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Robust Optimization of Energy-Saving Train

Trajectories under Passenger Load Uncertainty

Based on p-NSGA-II
Chen Xing, Kang Li, Senior member, IEEE, Li Zhang, Senior member, IEEE, and Zhongbei Tian, Member, IEEE

Abstract—Railway electrification has attracted substantial in-
terests in recent years as a key part of the global effort to achieve
transport decarbonisation. To improve the energy efficiency of
train operations, of particular interest is the optimization of train
speed trajectories. However, most studies formulate the problem
as a single-objective optimization model and do not take into
account train mass uncertainty associated with the passenger
load variations. This paper formulates a bi-objective robust
optimization model to minimize both the energy consumption and
journey time, in which the robustness against the uncertain train
mass is considered and viewed as a decision-maker preference. A
novel multi-objective optimization algorithm namely p-NSGA-II
is proposed, incorporating the original NSGA-II and a proposed
preference dominance criterion to handle the DM preference.
With the proposed p-NSGA-II, not only all solutions will converge
to the optimal Pareto front but also solutions with better
robustness in the Pareto front will be automatically selected
and retained, meanwhile the spread of the selected solutions is
maintained. The effectiveness of the p-NSGA-II to generate a set
of performance-robust driving schemes is verified by numerical
case studies. The results show that the p-NSGA-II can achieve
up to 40.59% robustness improvement compared to the original
NSGA-II.

Index Terms—Train energy-saving speed trajectories, robust
multi-objective optimization, train load uncertainty, p-NSGA-II.

NOMENCLATURE

A. Abbreviations(Alphabetically)

ADP Approximate dynamic programming

ATO Automatic train operation

DM Decision maker

GA Genetic algorithm

HS High speed

LS Low speed

MILP Mixed-integer linear programming

MOEA Multi-objective evolutionary algorithm

MOPSO Multi-objective particle swarm optimization

MS Medium speed

NSGA− II Nondominated sorting genetic algorithm-II

PMP Pontryagin’s maximum principle

PR Performance robustness
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RO Robust optimization

ROI Region of interest

SO Stochastic optimization

SR Scheme robustness

B. Parameters and Variables (Alphabetically)

α, β, γ Empirical coefficients of basic resistance

M Average train mass

Mp Average passenger mass

θ Ramp angle

a Acceleration rate

E Energy consumption

F Traction/braking force

Fmax Maximum traction/braking force

M Train mass

Mp Passenger mass

Mv Empty vehicle mass

Pmax Rated motor power

R1 Basic resistance

r1 Per unit basic resistance

R2 Additional resistance

T Journey time

V Speed control sequence of whole journey

vi,b Braking speed of subsection i

vi,c Cruising speed of subsection i

vi,e End speed of subsection i

vi,s Start speed of subsection i

Vi Speed control sequence of subsection i

I. INTRODUCTION

RAILWAY electrification has attracted substantial interests

in recent years as a key part of the global effort to achieve

transport decarbonisation. Given the changes in the energy

mix landscape and the challenging decarbonisation targets to

which a number of governments have committed, it is vital to

improve the energy efficiency in all sectors, including train op-

erations [1], [2]. High-frequency, high-density train schedules

often lead to dramatically increased energy consumption which

is becoming a major concern for railway companies. Many

measures have been taken to reduce energy consumption, such

as rescheduling of operating timetables [3]–[7], installation of

energy storage systems [8]–[14], and reducing vehicle resis-

tance. Among these, optimization of the train speed trajectory

is seen as an effective and economical approach that requires

no no additional investment in infrastructure and equipment.
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It is also the most cost-effective approach to address the

uncertainties at the train planning and operation stage for given

timetable and power supply capacity.

Much effort so far has been put into developing energy-

saving operating schemes for trains. In earlier work, the

optimization of the train speed trajectory is usually formulated

as a mixed-integer linear programming (MILP) problem for

minimum energy consumption [14]–[17], while some approx-

imations using linearization are required. With later advances

in computer performance, more studies were focused on de-

veloping meta-heuristic algorithm based optimization models

[18]–[25]. In [26], [27], multiple-phase trajectory controls are

proposed and additional practical factors have been incorpo-

rated in the optimization models, such as passenger comfort

and punctuality. In summary, studies on single-objective opti-

mization of a train speed trajectory are mature.

However, single-objective optimization may suffer from a

few limitations and fail to meet the requirements where mul-

tiple conflicting objectives exist simultaneously. In a modern

railway system, an automatic train operation (ATO) system is

widely deployed to achieve energy-saving driving [28], [29],

and several popular driving patterns have been proposed, such

as the cruising pattern and coasting-remotoring pattern [30]–

[32]. Generally speaking, the driving trajectories need to be

pre-programmed into the ATO system based on the required

arrival time. Thus, to meet different requirements on the

journey time (timetable), it is preferred to provide in advance

a set of driving profiles with different arrival time, rather than

only one option. However, single-objective optimization can

only produce a single solution rather than a comprehensive set

of solutions. To tackle this drawback, the train speed trajectory

optimization has been formulated as a bi-objective problem,

where the objectives include energy consumption and running

time. In this way, a set of Pareto-optimal driving schemes

characterized by various arrival times can be produced. For

example, a bi-objective speed trajectory optimization model

is proposed in [33]. A multi-objective particle swarm opti-

mization (MOPSO) is developed and applied to obtain a set

of Pareto-optimal speed profiles. This type of bi-objective

optimization model is also adopted in [34], [35] and [32]. The

bi-objective optimization models minimizing both the energy

consumption and journey time can effectively handle the speed

trajectory planning problem, fit well the existing onboard ATO

system and meet various operational requirements.

In the aforementioned studies, the optimization problems are

formulated as deterministic models and related parameters are

assumed to be constant. In reality, operation of a railway sys-

tem is usually affected by uncertain factors which may greatly

disturb the operation or even lead to worse consequences. In

the context of engineering applications, various methods have

been proposed to handle the uncertainties to mitigate their

impacts [36]–[38]. However, few studies on railway operation

optimization have considered the uncertainties. [39] considers

the uncertainty in traction force and train resistance. The opti-

mization for the speed trajectory was formulated as a Markov

decision process and solved by an approximate dynamic

programming (ADP) based method. However, the train mass,

as a significant source of uncertainties, was not considered.

So far, the train mass uncertainty associated with complex

passenger distributions is still seen as the greatest challenge for

a speed trajectory optimization. As pointed out in [32], [40],

the maximum passenger mass is around 30% of the total train

mass which can result in up to 35% energy increment and 8%

running time increment. Therefore it is vital to investigate the

robustness enhancement to mitigate the negative effects of the

random passenger load. In [41], the authors adopted a method

combining an expert system and reinforcement learning to

handle the railway system uncertainties such as delays. While

it needs a vast amount of operational data to develop the

expert rules. In [40], a stochastic programming model for

metro timetable rescheduling to reduce the time delay caused

by the passenger number uncertainty is developed. However

the speed trajectory itself is not optimized. In [42], a two-

phase stochastic programming model integrating timetable

and speed profile optimization is formulated, considering the

train mass uncertainty. However, the stochastic optimization

model requires prior information which may result in a high

computational cost for the information sampling. Meanwhile,

in these studies, the optimization problems are formulated as

single-objective programming models which do not meet the

requirements of ATO system.

As discussed earlier, several factors, such as energy con-

sumption, journey time and robustness which are affected

by the uncertainty of the passenger load, need to be con-

sidered simultaneously in the train speed trajectory optimiza-

tion. Meanwhile, most real-life multi-objective problems suffer

from having a large solution space, which may result in a

slow and time-consuming optimization process, even non-

convergence may occur. One of the measures is to incorporate

decision maker’s (DM) preferences into the optimization pro-

cess to reduce the solution space. For example, in [43], a new

DM preference-based multi-objective evolutionary optimiza-

tion algorithm (MOEA) utilizing configured weight intervals is

proposed for the ship weather routing. In [44], a novel MOEA

incorporating the weight aggregation strategy as the priori

DM’s preference, is developed to optimize the load scheduling

of electric vehicles. In [45], a scoring and dynamic hierarchy-

based NSGA-II is designed for workflow scheduling, where a

scoring criterion is considered as the DM preference. Besides,

[46]–[51] also introduce some DM preference-based MOEAs.

