haram site, the level of O3 increased by 49.92%, while the levels of NO2 and PM10
decreased by 14.81% and 9.67%, respectively. When changes in the levels of pollutants
were averaged at all five sites, it showed that overall O3 levels had increased by 21.96%,
the levels of NO2 had decreased by 13.40%, and the levels of PM10 had decreased by 9.66%.
Comparing these results with the previous section, it could be observed that the comparison
of measured concentrations in 2019 with 2020 showed higher changes than those predicted
by the machine learning technique. The model predictions actually removed the effect of
meteorology, which affected the levels of pollutants. Hence, weather-corrected changes
were moderate as compared to the changes in raw data, which is in agreement with Munir
et al. [10] and Jephcote et al. [28].

Toxics 2022, 10, x FOR PEER REVIEW 8 of 16 
 

 

  

  

Figure 3. Comparing weekly and diurnal cycles of pollutant levels in 2019 and 2020 for the lock-
down period at the Aziziah site in Makkah. 

3.2. Comparing Predicted and Measured Concentrations 
Firstly, the models were validated to show that the fitted models performed well. For 

this purpose, the 2019 data were split into randomly selected training (75%) and testing 
data (25%). The model was fitted using the training data and validated using the inde-
pendent testing data, which was not seen by the model during the training process. To 
assess the model performance, the two most widely used metrics, namely, root mean 
squared error (RMSE) and coefficient of determination (R-squared) were calculated by 
comparing measured and predicted concentrations of the modelled pollutant. The calcu-
lated metrics for both training (fitted model) and testing data (cross-validated) are pro-
vided in Table 2. R-squared and RMSE values showed acceptable model performance. The 
values for the other sites were in the same range, but slightly varied from site to site. Fur-
thermore, the values slightly decreased for the cross-validation; however, they did not 
demonstrate abrupt reduction, which showed acceptable model transferability.  

Figure 3. Comparing weekly and diurnal cycles of pollutant levels in 2019 and 2020 for the lockdown
period at the Aziziah site in Makkah.



Toxics 2022, 10, 225 9 of 14

Table 2. Comparison of fitted and cross-validated models for predicting PM10, NO2, and O3 provided
only for two sites i.e., the Aziziah and Haram sites.

Site Modelled Pollutants Fitted/Cross-Validated R-Squared RMSE

Aziziah

PM10
Fitted 0.92 6.01

Cross-validated 0.87 7.23

NO2
Fitted 0.89 6.54

Cross-validated 0.85 6.12

O3
Fitted 0.94 5.34

Cross-validated 0.88 5.85

Haram

PM10
Fitted 0.93 5.97

Cross-validated 0.91 6.23

NO2
Fitted 0.90 6.07

Cross-validated 0.89 6.32

O3
Fitted 0.93 5.63

Cross-validated 0.89 6.00
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Table 3. Comparing observed and predicted concentrations (µg/m3) for the testing dataset in
the business-as-usual (BAU) scenario (observed–predicted). Positive difference shows an increase
whereas negative difference shows a decrease in pollutant concentrations. The values outside the
parentheses are the mean values, whereas the values within the parentheses are the minimum and
maximum values.

Site O3 (µg/m3) NO2 (µg/m3) PM10 (µg/m3)

Aziziah_observed
Mean (min, max)

42.03
(0, 115.4)

21.4
(0, 339.8)

93
(2, 821)

Aziziah_predicted
Mean (max, min)

24.19
(3.2, 74.35)

24.4
(1.3, 43.45)

104.20
(11.58, 203.11)

Difference
(min, max)

17.84
(−56, 70)

−3
(−43, 298)

−11.2
(−135, 726)

% difference 42.45
(−135, 165)

−12.30
(−137, 956)

−10.75
(−126, 679)

Otibiah_observed
Mean (min, max)

52.64
(2, 149)

17.4
(3102)

109.37
(6, 780)

Otibiah_predicted
Mean (max, min)

42.27
(1.4, 108)

18.14
(1.2, 51)

118.02
(31, 579)

Difference
(min, max)

10.37
(−44, 82)

−0.74
(−27, 91)

−8.65
(−369, 654)

% difference 19.69
(−84, 156)

−4.08
(−134, 446)

−7.90
(−338, 598)

Shawqiah_observed
Mean (min, max)

39.29
(1.3, 130) NA 100

(2.1, 783)

Shawqiah_predicted
Mean (max, min)

34.69
(−1, 79) NA 106.39

(−17, 405)

Difference
(min, max)

4.59
(−56, 90) NA −6.39

(−187, 685)

% difference 11.69
(−143, 228) NA −6.01

(−155, 570)

Umrah_observed
Mean (min, max)

44.7
(3, 117)

11.5
(1.4, 82.3)

97
(8, 985)

Umrah _predicted
Mean (max, min)