However, these methods are developed for specific problems

and not suitable for train speed trajectory optimization problem

elaborated earlier. In [32], the speed profile optimization is

formulated as a bi-objective optimization problem and opti-

mized by MOPSO. The trainload variations are considered in

formulating the optimization constraints which can be viewed

as using the DM preference to guide the search. However,

the formulated optimization model involves a pre-defined

sensitivity parameter that needs to be set in advance which

will significantly affect the final results. Further, the adopted

method in [32] may distort the distribution of the optimal

Pareto front. Finally, the cruising operation is not considered

in the driving patterns, which may lead to suboptimal and less

energy-efficient solutions.

This paper aims to address the aforementioned challenges

and to develop robust energy-saving speed profiles considering
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Fig. 1. Operation characteristic of British rail Class 390.

the uncertainty of train mass. The main contributions are

summarized as follows:

1) A bi-objective train speed trajectory optimization prob-

lem is formulated where the robustness affected by the uncer-

tain train mass is considered. The robustness of each driving

scheme is formulated as the maximum variations of running

time and energy consumption due to uncertain passenger loads.

2) To derive a set of optimal driving schemes suitable

for a realistic train journey, a train movement control model

is adopted which divides the whole journey into multiple

subsections based on different speed limits and track gradients.

The speed trajectory of each subsection is optimized sepa-

rately, which helps to explore the flexibility and superiority of

different combinations of train operations.

3) A new DM preference-based multi-objective algorithm,

namely p-NSGA-II, is proposed. The p-NSGA-II can auto-

matically guide the search to the optimal Pareto front and

further to the region of interest (ROI) based on DM preference.

Meanwhile, the distribution of the obtained optimal Pareto

front can be maintained.

4) The robustness of the train speed trajectories is modeled

as the DM preference. By adopting p-NSGA-II, a set of

driving schemes, which optimize both energy consumption

and journey time, are produced with better robustness. The

effectiveness of the formulated optimization model and p-

NSGA-II is verified based on extensive case studies.

The reminder of the paper is organized as follows. Section

II develops the bi-objective optimization model considering

the uncertainty of train mass. In Section III, the new DM

preference-based algorithm p-NSGA-II is proposed and its

implementation procedures are detailed. In Section IV, the

effectiveness of the p-NSGA-II based robust optimization

of the speed trajectory is verified through two case studies.

The performance of the proposed p-NSGA-II is compared

with other algorithms including the original NSGA-II and a

robust multi-objective optimization method. Finally, Section V

concludes the paper.

II. MODEL FORMULATION

A. Train Kinetic Model

Based on the fundamental Newtonian equations of train

motion, the train kinetic model can be described as (1), known

as Lomonossoff’s equation [35], which has been verified in

earlier research.







Ma = F −R1 −R2

a =
dv

dt

(1)

where the train mass M consists of the empty vehicle mass

Mv and uncertain mass of passengers Mp, i.e. M = Mv+Mp.

The vehicle mass is seen as a deterministic parameter. While

the passengers mass is random at different stations and during

different operational periods. a is the train’s acceleration rate.

F represents the tractive force or braking force. R1 and R2

are the basic resistance and additional resistance of the train

respectively, as will be detailed shortly. v is the train velocity.

In Fig. 1, the black line shows the motor characteristic curve

of the British rail Class 390, a typical electric high-speed

passenger train [52]. Whether the train is in the state of traction

or braking, it is always governed by this characteristic curve.

The whole curve can be split into two regions, with constant

torque region or constant power. When the train speed is lower

than vt, the train is operated in the constant torque region, and

at higher speed runs in the constant power region. A piece-

wise function (2) can represent the motor characteristic curve.

F =







uFmax 0 < v ≤ vt

u
Pmax

v
vt < v ≤ vmax

(2)

where Fmax represents the maximum traction/braking force.

Pmax is the rated motor power. u ∈ [−1, 1] controls the train’s

operation command. F is the tractive force when u is positive,

and braking force when u is negative.

1) Basic Resistance: The running train is resisted by the

track friction and air force. Based on the Davis equation [35],

this kind of resistance can be expressed as (3), containing

the empirical coefficients α, β and γ, the train mass M and

speed v. r1 represents per unit basic resistance. The basic

resistance will not exceed the traction force. The curves of

basic resistance versus train velocity are also shown in Fig. 1,

for both empty-vehicle and full-load conditions.

R1 (v) = r1 (v)Mg =
(

α+ βv + γv2
)

Mg (3)

2) Additional Resistance: The additional resistance de-

pends on the track geography and is mainly composed of

ramp resistance, curve resistance and tunnel resistance. In most

research, only ramp resistance is considered in (4) since it

dominates the additional resistance.

R2 = Mg sin (θ) (4)

where θ represents the ramp angle. In addition, the train

movement can be expressed as:

s (t) =

∫ t

0

v (t)dt (5)

where s is the running distance of the train.
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Fig. 2. Train Speed trajectory control. (a) Speed trajectory control of subsection; (b) Speed trajectories control of whole journey.

B. Train Driving Pattern and Speed Trajectory Control

In order to construct the optimal and practically feasible

train speed trajectories, a method introduced in [34] is adopted.

The whole journey between two consecutive stations is divided

into n subsections based on different speed limitations as

shown in Fig. 2. For each subsection, several popular driving

patterns have been proposed in the literature, such as the

cruising pattern and coasting-remotoring pattern [30]–[32]. In

particular, one driving strategy, which considers all possible

operations including acceleration, cruising, coasting and brak-

ing, has been comprehensively adopted in the ATO system

[4], [21], [34], [35], and it helps to explore the flexibility and

superiority of different combinations of train operations. As

stated in [27], [35], based on Pontryagin’s maximum principle

(PMP), if the train is aimed to reach the destination as quickly

as possible, the train is supposed to reach the maximum

allowable speed first with full acceleration and keep the

maximum speed (cruising) until the final braking point. Then

the full braking is performed to stop the train. More energy-

saving driving schemes can be achieved if considering coasting

operation and reducing cruising speed. In the following, the

combinations of four operations including full acceleration,

cruising, coasting and full braking are considered and the

driving pattern is introduced. As shown in Fig. 2(a), in each

subsection, four control variables (vs, vc, vb, ve) are defined

to determine a specific sectional speed trajectory. vs, vc, vb
and ve represent the start speed, cruising speed, braking speed

and end speed of each subsection respectively. The speed

trajectory of each subsection can be depicted as: if vc > vs,

the train is operated in full acceleration mode until the train

reaches to the cruising speed vc and then the cruising operation

follows. If vc = vs, the train is operated in the cruising mode

directly. The cruising time depends on the running distance of

each subsection. After cruising, the coasting operation follows

immediately until the train reaches the set braking speed if

vb > ve. Finally, the train brakes with maximum braking force

(u = −1 in (2)) until the train reaches the end speed at the end

point of the subsection. If vb = ve, the train is operated in the

coasting mode until it reaches the end speed of the subsection.

Theoretically, based on the above description, once the values

for vs, vc, vb and ve are chosen in advance, the positions of

cruising, coasting and braking points can be calculated, and

the speed trajectory of each subsection can be plotted, the
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Fig. 3. Flowchart of SO evaluation and ti,cr calculation.

credibility of which has been verified in [32], [34], [35]. Due

to the operational constraints, some rules need to be clarified

as follows:

1) All the values of vs, vc, vb and ve should be lower than

the speed limit in each subsection.

2) vc < vs and vb < ve are disabled.

3) For two successive subsections, the end speed of the

former subsection should be equal to the start speed of the

later subsection, i.e. vi,e = vi+1,s.

For the whole journey including n subsections,

the control variables can be expressed as: V =
(v1,s, v1,c, v1,b, v1,e, ..., vi,s, ..., vi,e, ..., vn,s, vn,c, vn,b, vn,e)
where v1,s = vn,e = 0 means the initial and final speeds of

the journey are equal to zero. Thus there are 3n − 1 control

variables in total which need to be optimized to form the

whole train speed trajectory as shown in Fig. 2(b).

C. Robust Optimization Model of Train speed Trajectory

1) Original Train Speed Trajectory Optimization Model

without Considering Robustness: As discussed above, once

the set of speed control variables V is confirmed, the whole

speed trajectory can be formulated for a specific train mass.
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The associated total energy consumption and running time can

be expressed as (6) and (7) respectively.

E = f1 (V,M) =
n
∑

i=1

(

∫ Ti

0
max {0, F (t)} v (t) dt

−η
∫ Ti

0
min {F (t) , 0} v (t) dt

)

(6)

T = f2 (V,M) =
n
∑

i=1

(ti,a + ti,cr + ti,co + ti,b) (7)

where ti,a, ti,cr, ti,co and ti,b represent the durations of the

motoring, cruising, coasting and braking of each subsection.

η represents the energy efficiency of the regenerative braking.

Generally speaking, the energy consumption and running

time also vary with different driving schemes, even for the

same journey distance. The optimal speed trajectory should

be a trade-off between the energy consumption and running

time. Thus the original train trajectory optimization can be

formulated as a bi-objective optimization problem in (8) where

the train mass is set to the mean value M , which is the sum of

the empty vehicle mass and mean mass of the passengers, i.e.

M = Mv +Mp. In the formulated optimization model, both

objectives of minimizing the energy consumption and running

time are equally important.

min

{

E = f1(V,M)

T = f2(V,M)
(8)

In real operation, the train is required to arrive at the

destination at time T and should be subject to speed and

acceleration limits of each subsection and the driving rules

stated in Section II.B. The corresponding constraints are shown

in (9).

s.t.































v1,s = vn,e = 0
vi,e = vi+1,s (i = 1, ..., n− 1)

s (0) = 0; s (T ) = S

vi,s, vi,c, vi,b and vi,e ≤ vi,max (i = 1, ..., n)
vi,s ≤ vi,c; vi,e ≤ vi,b (i = 1, ..., n)

|ai| ≤ ai,max (i = 1, ..., n)

(9)

2) Scheme Robustness (SR): Previous research results have

suggested that the main uncertain factor affecting the train

operation is the passenger load dependent train mass. One

driving scheme with a certain set of speed control variable

V may be valid for the specific train mass values but not for

others. The scheme robustness (SR) in this paper proposed is

used to guarantee the validity of the chosen scheme V even

under the worst case. For a specific subsection with a particular

set of driving control variables Vi=(vi,s, vi,c, vi,b, vi,e), the

corresponding acceleration, coasting and braking distances can

be confirmed based on the train model (1)-(5). While before

producing a sectional train trajectory, an intermediate variable,

the cruising time ti,cr needs to be calculated to determine the

cruising distance di,c = ti,cr · vi,c accordingly. An iterative

method is adopted to calculate the cruising time as shown

in the flowchart in Fig. 3. When a set of driving control

variables of a subsection with a particular train mass value M

is input, initially the cruising time ti,cr is assumed as 0, and the

corresponding running distance d can be calculated. If d = Si,

where Si is the distance of the subsection, it implies that the

train can reach the end point of the substation under (Vi, M )

with ti,cr = 0, hence SR=1. While d < Si implies that a

valid cruising time value ti,cr > 0 must exist. Then the binary

search (or half-internal search) is used to find the cruising

time value. Conversely, d > Si implies that a valid cruising

time value can not be found under (Vi, M ). Consequently, the

scheme (Vi) is invalid under train mass M , hence SR=0. The

bi-objective optimization problem in (8)-(9) is solved under the

mean mass value M . The worst case – the case most likely

resulting in the scheme invalidity must occur at either the

minimum Mmin (empty vehicle mass) or the maximum Mmax

(full-load train mass). Evaluation of SR, for each selected

driving scheme (Vi) should be performed by applying either

Mmin or Mmax instead of average M . If the results satisfy

Equation (10), which is a logical constraint added in the

original optimization model (8), the chosen driving scheme

passes the scheme robust requirement. Taking an example as

shown in Fig. 4 with initial speed and end speed equal to 0,

i.e. vi,s = vi,s = 0, the chosen scheme is valid with train mass

of 500 tons. However, when the train mass increases to 580

tons, even if the cruising time is 0, the running distance is

far longer than the sectional distance 20 km. In this case, the

scheme (0, 55 m/s, 45 m/s, 0) is regarded as a non-scheme-

robust scheme. i.e. SR (0, 55, 45, 0, 580) = 0. It should be

noted that the driving scheme of each subsection needs to be

checked to guarantee the validity under the extreme train mass

values, i.e. SR (Vi,Mmin |Mmax ) = 1 (i = 1, ..., n), so that

the whole train speed trajectory V is valid.

SR (Vi,Mmin) = 1 and SR (Vi,Mmax) = 1 (10)

SR (·) =

{

0 invalid scheme

1 valid scheme
(11)

3) Performance Robustness (PR): Scheme robustness,

which implies the feasibility of the chosen scheme even

under the worst train mass case, can be distinguished by the

performance robustness. The energy consumption and running

time of the chosen driving scheme should be affected as little

as possible due to the train mass variation. This is referred to

as performance robustness (PR) of the driving scheme and it is

evaluated by the scheme sensitivity, which can be formulated

as (12). Obviously, a driving scheme with low sensitivity to

the variation of the passenger load is preferred and also means
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the energy consumption and running time in the whole journey

will not deviate far from their expected values.

PR = max







λ1 ·
|t− tmin|

t
+ λ2 ·

|E − Emin|

E
,

λ1 ·
|t− tmax|

t
+ λ2 ·

|E − Emax|

E






(12)

where λ1 and λ2 are the weighting factors. λ1, λ2 ∈ [0, 1] and

λ1 + λ2 = 1. And










tmin = T (V,Mmin); Emin = E(V,Mmin)

tmax = T (V,Mmax); Emax = E(V,Mmax)

t = T (V,M); E = E(V,M)

(13)

Compared with the energy consumption and the running

time, the performance robustness is often considered to be

less important and hence it can be regarded as a subordinate

objective. The main goal is still to find the scheme-robust

Pareto solutions from the two-dimensional (2-D) plane of en-

ergy consumption and running time. Then the Pareto solutions

are further filtered considering the performance robustness,

meanwhile maintaining the Pareto spread and evenness.

In summary, the robust optimization problem for the train

speed trajectories can be described as: Firstly without consid-

ering the uncertainty of the train mass, the original optimiza-

tion problem is formulated as (8) with constraints (9). Then

the scheme robustness (SR) is taken as the constraint (10) to

filter out the driving schemes that cannot fit all train mass

values. Finally, the performance robustness (PR) in (12) is

considered in the proposed p-NSGA-II introduced in Section

III to guide the search to select the driving schemes that are

affected as little as possible by the train mass uncertainty.

Notably, for a specific driving strategy, both the SR and PR

are two different robustness indicators which are used to

evaluate the performance of solutions at different stages of

the optimization.

III. OPTIMIZATION ALGORITHM – p-NSGA-II

In the robust optimization model of the speed trajectories,

the performance robustness has a lower priority than energy

consumption and running time. In this case, the performance

robustness criterion can be seen as a type of DM preference.

Thus the whole problem becomes a DM preference-based

bi-objective optimization. The DM preference is specified as

aspirations, leading the search to gradually converge towards

the DM region of interest (ROI). While existing preference-

based approaches mostly rely on a reference point or a

reference direction [46], [47], [53], these are not adopted in

the optimization problem proposed here. In this section, a

new DM preference-based optimization approach is proposed,

which is extended by original NSGA-II and named as p-

NSGA-II. The proposed p-NSGA-II is a type of interactive

DM approaches. In an interactive decision-making approach,

the DM preferences are incorporated progressively during the

optimization process. The p-dominance criterion incorporating

the DM preference is involved in each iteration. This can

reduce the searching space and enable a DM effectively

guiding the search towards regions of interest and away from

exploring non-interesting solutions. The DM preference in

the proposed optimization procedure is based on performance

robustness and is manifested through a modification of the

dominance relation.

A. Definition of p-Dominance

Most MOEAs are based on the nondomination relation. In

this section, the nondomination relation is briefly introduced

and a new dominance relation - preference-dominance (p-

dominance) for dealing with DM preference is developed from

this. This combines the original nondomination principle and

DM preference. The main characteristic of p-dominance is that

solutions located at the Pareto front can be further selected

based on the DM preference. Given a general form of the

multi-objective optimization problem:

min (f1 (x) , f2 (x) , · · · , fK (x)) s.t. x ∈ X (14)

where x is the vector of the decision variables, X represents

the set of feasible solutions, and fk (x) (k = 1, 2, · · · ,K)
are the various objective functions. It is assumed that every

feasible solution xp has three attributes:

1) Nondomination rank (xn−rank
p )

2) Preference rank (xp−rank
p )

3) Crowding distance (xcd
p )

The nondomination relation can be described as: for two

feasible solutions xp and xq , if

fk (xp) ≤ fk (xq) ∀k = 1, 2, · · · ,K (15)

with existing at least one integer in k satisfying fk (xp) <

fk (xq), then xp dominates xq (xp has a lower nondomination

rank than xq). In other words, if a solution is not dominated

by any other solutions, it is located at the first nondomination

rank. The set of solutions in the first nondomination rank

constitutes the Pareto front. Based on the above principle, the

nondomination ranks xn−rank of all solutions can be sorted.