50.92
(−0.6, 115)

17.91
(−5, 43)

112.78
(39, 234)

Difference
(min, max)

−6.22
(−69, 39)

−6.41
(−31, 59)

−15.78
(−148, 856)

% difference −13.93
(−153, 87)

−35.79
(−226, 431)

−13.99
(−375, 887)

Haram_observed
Mean (min, max)

53.58
(4, 285)

26.7
(3.5, 728)

81
(3, 728)

Haram_predicted
Mean (max, min)

26.83
(7, 84)

31.33
(4, 85)

89.67
(0.41, 346)

Difference
(min, max)

26.75
(−73, 261)

−4.64
(−69, 262)

−8.67
(−337, 599)

% difference 49.92
(−135, 488)

−14.81
(−198, 748)

−9.67
(−345, 613)

4. Discussion

When the two approaches, i.e., using the measured data and using the predicted data
(weather-corrected), for the lockdown period were compared, the modelling approach



Toxics 2022, 10, 225 11 of 14

demonstrated less reductions in the levels of NO2 and PM10 and less increases in the levels
of O3. However, both approaches showed similar results, i.e., increases in the level of O3
and reductions in the levels of NO2 and PM10 during the lockdown period. These results
are in agreement with the findings of the other studies performed around the world [10,28].
Jephcote et al. [28] analysed how the levels of NO2, PM2.5, and O3 concentrations changed
during the lockdown period and reported that the levels of both NO2 and PM2.5 had
decreased, while the level of O3 had increased. Furthermore, Jephcote et al. [28] reported
that the change in these pollutants demonstrated significant spatial variability. According
to Jephcote et al. [28] pollutants experienced greater reductions at urban traffic sites than
the urban background and rural sites. According to their findings, NO2 levels decreased by
47.9, 36.7, and 23.9%, PM2.5 levels decreased by 18.1, 17.3, and 2.6%, and O3 levels increased
by 34.1, 7.4, and 0.1% at urban traffic, urban background, and rural sites, respectively.
Furthermore, several other papers reported similar results, for example, [31–33] analysed
the effect of the COVID-19 lockdown on air quality and reported that the concentrations of
NO2 and PM2.5 had decreased, whereas the concentration of O3 had significantly increased.

The question is why O3 levels demonstrated positive gains while NO2 and PM10
levels demonstrated reductions during the lockdown period. It is clear that NO2 and PM10
levels are directly affected by the levels of road traffic and other emission sources, and as
during the lockdown period the levels of emission decreased, they caused reductions in
these pollutant concentrations. In contrast, O3 is a secondary pollutant, which is formed
in the atmosphere by the photochemical reaction of the precursors (e.g., VOCs) and solar
radiation. It is a well-known fact that O3 concentration is inversely proportional to NO2
concentration [34,35] and any reduction in NO2 levels causes the levels of O3 to increase.
Therefore, when NO2 levels decreased during the lockdown period, it caused O3 levels to
increase [5].

Anil and Alagha [15] studied the effect of the COVID-19 lockdown on several pollu-
tants using air quality data from eight (8) air quality monitoring stations in the eastern
province of Saudi Arabia. They considered five air pollutants in their study, which were
CO, SO2, NO2, O3, and PM10. Data were obtained from four cities, namely, Jubail, Qatif,
Dammam, and Al Ahsa. They reported that the levels of NO2 decreased at all sites during
and after the lockdown periods, and the reductions ranged from 12–86% and 14–81%,
respectively. The concentrations of PM10 (21–70%), CO (5.8–55%), and SO2 (8.7–30%) also
decreased during the lockdown period. However, O3 concentrations increased ranging
from 6.3% to 45%. The findings of Anil and Alagha [15] are in agreement with the current
study. It is important to mention that they only used a sequential method in their study,
which compared the months before, during, and after the lockdown period. This approach
has its limitations and is not recommended for intervention analysis [10]. Furthermore,
they did not deweathered the data, which is important to remove the effect of variation
in meteorological conditions and extract the true change in air quality. Farahat et al. [36]
analysed the effect of the COVID-19 lockdown on NO2, CO, and PM10 levels in three major
cities in Saudi Arabia, namely, Mecca, Madinah, and Jeddah. They analysed how the
levels of these pollutants had changed in these cities during the Hajj period in 2020, when
the lockdown was still in place in Saudi Arabia. According to Farahat et al. [36], PM10
concentrations did not decrease during the lockdown period, which they attributed to
frequent dust storms during the lockdown period. In contrast, the levels of NO2 decreased
by 44%, and the levels of CO decreased by 16% during the Hajj period due to the COVID-19
lockdown restrictions. It should be noted that CO and NO2 are directly related with road
traffic emissions and as road traffic flow was lower during the lockdown period, these two
pollutants were directly affected and showed significant reductions. According to Farahat
et al. [36], the levels of PM10 did not experience considerable change, whereas the current
study showed that PM10 levels decreased by 58.66% according to the first approach and by
9.66% according to the second approach, when the effect of meteorological conditions was
removed. Therefore, it is important to deweather air quality data for extracting the effect of
the intervention.
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Morsy et al. [14] analysed the effect of the COVID-19 lockdown on CO, SO2, NO2, O3,
and PM10 in Makkah, Saudi Arabia using data from six air quality monitoring stations.
Morsy et al. [14] compared the levels of these pollutants before and during the lockdown
period and reported that the average concentrations of these pollutants decreased during
the lockdown period. They demonstrated that compared with the pre-pandemic period,
the concentrations of SO2 decreased by 26.34%, NO2 by 28.99%, CO by 26.24%, O3 by
11.62%, and PM10 by 30.03%. This was the only study that reported a reduction in O3
concentrations during the lockdown period. NO2 concentration is inversely proportional
to the concentration of O3 and when NO2 decreases, it invariably causes O3 levels to
increase [34]. This is what we observed in the current study as well, i.e., average O3 levels
increased in Makkah during the lockdown period. Morsy et al. [14] used a sequential
approach and did not correct the concentrations for weather variations. Furthermore, in
agreement with the current study, several studies previously reported an increase in the
levels of O3 and reductions in the levels of NO2 and PM10 during the lockdown period
(e.g., [10,15,37–40]).