The attribute of crowding distance, which has been intro-

duced in [54], reflects the density of solutions surrounding

the particular proposed solution xp. To obtain an estimate of

the density of solutions around a particular solution in the

population, the average distance of two points on either side

of this point along each of the objectives is calculated by (16).

xcdn

p =
fk (xp+1)− fk (xp−1)

fmax
k − fmin

k

, xcd
p =

K
∑

k=1

xcdn

p (16)

where xp+1 and xp−1 are adjacent solutions to xp. fmax
k and

fmin
k represent the maximum and minimum values of k-th

objective respectively. The solutions with a larger crowding

distance are preferred, and it also implies that these solutions

are in a less crowded region. The approach for evaluating the

preference ranks will be illustrated in Section III.B.

Based on the above three attributes, the Prefer-

ence–Dominance Relation is defined as:

Definition (Preference – Dominance Relation): Given two

solutions xp and xq , if one of the following statements is

satisfied, xq is p-dominated by xp.

1) if (xn−rank
p < xn−rank

q )
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Fig. 5. Procedures of preference ranking.

2) or (xn−rank
p = xn−rank

q and xp−rank
p < xp−rank

q ))

3) or (xn−rank
p = xn−rank

q and xp−rank
p = xp−rank

q and

xcd
p > xcd

q )

That means, for two solutions with different nondomination

ranks, the one with the lower rank is preferred. Then if

two solutions are located with the same nondomination rank,

the one with a lower preference rank is preferred. Finally

the crowding distance attribute plays a minimum role in the

p-dominance. If and only if both solutions are located in

the same nondomination and preference ranks, the crowding

distance will determine the ultimate p-dominance relationship

between both solutions.

B. Preference Ranking

Different from the optimization objectives, the DM prefer-

ence usually functions as a filter to guide the solutions towards

the region of interest (ROI). Generally speaking, the expected

ROI is a part of the optimal Pareto front of the original

optimization problem. In some cases, the DM preference is

defined by the distance between the solutions and reference

points. At times, the preference is described as a convergence

reference direction. They evolve accordingly to reference-point
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and reference-direction based DM algorithms. However, more

generally, the DM preference is evaluated by defining the

preference function based on a specific optimization problem.

For example, the preference function for the problem of train

speed trajectory optimization is the performance robustness

expressed by (12).

It is assumed, in this section, that the preference function

is predefined and the corresponding values for all solutions

are evaluated in advance, so the approach to sort out their

corresponding preference ranks is described below.

Taking p (x) as the preference function for a bi-objective

optimization problem defined by (14) with i=1,2, the DM pref-

erence is specified to minimize this function. For evaluating

the preference rank of each solution, one can assume that there

is a set of nondominated solutions x1, x2, x3, · · · , xP located

in the same front, their corresponding objective function values

constitute the set of points in the two-dimensional (2-D)

solution plane, as shown in Fig. 5(a). Furthermore, with their

preference function values evaluated by p (x), the original

set of 2-D points is extended to the points cloud in three-

dimensional (3-D) space as illustrated in Fig. 5(b). Note that

in this graph x-axis and y-axis represent both objectives f1 (x)
and f2 (x), and z-axis represents the preference function p (x).

The proposed method for deriving the preference rank for

each solution can be divided into three steps – projection of

solutions, outline points identification and preference ranking.

1) Projection: The aim of this preliminary step is to project

all the solution points in the 3-D space plot in Fig. 5(b)

onto a new 2-D plane, hence facilitating rank sorting. Since

the corresponding coordinate of a solution xp in Fig. 5(b) is

(f1 (xp) , f2 (xp) , p (xp)), one can define a new axis, f (x)-
axis, which collapses axes f1 (x) and f2 (x), and then project

each solution point onto the new 2-D plane defined by (f (x),
p (x)). The value of each solution xp in f (x)-axis can be

calculated by:

f (xp) =

√

(f1 (xp))
2
+
(

fmax
2 (x) + fmin

2 (x)− f2 (xp)
)2

(17)

where fmax
2 (x) and fmin

2 (x) represent, respectively, the max-

imum and minimum values of f2 (x), as x ranges over the set

of all nondominated solutions. In this way, all solutions are

mapped to the f (x)-axis, which is shown in Fig. 5(c). Also

according to the characteristics of nondominated solutions, all

solutions do not overlap on the f (x)-axis and the density of

the solutions can be maintained to the utmost extent. As each

solution’s p (x) value is retained, all solutions now have their

respective f (x)-axis and p (x)-axis values and hence can be

projected to the 2-D plane with f (x) and p (x) axes, as shown

in Fig. 5(d).

2) Outline Points Identification: This step aims to identify

the outline points of all solutions in the new 2-D plane defined

by f (x) and p (x) axes. α-shape method is adopted which is

widely applied for finding the outline points of a point set [55].

Algorithm 1 (α shape method) illustrates how to determine

whether the solution points are the outline points of the shape.

It is noted that, in Algorithm 1 (α shape method), if the

lengths Lc1n or Lc2n (n = 1, . . . , N − 2) are larger than α,

that means there are no points contained inside the circle with

Algorithm 1 α shape method

1: Input N solution points with their coordinates

2: Set the circle radius α

3: Select a pair of points i and j from the solution points

4: Calculate the length Lij between points i and j

5: IF Lij ≤ 2α
6: Construct two circles with same radius α that pass

through points i and j, see Fig. 6(b)

7: Calculate the circle center coordinates C1 and C2

8: Calculate the lengths Lc1n and Lc2n (n = 1, . . . , N−2)
between the circle center (C1 or C2) and other points

except for points i and j

9: IF Lc1n > α or Lc1n > α (n = 1, . . . , N − 2)
10: Points i and j are identified as outline points

11: ENDIF

12: ENDIF

13: Return to Line 3 until all point pairs of size
N ·(N−1)

2 are

checked

14: Output all outline points

15: END

radius α, whose circle center is C1 or C2. At this moment, the

selected pair of points i and j are located at the edge of the

shape constructed by the discrete points, i.e. outline points.

A simple example is used to explain this method. As shown

in Fig. 6(a), there are six points in a 2-D plane. A pair of

points i and j are selected and labeled in Fig. 6(b). Two circles

(blue circle and red circle) with radius α can be constructed

which pass through both points i and j as can be seen in

Fig. 6(b). Although the red circle contains one other point

(red point), there is no other point locating within the blue

circle. Thus both points i and j are therefore identified as

outline points. In the same way, all outline points (blue points

in Fig. 6(c)) can be identified, and the shape constituted by

the points is shown in Fig. 6(d), while the red point is not the

outline point. For this method, the circle radius α will affect

the result of the outline points identification. If α is too small,

the set of points will be split into multiple shapes. If α is too

large, the shape will be rather irregular. In this paper, radius

α is set to the minimum value to ensure that all points are

grouped in one region. Then the classification of lower and

upper outline points is achieved as follows: when the outline

points are identified, it is easy to find the leftmost point based

on the value of the f -axis as shown in Fig. 6(e). The leftmost

point is determined as the first lower edge outline point. During

the process of outline point identification, the leftmost point

with two identified outline points p and q can constitute two

point pairs (L, p) and (L, q) satisfying the conditions of outline

point identification. These two points p and q are considered

as lower and upper edge outline points respectively. Similarly,

considering one of the two identified outline points like point

p, besides the point pair (L, p), there exists another point r that

can constitute another point pair (p, r) with point p. This point

r can be considered located in the same outline with point p,

lower outline or upper outline. The process is repeated until

the rightmost point is searched. In this way, the whole set of

the outline points is divided into two sets by the leftmost point
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and rightmost point. Then, the average p-axis values of both

sets of points are calculated. The point set with smaller p-axis

values can be seen as the lower outline point set labeled in

orange in Fig. 6(e).

Applying the above described scheme to all the solution

points in Fig. 5(d), the outline points can be identified, and

these can then be divided into lower edge outline points

(red points) and upper edge outline points (blue points) as

illustrated in Fig. 5(e). While the black points are not the

outline points.

3) Ranking: Since the DM preference aims at minimizing

p(x), those solution points in Fig. 5(e), possessing lower

preference values and constituting the lower edge of the

shape, are preferred. These solutions are assigned the first

preference rank. For the rest of the solutions, the outline

points identification and ranking procedure are repeated until

all solutions are sorted into different preference ranks. In Fig.

5(f), the solutions are sorted into three ranks and are remapped

into the original 3-D space as shown in Fig. 5(g). Finally,

all the original solutions located in the same nondomination

front as those illustrated in Fig. 5(a) are sorted into different

preference ranks as presented in Fig. 5(h).

C. Procedure of p-NSGA-II

Incorporating the proposed p-dominance relation and pref-

erence ranking method into the typical multi-objective evolu-

tionary algorithms (MOEAs), a variant of the original NSGA-

II is proposed which is called p-NSGA-II. Its implementation

procedure is now described:

• Step 1 GA operation: Initially, a random parent popula-

tion P0 of size N is created. To ensure generality, the

parent population is denoted as Pi in the subsequent

iterations. After applying GA operators on parent pop-

ulation Pi, including selection, crossover and mutation,

the offspring population Qi also of size N is created.

Then the parent and offspring populations Pi and Qi are

combined to form a new population Ci of size 2N .

• Step 2 Fitness and preference value evaluation: For

each individual in the population Ci, their corresponding

objective functions f1, f2, . . . , fk, are evaluated together

with the preference function p (x).
• Step 3 Nondomination rank sorting: Based on the non-

domination relation and objective functions evaluated, the

nondomination rank of the individuals in a population Ci

can be sorted. The sorting is according to the objective

function values of the ones not being dominated by any

other individuals hence are the most nondominated and

are assigned Rank 1, and the individuals only dominated

by individuals in Rank 1 are assigned Rank 2, and so

on up to the t-th rank in the set. Once the sum of

solutions from the first rank to t-th rank exceeds N , only

solutions from first to (t− 1)-th ranks are chosen, while

the solutions in t-th rank should be further sorted. The

t-th rank is called the last nondomination rank.

• Step 4 Preference ranking: For the solutions in the t-th

nondomination rank, they continue to be sorted into dif-

ferent preference ranks using the proposed performance

ranking method in Section III.B. Similarly, the solutions

from the first to the (h−1)-th preference ranks are chosen

in turn. While the solutions in the last preference rank,

i.e. the h-th preference rank, will be operated in the next

step.
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• Step 5 Crowding distance sorting: The solutions in the

t-th nondomination rank and h-th preference rank are

sorted using the crowding-comparison operator. The so-

lutions with larger crowding distance are chosen until

the chosen solutions from Steps 3-5 fill all slots in a

population, forming a new parent population Pi+1.

• Step 6 Stopping criterion: this is defined by the maximum

number of iterations.

Steps 3-5 perform the p-dominance procedure. In the whole

process, the elitism is ensured. All solutions will be au-

tomatically guided towards the Pareto front based on the

nondomination relation. Then the solutions located at the

Pareto front will continue to converge to the ROI according

to the DM preference.

To assess the complexity of the algorithm, we consider one

iteration with a population of size N and the basic operations

and their worst-case complexities are as follows:

1) nondominated sorting is O
(

KN2
)

2) preference ranking is O
(

N3
)

3) crowding-distance assignment is O (KN log (N))
4) p-dominance sorting is O (N log (N))

where K represents the number of objectives. The computa-

tional complexities of the nondominated sorting and crowding-

distance assignment operations have been discussed in [54].

Please refer to [54] for details. For preference ranking op-

eration, it includes three steps: projection, outline points

identification and ranking. The computational complexities of

projection and ranking operations are O (1). The outline points

identification is achieved by the α-shape method. During this

process, as illustrated in Algorithm 1, any two points will

constitute a point pair. N points can constitute N(N − 1)
pairs. For any other points except for the selected pair of

points, it is necessary to check if they are enclosed by

the circles constituted by the selected pair of points. It is

obvious that the computational complexity of outline points

identification is O
(

N3
)

. Thus, the overall computational com-

plexity of preference ranking operation is O
(

N3
)

which is

governed by the outline points identification (α-shape method).

While the computational complexity of p-dominance sorting

is O (N log (N)). By summarizing the above analysis for the

different operations in the proposed p-NSGA-II, the overall

complexity can be considered as O
(

N3
)

, which is governed

by the preference ranking of the p-NSGA-II. Furthermore, it

should be noted that, since the parent population and offspring

population are mixed together during the algorithm, the actual

size of the population is 2N . Thus the actual computational

complexities need to be adjusted correspondingly by replacing

N with 2N .

Combining the optimization model for train speed trajec-

tories as illustrated in Section II, the whole framework for

searching the robust driving schemes by the proposed p-

NSGA-II is summarized in Fig. 7, and details are given as fol-

lows. Step 1:Initialization. Randomly initialize the 2N driving

strategies
(

V 1
)

to
(

V 2N
)

at the beginning of the algorithm

and each driving strategy
(

V i
)

corresponds to one specific

train speed trajectory. Step 2: Apply the 2N driving strategies

one by one to the train model (1)-(5) to calculate their

energy consumption and running time (Ei, ti) under the mean

value of the train mass using (6) and (7). Besides, under the

worst scenario, evaluate the performance sensitivity Pi of each

driving strategy based on the maximum energy and running

time deviations by (12). Step 3: Verify the scheme robustness

(SR) of each driving strategy and remove non-robust solutions.

Step 4: For the remaining driving strategies, determine the

nondomination rank and calculate the crowding distance with

the energy consumption and running time (Ei, ti) based on

Section III.A. Taking performance sensitivity Pi as the DM

preference in the proposed p-NSGA-II, conduct the preference

ranking considering the energy consumption, running time and

also sensitivity (Ei, ti, Pi) based on Section III.B. Step 5:

Given the nondomination rank, preference rank and crowding

distance of each driving strategy, select N preferred driving

strategies from the initial 2N driving strategies based on the

principle of p-dominance defined in Section III.A. Step 6:

Produce N new offspring driving strategies using the genetic

algorithm (GA) operations such as crossover and mutation.

Step 7: Mix the parent set and newly generated offspring set

by Step 6 to generate the new 2N driving strategies. Step 8:

Return to Step 1 to repeat the procedures until the termination

condition is satisfied. Notably, the railway decision maker

(dispatcher) can set the preference according to (12) and the

proposed p-NSGA-II is able to find the DM preference-based

driving strategies accordingly.

IV. CASE STUDY AND DISCUSSIONS

To verify the effectiveness of the proposed optimization

method, two case studies are performed using MATLAB

R2021a on a PC with 2.80GHz Intel i7-7700HQ CPU and

16GB RAM. Both use British Rail Class 390 as the example,

which has the characteristic curve as shown in Fig. 1. The

related parameters are listed in Table I [52]. Case 1, as a

baseline case, only considers the basic resistance to verify

the proposed p-NSGA-II. Case 2 considers basic resistance,

additional resistance caused by the track gradients as well as

various speed limits. The case studies confirm confirms the

effectiveness of the proposed p-NSGA-II in searching for the

robust and optimal train speed trajectory that are suitable for

real-life operations.

A. Case 1

In this case, the whole track is on a flat plain and only the

constant speed limit is considered. Thus the control variable

(a) (b)

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparisons of the Pareto fronts and solutions distribution under
different situations in case 1. (a) Pareto fronts; (b) Solutions distribution.
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(a) (b) (c) (d)

Fig. 9. Iterations of p-NSGA-II in case 1. (a) 20 iterations; (b) 50 iterations; (c) 75 iterations; (d) 100 iterations.

TABLE I
CASE STUDY PARAMETERS

Parameter Value

Journey distance S 20 km
Empty vehicle mass Mv 420 ton

Maximum passenger mass Mp−max 160 ton

Basic resistance r1 1.456 + 0.0183v + 0.0034v2

Speed limit vmax 55 m/s
Maximum traction/braking effort Fmax 200 kN

Maximum power Pmax 5000 kW
Regeneration efficiency η 0.8

Range of cruising speed vc [30, 55] m/s
Range of braking speed vb [0, 55] m/s
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Fig. 10. Fastest driving scheme and slowest driving scheme.

is V = (0, vc, vb, 0) where vc and vb need to be determined to

get the set of driving schemes. The NSGA-II is applied first

to solve the bi-objective train speed trajectory optimization

problem defined by (8)-(9) without considering any robustness.