It was reported that the levels of pollutants (e.g., NO2 and PM10) increased again when
the lockdown was relaxed [41]. This showed that the improvement in air quality was short-
term and not sustainable. After the lockdown, the pollutant levels reached the previous
levels or even became worse. According to Quinio and Enenkel [41], the air pollution levels
recovered in three ways: (1) The pollution levels reached their levels observed before the
lockdown period. This type of recovery was referred to as V-shaped recovery; (2) The
pollution increased after the lockdown but still stayed lower than the levels observed before
the lockdown period. This type of recovery was referred to as plateau-shaped recovery;
and (3) the pollution levels after the lockdown even became worse than those observed
before the lockdown. Such recovery in pollution levels was referred to as tick-shaped
recovery. This means that the improvement in air quality induced by the lockdown was
not sustainable, and hence there is a need for sustainable and long-term interventions to
improve air quality permanently in large urban areas.

5. Conclusions

In this paper, the effect of the COVID-19 lockdown on the concentrations of NO2, O3,
and PM10 was analysed using data from five air quality monitoring stations in Makkah, Saudi
Arabia. Here, two approaches were employed: (1) comparing measured concentrations of the
pollutants in 2019 with 2020 during the lockdown period; and (2) comparing the predictions
of the machine learning models with measured pollutant concentrations during the lockdown
period. The model predictions represent the weather-corrected pollutant concentrations and
are generally considered more reliable. Both techniques demonstrated that the levels of NO2
and PM10 had decreased during the lockdown period due to a reduction in the levels of
road traffic and other emission sources. In contrast, O3 concentrations had increased during
the lockdown period due to the complex nature of O3 formation in the atmosphere. Simply,
O3 concentration is inversely proportional to NO2 concentration, and therefore, as NO2
concentration decreased during the lockdown period, it caused the concentration of O3 to
increase. This showed the complex interlink between different atmospheric pollutants, which
should be considered when preparing an air quality management plan.

According to the first approach, the average levels of PM10 and NO2 decreased by
12% and 58.66%, respectively, whereas the level of O3 increased by 68.67%. According to
the second approach, the O3 level increased by 21.96%, while the levels of NO2 and PM10
decreased by 13.40% and 9.66%, respectively. The two approaches employed in this paper
resulted in slightly different amounts of changes in pollutant concentrations during the
lockdown period. The first approach showed the change in raw data, whereas the second
approach showed the weather-corrected change in pollutant concentrations. Therefore,
the approach used for assessing the effect of the intervention is also important to take into
consideration when making a decision about air quality management. Munir et al. [10]
recommended two approaches for such analysis, namely, parallel and machine learning,
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which were used in this study. In contrast, the sequential approach, which compares the
pollutant levels measured in the months just before lockdown with the concentrations
measured during the lockdown period, is not recommended for such analysis as it ignores
changes in emissions and meteorological conditions in different seasons of the year. The
studies previously carried out in Makkah have mostly used the sequential approach, which
resulted in unreliable outcomes. Therefore, this study provided an improved methodology
and reliable results of the changes in pollutant concentrations during the lockdown period.
The analysis suggested that the overall air quality had improved in terms of NO2 and PM10;
however, the levels of O3 had increased. Furthermore, the improvement in air quality
was not sustainable and air pollution increased again when the lockdown was relaxed.
Therefore, more sustainable measures are required for permanent air quality improvement.
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