For the NSGA-II, the solution number in a population is 100

and the maximum iteration number is set to 100. The crossover

probability is 0.9 and mutation probability is 0.05. The train

mass of 500 tons equaling the sum of empty vehicle mass

(420 tons) and average passenger load (80 tons), is applied

to the optimization model. The Pareto front obtained in this

initial run is shown in Fig. 8(a) in terms of their two objective

function values.

All Pareto solutions (green set) in Fig. 8(a) are checked

by scheme robustness constraint in (10). Among the whole

set, four solutions, labeled in black in Fig. 8(a), are non-

scheme-robust, hence can not fit all operation conditions.

The optimization procedure is implemented again with the

scheme robustness applied as a constraint during NSGA-II

iterations, hence all Pareto solutions are checked in each
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Fig. 11. Comparisons of sensitivity between scheme-robust solutions and
performance-robust solutions (λ1 = 0.5, λ2 = 0.5) in case 1.
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Fig. 12. Pareto fronts of two sets of weighting factors. (a) λ1 = 1, λ2 = 0;
(b) λ1 = 0, λ2 = 1.

iteration and the non-scheme-robust solutions are filtered out.

Consequently, the Pareto solutions (blue set) are all scheme-

robust and the optimization result is also shown in Fig. 8(a).

Fig. 8(b) shows the distributions of the non-scheme-robust

solutions and scheme-robust solutions in terms of their vc and

vb respectively. It can be seen that applying or not applying

scheme robustness constraint does not significantly affect the

distributions of the Pareto solutions. In general, the non-

scheme-robust driving strategies are caused by insufficient

braking distance and braking force. When the chosen driving

strategy possesses a high cruising speed and a relatively low

braking speed, the acceleration distance is prolonged to catch

up with the target cruising speed as the train mass increases.

Meanwhile, to decelerate the train to the set braking speed by

the inertia from a high cruising speed, the coasting distance

may be too long and the braking distance is likely insufficient.

Thus this is also evident that as shown in Fig. 8, the driving

strategies with a big gap between the cruising and coasting
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speeds are not included in the robust Pareto sets.

Considering the performance robustness of each solution,

the proposed p-NSGA-II is adopted to produce a performance-

robust Pareto front. Equation (12), as the DM preference

function, is applied in the p-NSGA-II framework to evaluate

the sensitivity of each driving scheme. The goal of the p-

NSGA-II is to find solutions with lower sensitivity (more

performance-robust). To achieve equilibrium on the robustness

of energy consumption and running time, in this case, λ1 and

λ2 in (12) are both set to 0.5. The parameters of GA operations

are the same as above.

As the iteration goes on, the population gradually converges

to the lower nondomination ranks, which is consistent with

the description in Section III. After 20 iterations, all solutions

converge to the first nondomination rank. In the 3-D space,

the x-axis, y-axis and z-axis represent energy consumption,

running time and driving scheme sensitivity respectively, the

solution distribution is shown in Fig. 9(a). As the iteration

continues, from Fig. 9(b)-(d), it is apparent that the population

is further guided towards the more performance-robust region.

The performance-robust Pareto front (red set) solved by p-

NSGA-II and the solution distribution are also shown in Figs.

8(a) and (b) respectively. Compared with the scheme-robust

Pareto front, the spread of the performance-robust Pareto front

is less even than the former but is still acceptable. And the

solution distribution is also not significantly changed. Table

II lists the results for three different robust situations. It is

shown that, when considering robustness, the spread of the

Pareto fronts will not become worse compared to the Pareto

front without considering robustness.

Fig. 10 illustrates the fastest driving scheme (FDS) and

the slowest driving scheme (SDS) among the performance-

robust Pareto solutions. The FDS accelerates the train as

much as possible to the maximum speed without any coasting

operation. While for the slowest driving scheme (most energy-

saving driving scheme), the cruising speed nearly equals the

minimum speed limit. The coasting operation is maximally

utilized to reduce energy consumption. The running time of

FDS is only 36.5% of SDS, but consumes 3.19 times as much

energy as the SDS.

In Fig. 11(a), the comparison of the performance-robust

solutions (red balls) with the scheme-robust solutions (blue

balls) under λ1 = 0.5 and λ2 = 0.5, demonstrates that the

p-NSGA-II does produce a set of solutions with overall lower

sensitivity to passenger load variation. To further explain the

differences of robustness between both sets of solutions, each

set of solutions is divided into three groups based on the

running time. They are high-speed (HS) group (33 solutions),

medium-speed (MS) group (33 solutions) and low-speed (LS)

group (34 solutions), respectively. Fig. 11(b) presents, amongst

the six groups, all three groups from the performance-robust

solutions have better indices of robustness than the other

three groups from scheme-robust solutions. To compare the

overall robustness between the scheme-robust solutions and

performance-robust solutions, the normalized average sensi-

tivity values of both sets of solutions are calculated by (18),

where SSR and SPR represent the sets of sensitivity values of

the scheme-robust solutions and performance-robust solutions

respectively. Compared to the scheme-robust solutions, the

average sensitivity reduction (robustness improvement) of the

performance-robust solutions is 40.59% calculated by (18).

The superiority of the proposed p-NSGA-II is thus validated.

Save
SR/PR =

1

N

N
∑

n=1

Sn
SR/PR −min (SSR ∨ SPR)

max (SSR ∨ SPR)−min (SSR ∨ SPR)

(18)

R =
Save
SR − Save

PR

Save
SR

· 100% (19)

To further analyze the effects of weighting factors, λ1 and

λ2, in performance robustness equation (12) on optimization

results, another two sets of values are adopted. The first set

is λ1 = 1 and λ2 = 0, this means only the robustness of

the running time is considered, while the energy consumption

robustness is ignored. Another set is λ1 = 0 and λ2 = 1, so

only energy consumption robustness is considered, neglecting

the running time. When the weighting factors are set to be

λ1 = 0 and λ2 = 1, the objective is to find a set of optimal

solutions with the best robustness for energy consumption by

p-NSGA-II. While if the weighting factors are set λ1 = 1 and

λ2 = 0, p-NSGA-II will produce a set of optimal solutions

with the best robustness for the journey time. When the

weighting factors are set λ1 = 0.5 and λ2 = 0.5, a set of

balanced-robust solutions are obtained. The Pareto fronts of

both cases are shown in Figs. 12 (a) and (b). To compare

each solution, the sensitivities of the running time and energy

consumption are evaluated by (20) and (21) below respectively.

T s = max

(

|t− tmin|

t
,
|t− tmax|

t

)

(20)

E s = max

(

|E − Emin|

E
,
|E − Emax|

E

)

(21)
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The comparison of the sensitivity of the running time and

energy consumption under three sets of weighting factors is

shown in Fig. 13 and Table II. In Fig. 13, 100 solutions

under each set of weighting factors are sorted based on the

running time. The number 1 corresponds to the solution with

the shortest running time, while the number 100 corresponds

to that with the longest running time. From Fig. 13 and Table

II, it is evident that:

1) For all three sets of weighting factors, as the journey

time increases, the running time sensitivity decreases

but energy consumption sensitivity increases. The sen-

sitivities of running time and energy consumption are

negatively correlated. Under the driving schemes with a

high average speed, the variation of energy consumption

due to the train mass uncertainty is relatively small.

While those driving schemes with a low average speed

perform well in running time robustness.

2) The weighting factors determine the priority of DM

preference. Choosing different sets of weighting factors

is to trade off the robustness of running time and the

energy consumption. If only the robustness of running

time is considered, the solutions’ robustness of energy

consumption will perform poorly. On the other hand,

when only consider the robustness of energy consump-

tion, the robustness of running time will be poorer. When

λ1 = 1 and λ2 = 0, the solutions are most robust for

running time. When λ1 = 0 and λ2 = 1, the set of

solutions are most robust for energy consumption. The

solutions under any other weighting factors, for example

λ1 = 0.5 and λ2 = 0.5, will be somewhere in between.

3) The average energy sensitivity is 13.7% for the most

energy robust set (λ1 = 0, λ2 = 1) compared to

14.4% of the most time robust set (λ1 = 1, λ2 = 0).

Take 15% energy deviation as the threshold since the

maximum energy deviations are larger than 15% without

optimization as shown in [31]. The energy sensitivity

of 62 solutions out of 100 (62%) in the most energy-

robust set is lower than the threshold, while only 28

solutions (28%) in the most time-robust set are lower

than the threshold. The most time robust set has a lower

average time sensitivity of 1.6% compared to 2.5% of

the most energy-robust set. The average delay time of

the most time-robust set is 13.7 s compared to 18.2 s

of the most energy robust set. Based on the experience

from Beijing Yizhuang Line Links [31], [42], assume

the time sensitivity threshold is set to 4%, the most time

robust set has 85% satisfactory rate compared to 70%

of the most energy-robust set. The effectiveness of the

proposed p-NSGA-II is therefore evident.

A comparison of a time robust speed profile and another

speed profile only catching up with the braking curve is

performed. For the first driving strategy, a target cruising speed

30 m/s without optimization is set. The train is accelerated

to the target speed and then kept the constant speed until

the train reaches the latest braking point. The second driving

strategy (31.5 m/s, 23.1 m/s) is optimized by the proposed

p-NSGA-II under λ1 = 1, λ2 = 0 (most time robust). The

speed trajectories under different passenger loads are shown

in Fig. 14. The journey time is 725 s under empty load, 738

s under 50% load and 753 s under 100% load for DS1, and

726 s, 738 s and 749 s for DS2. It is evident that, under the

mean value of the train mass, the running time of both driving

strategies is the same. While the running time deviations of

both driving strategies under the mean value of the train mass

are 13 s and 12 s to the empty load, and 15 s and 11 s to the

full load. The maximum deviations of running time for both

driving strategies are 15 s and 12 s respectively, corresponding

to the maximum running time sensitivities of 2.0% and 1.6%.

Thus the performance of the proposed p-NSGA-II is validated.

The performance robustness reflects the maximum sensitiv-

ities of energy consumption and running time to the variation

of the passenger load. This performance value is primarily

determined by both the resultant driving strategies that are

generated by our algorithm and by the DM’s preference which

are reflected in the two preference weights λ1 and λ2. In

other words, infinite solutions may exist in the Pareto front

while their sensitivities to energy consumption and running

are different. The final selected Pareto solutions are determined

by the DM (dispatcher) preference and are generated by the

proposed p-NSGA-II.

To further illustrate the benefits of our proposed algorithm

p-NSGA-II and the optimization framework, the comparisons

between robust optimization (RO), stochastic optimization

(SO) and our proposed method are performed. A widely

adopted framework of the uncertain multi-objective optimiza-

tion is shown in the following [32], [56]:

min (f1 (x̂, m̄) , f2 (x̂, m̄) , ..., fK (x̂, m̄)) (22)

s.t.

∥

∥

∥f̂P (x̂,m)− f̂ (x̂, m̄)
∥

∥

∥

∥

∥

∥f̂ (x̂, m̄)
∥

∥

∥

≤ η x̂ ∈ S (23)

where f̂ (x̂) = (f1 (x̂) , f2 (x̂) , ..., fK (x̂)). x̂ is the vector of

the control variables. m represents the uncontrollable uncer-

tain parameters. m̄ is the mean value of the uncontrollable

uncertain parameters. f̂P represents the perturbed objective

vector and η is the maximum value of sensitivity required

so that the decision maker can adjust the maximum value of

the sensitivity of the solutions. The perturbed objective vector

can be chosen either to be the worst case to formulate a RO

problem, or to be the mean effective value of the neighborhood

to formulate a SO problem. In the following, both optimization

models will be generated and the two objectives still remain

to be the same, i.e. minimizing the energy consumption and

running time for the given mean value of the train mass. The

sensitivity η is set to different values. Notably, the perturbed

objective vector in the SO problem needs to be calculated by

the Monte Carlo method, and assume the mass of passengers

is distributed as discrete normal distribution M ∼ N(µ, σ2)
for a specific substation and operational period. The RO

optimization model in (22) and (23) was adopted in [32]. Both

RO and SO are performed by traditional NSGA-II.

Figs. 15-16 show the Pareto fronts and the sensitivities

by RO. In Fig. 15, the dark green and pink dots represent

the energy sensitivity and time sensitivity of each solution
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Fig. 15. RO Pareto fronts. (a) η = 0.02; (b) η = 0.03; (c) η = 0.05; (d) η = 0.06; (e) η = 0.07.
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Fig. 16. RO sensitivities. (a) η = 0.02; (b) η = 0.03; (c) η = 0.05; (d) η = 0.06; (e) η = 0.07.

respectively. In Figs. 15 (a)-(d), η varies from 0.02 to 0.06, and

it is obvious that the solution distributions are narrowed down

compared to the solutions generated by our proposed p-NSGA-

II. As shown in Table II, the Pareto distributions of energy

decrease by 92.6%, 80.8%, 51.4% and 30.3% respectively,

while the time distributions decrease by 48.4%, 27.5%, 10.7%

and 4.8% respectively. These results are consistent with [32].

For η = 0.07, the Pareto distribution is similar to the results

generated by our proposed p-NSGA-II. Compared to the p-

NSGA-II solution sets with λ1 = 1, λ2 = 0 (most time

robust), and λ1 = 0, λ2 = 1 (most energy robust) as shown

in Fig. 13, the sensitivity values of the RO solutions with

η = 0.07 in Fig.16(e) are distributed disorderly within the

boundary constituted by the solutions optimized by p-NSGA-

II, which implies that the η value can no longer play a role

in selecting the robust solutions at this stage. When η is

set to 0.01, there has been even no solution satisfying the

sensitivity limit that can be found in the feasible region.

Therefore, the solutions as the results of different η values are

ambiguous and unpredictable. Sometimes, an inappropriate η

value can lead to a narrowed solution distribution or even a null

solution set. And the RO algorithm proposed in [32] cannot

well manage different robustness indicators. Our proposed

p-NSGA-II, on the one hand, can set the preferences of

different robust indicators to generate the most-time-robust,

most-energy-robust, or balanced solution sets. Furthermore,

the solution distribution will not be narrowed while taking

into account the requirements from dispatchers.

The SO was also applied. The passenger mass values are

distributed as M ∼ N(80, 262) so that the range of the

passenger mass is kept the same for different approaches. The

Monto Carlo samples are set to 50 to calculate the perturbed

objective vector. However, it was found that the perturbed

objective vectors with η decreasing from 0.03 to 0.001 are very

close to the objective vector calculated with the mean value of

the train mass, which implies that the mean deviations of the

energy consumption and running time are insensitive to the

preset values. As shown in Fig. 17(a), the Pareto front is not

further filtered compared with the original optimization with

the mean value of the train mass even if the preset η value is

sufficiently small (η=0.001). The solution sensitivities are also

distributed disorderly as shown in Fig. 17(b). The perturbed

objective vector by Monto Carlo samples shows the long-term

patterns of energy consumption and running time for a specific

driving strategy. It is evident that the solutions optimized by p-

NSGA-II with the mean value of the train mass can sufficiently

reflect the long-term operation situations and achieve long-

term energy saving. While SO does not limit the maximum

sensitivities (deviations) of energy consumption and running

time. Furthermore, from Table II, it can be found that the

computational time of p-NSGA-II is longer than that of other

algorithms except for SO method. This is expected because p-

NSGA-II has the process of preference ranking, which leads

to extra time-spending. While for SO, Monte Carlo sampling

is needed hence resulting in far more computational time than

p-NSGA-II (nearly three times).

In summary, four algorithms, namely the conventional

NSGA-II, RO algorithm, SO algorithm and the proposed p-

NSGA-II are tested to verify the effectiveness and superiority

of p-NSGA-II. The NSGA-II does not consider the robustness

performance. Thus its solutions have the worse robustness in

both energy consumption and journey time compared to the

solutions obtained by p-NSGA-II under λ1 = 0.5, λ2 = 0.5.

And the robustness of energy consumption is worse than that

obtained by p-NSGA-II under λ1 = 0, λ2 = 1. The robustness

of journey time is worse than that obtained by λ1 = 1,

λ2 = 0. When RO algorithm proposed in [32] is applied, a pre-

defined parameter η needs to be determined, which controls

the convergent direction. As shown in Table II, when η is

set to have a small value such as η = 0.02, the distribution

of the Pareto solutions is narrowed down significantly. If the

dispatcher expects to choose the driving scheme with a short

journey time below 965 s, the RO algorithm under η = 0.02
can not provide any satisfactory solutions. The same issue also
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Fig. 17. SO results. (a) SO Pareto front; (b) SO sensitivities.

happens when η is set 0.03, 0.05 and 0.06, and no suitable

solutions can be provided to the dispatcher. When η is set a

relatively large value such as η = 0.07, the distribution of

the Pareto solutions is close to that obtained by p-NSGA-

II. However, the average sensitivities of energy consumption

and journey time obtained by RO algorithm under η = 0.07
are 14.3% and 1.9% which are worse than those of 13.9%

and 1.8% obtained by p-NSGA-II under λ1 = 0.5, λ2 = 0.5
as shown in Table II. And the average sensitivity of energy

consumption is worse than that obtained by p-NSGA-II under

λ1 = 0, λ2 = 1. The average sensitivity of journey time is

worse than that obtained by λ1 = 1, λ2 = 0. Further, the RO

algorithm can not control the energy consumption robustness

and journey time robustness separately. It is evident from

Table II that the RO algorithm shows these drawbacks when

compared to the proposed p-NSGA-II. For the SO algorithm,

first, it is more time-consuming than RO algorithm and p-

NSGA-II due to the application of the Monte Carlo sampling

method, and it also shows the worse robust performance for

both energy consumption and journey time compared to the

p-NSGA-II. For the proposed p-NSGA-II, not only can the

energy consumption robustness and journey time robustness

be controlled separately by adjusting weighting factors, but

also the distribution of the obtained Pareto front is always

maintained. As shown in Table II, under three different sets

of weighting factors, the distribution of the solutions is com-

prehensive and close to that obtained by original NSGA-II

without considering robustness. When the weighting factors

are λ1 = 0, λ2 = 1, a set of solutions with lowest average

sensitivity 13.7% of energy consumption is obtained compared

to that obtained by other algorithms. When the weighting

factors are λ1 = 1, λ2 = 0, a set of solutions with lowest

average sensitivity 1.6% of journey time are obtained. It is

consistent with the expectation for the weighting factors.

B. Case 2

In this case, the track considered is not on a flat surface but

has ramps with different gradients as illustrated in Fig. 18. It

results in the whole journey being divided into 5 subsections

with different speed limits based on the track gradients which

are also revealed in Fig. 18. Thus the corresponding control

variable set is V = (0, v1,c, v1,b, v1,e, ..., v5,s, v5,c, v5,b, 0).
There are 14 control variables in total to be determined consid-

ering vi,e = vi+1,s. In order to avoid the low average speed

of the train resulting in a long journey time, the minimum
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Fig. 18. Track ramps in case 2.

Fig. 19. Comparisons of the Pareto fronts in case 2.

cruising speed of the first four subsections is set to 30 m/s,

and 15 m/s for the last subsection.

First, the optimization problem is solved by NSGA-II only

considering scheme robustness but not performance robust-

ness. The parameters for GA operations are still the same

as those used in Case 1. Then the performance robustness

is considered. Four cases with weighting factors (λ1 = 0,

λ2 = 1) - most energy-robust, (λ1 = 0.5, λ2 = 0.5)

- balanced, (λ1 = 0.8, λ2 = 0.2) - time robust priority,

(λ1 = 1, λ2 = 0) - most time-robust, are performed. The

Pareto fronts optimized by NSGA-II and proposed p-NSGA-

II are shown in Fig. 19. The spread of the Pareto fronts

and corresponding computational time are listed in Table II.

The spread of the Pareto fronts optimized by p-NSGA-II is

not getting significantly worse compared to that optimized by

NSGA-II. Fig. 20 shows the fastest and most energy-saving

driving strategies obtained by p-NSGA-II which are labeled

in red line and blue line respectively. The fastest driving

strategy is obviously energy-consuming taking 809.6 kWh

with a shortest journey time 1381 s. The most energy-saving

driving scheme takes 523.1 kWh with a 2482 s journey time

which has a 35.4% decrease of energy consumption compared

to that of the fastest driving scheme. For the fastest driving

strategy, the train always reaches the maximum allowable

speed in each subsection and the coasting operation is rarely

or never applied. For the most energy-saving driving strategy

obtained, the full braking operation is rarely or never applied,

instead the coasting operation is applied as much as possible.
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Fig. 20. Fastest and most energy-saving driving schemes (FDS/ SDS).

This is consistent with the conclusion drawn in [27].

Figs. 21-24 demonstrate the evolutionary convergence pro-

cess of the p-NSGA-II under different weighting factors.

As the iterations goes on, all solutions are guided to the

Pareto front with lower sensitivities. This implies that a set

of more robust driving schemes can be obtainable. The time

sensitivities and energy sensitivities of the solutions optimized

by the NSGA-II and p-NSGA-II are compared as shown in Fig.

25 (a) and (b) respectively. In Fig. 25 (a), the set of solutions

under λ1 = 1 and λ2 = 0 have the overall lowest time

sensitivities compared to the solution set under other weighting

factors. With λ1 increasing from 0 to 0.5, 0.8 and 1, the

overall time sensitivity of the solutions overall decreases which

implies that the time robustness of the solutions becomes

better. As shown in Table II, the average time sensitivity under

λ1 = 1 and λ2 = 0 is 1.7% which is lower than that of

1.8% under λ1 = 0.5, λ2 = 0.5, 1.9% under λ1 = 0.8,

λ2 = 0.2 and 2.0% under λ1 = 1, λ2 = 0. As shown in Fig.

25 (b), the energy sensitivities of the solutions by p-NSGA-II

under λ1 = 0 and λ2 = 1 are overall lower than those of

solutions under other weighting factors. With λ2 increasing

from 0 to 0.2, 0.5 and 1, the overall energy sensitivity of the

solutions decreases which implies that the energy robustness

of the solutions becomes better. As shown in Table II, the

average energy sensitivity under λ1 = 0 and λ2 = 1 is

15.4% which is lower than that of 15.5% under λ1 = 0.5,

λ2 = 0.5, 15.6% under λ1 = 0.8, λ2 = 0.2 and 15.8% under

λ1 = 1, λ2 = 0. It is therefore confirmed that the proposed

p-NSGA-II has shown to be capable of producing a set of

robust Pareto solutions by adjusting the weighting factors

based on the DM preference. The weighting factors of λ1 and

λ2 dictate the journey time robustness and energy consumption

robustness respectively. While in Fig. 25 (a) and (b), the time

sensitivity and energy sensitivity of the solutions by NSGA-II

are both relatively larger and distributed disorderly with an

average time sensitivity 2.1% and an average time sensitivity

15.6%. The average time sensitivity of the solutions obtained

by NSGA-II is 23.5% higher than that of the solutions under

λ1 = 1, λ2 = 0 obtained by p-NSGA-II. And the average

time sensitivity of the solutions obtained by NSGA-II is 1.3%

higher than that of the solutions under λ1 = 0, λ2 = 1
obtained by p-NSGA-II. Even if compared to the solutions

under λ1 = 0.5, λ2 = 0.5, the solutions obtained by the

original NSGA-II have lower overall and average robustness

of journey time and energy consumption. These again confirm

the effectiveness of the proposed p-NSGA-II.

V. CONCLUSION

This paper has proposed a new DM preference based multi-

objective optimization algorithm namely p-NSGA-II for robust

train speed trajectories under the uncertainty of passenger load.

This has been formulated as a bi-objective problem of min-

imizing energy consumption and running time, with specific

constraints. By adding the scheme robustness constraint, the

non-scheme-robust solutions are filtered out and all solutions

are guaranteed to be feasible. The p-NSGA-II method has been

developed to further search the performance-robust solutions

within the feasible solutions. Two case studies have been

conducted to verify the effectiveness of the proposed robust

optimization approach. It is revealed that, compared to the

optimization results obtained without considering performance

robustness, the proposed approach p-NSGA-II can effectively

produce a well spread-out and robust set of driving schemes

with up to 40.59% average robustness improvement. Note that

the proposed p-NSGA-II proves to be adept among the pref-

erence function-based multi-objective optimization problems,

and thus can be easily applied to a number of other related

engineering optimization problems.
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