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Abstract—This paper compares a conventional interacting
multiple model Kalman filter (IMM-KF) filter and an interacting
multiple models with maximum correntropy Kalman filter (IMM-
MCKF). A nonlinear UAV dynamics model was used to compare
these two methods. The compared filters estimated the position of
the UAV under the noise distribution. Although KF has reliable
accuracy, MCKF has got better results under non-Gaussian
or mixed distributions. At this point, these filters have been
investigated under maneuver and non-maneuver motion, and it is
known that better advantages will be shown when both filters are
used in the IMM. These filters have been compared under non-
Gaussian distributions, and the Student’s-T distribution has been
selected as a non-Gaussian type. The performance validation and
testing stages are carried out with variable degrees of freedom,
and scaling matrix factors for the Student’s-T distributions have
been used. Results from simulation tests from 3000 independent
Monte-Carlo runs are presented. In these experiments, UAV
models and UAV trajectory results have been used.

Index Terms—Multi-model approach, interacting multiple
model, maximum correntropy Kalman filter, unmanned air
vehicles

I. INTRODUCTION

Nowadays, unmanned vehicle systems have been more

interesting subjects for researchers. Especially unmanned

air vehicles (UAVs) and unmanned ground vehicles (UGVs)

have solved many important problems such as surveillance,

military problem, observation, and rescue operations.

However, controlling and position problems still have

continued on UAVs to be resolved. Many linear and nonlinear

controllers have been implemented to guarantee UAV stability.

Linear quadratic regulator (LQR) [2], model predictive control

(MPC) [25], proportional integral derivative (PID) [6] and

Fuzzy PID (FPID) [7] are the most usage for UAVs.

Finding or localizing of UAV position has been another

problem like controlling. In literature, there are several

methods to accurately converge to exact positions like

Kalman filter (KF), maximum correntropy Kalman filter

(MCKF) [8], [21]. In the position of UAV, sensor fusion

methods have been applied to IMU and GPS sensor data.

An essential part of this application is identifying the correct

model. However, the UAV states change drastically whether

it follows a maneuvering or non-maneuvering trajectory. In

this situation, interacting multiple model (IMM) approaches

help to solve this problem.

In literature, there are several IMM methods have been

deeply explained [3]–[5], [9], [10], [12]–[20], [22]–[24]. In

ref [18], a survey paper has been written about maneuver

and non-maneuver models for a system. The conventional

IMM affects the measurement to set information updates with

active models. The problem is model faults. If conventional

IMM uses for fault-prognostic applications, it is faced with

misleading state estimation. To overcome this problem, Fuzzy

and IMM structures have been merged to detect fault-tolerant

in ref [9]. It is seen that defining dynamical models have

played an important role in the application. For this reason,

in ref [18], different dynamical models for maneuvering

target tracking have been researched. Moreover, the cubature

Kalman filter implemented IMM approach has been used

for nonlinear systems in ref [20], and this approach has

been tested on maneuvering target tracking to represent

the switching probability; the approach employs a Markov

process. Another research has shown different filtering for

Markovian switching: interacting multiple model particle

filtering in ref [5]. Considering the conventional filter, it can

look the same as each other. However, the particle filter

affects the mixture of Gaussian probability densities. That

means that it is able to manage non-linearities in the system

and non-Gaussian noise [15], [16].978-1-6654-9810-4/22/$31.00 ©2022 European Union



As can be seen that there are several advantages of IMM

approaches for different applications. In this paper, Interacting

multiple model merged with maximum correntropy Kalman

filter (IMM-MCKF) has been proposed for UAV position

estimation. In ref [8], [10], [21], MCKF performance has

been compared with conventional method under Gaussian

and non-Gaussian distributions.

This paper is organized as follows. Section II describes the

methods of the UAV model and interacting multiple model.

The next section is about proposed IMM with maximum

correntropy Kalman filter. Simulation results are given in

Section IV. The last section presents the conclusion and future

work.

II. METHODOLOGY

This section presents Crazyflie 2.0 dynamic model [1],

controller and sensor estimation method proposed in this paper.

After explaining the dynamical model and control of Crazyflie

2.0, IMM and MCKF have been explained with formulations

and structures.

A. Dynamical Modelling and Control of Crazyflie 2.0

In this paper, the Crazyflie 2.0 UAV [1] linear dynamic

model has been used and the velocity controller has been

designed for this system as in [7]. Fig. 1 shows the body

frame of UAV is fixed to the Center of Mass (CoM). position

of UAV is defined as ζI = [xyz]T and orientation of the body

frame relative to the inertial frame is given by η = [ϕ θ ψ]
T

,

roll, pitch, yaw Euler angles, respectively, and also R is the

rotation matrix between frame I and B [7], [11].

Fig. 1. Crazyflie 2.0 UAV frame

υI = ζ̇I = RυB

ωI = η̇I = TωB (1)

(1) where the transformation matrix (T) is given by:

T =



1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)/c(θ) c(ϕ)/c(θ)


 (2)

with s(.), c(.), and t(.) are abbreviated from sine, cosine and

tangent functions, respectively.

The dynamics of the UAV can be shown with using the

Newton-Euler formulation as follows:

mυ̇I = F I = F I
gravity + F I

thrust

IBω̇
B = −ωB × τBrotor

(3)

In the Eq. (3) shown, m is the mass of the UAV, IB is

the inertia matrix for center of UAV’s mass (CoM). F I give

external forces of system and with this forces, torques τrotor =[
τϕ τθ τψ

]
can be applied by rotors. These external forces

are also include gravity force which is implemented vertically

of CoM is given as:

F I
gravity =

[
0 0 −mg

]T

F I
thrust = RFB

gravity

(4)

Considering UAV’s body frame, the forces are existed of

propellers:

FB
thrust =

[
0 0 b

∑4
i=1 Ω

2
i

]T
(5)

In the above Eqn. (5), there is shown thrust coefficient (b)

and angular velocity of rotor (Ωi). In Eqn. (6). l is the distance

between the UAV’s CoM. Lastly, the dynamical equations of

motion is written:

υ̇B =



ẍ
ÿ
z̈


 = b

m

∑4
i=1 Ω

2
i =



sϕsψ + cϕsθcψ
−sϕcθ + cϕsθsψ

cϕcθ


−



0
0
g




ω̇B = I−1
B .τBrotor =




1
Ix
bl(Ω2

4 − Ω2
2)

1
Iy
bl(Ω2

3 − Ω2
1)

1
Iz
bl(Ω2

4 − Ω2
3 +Ω2

2 − Ω2
1))




(6)

In this paper we have focused on position and veloc-

ity estimation. For this result, position controller has been

used. General discrete PID controller formula can be seen in

Eqn. (7). PID parameters are P = 0.034, I = 6.3e − 06 and

D = 0.083, respectively. Sampling time (Ts) has been chosen

0.01s. Parameters have been found by using genetic algorithm

which is a type of optimization methods.

ut = et

[
Kp +

Ki

1−z−1 +Kd(1− z−1)
]

(7)

B. Interacting Multiple Model

The Interacting Multiple Model (IMM) is a type of hybrid

state estimation algorithm for Markovian linear systems. It

has many advantages in terms of computation time, target

tracking, fault detection and classify the models [19]. The

model structure has been illustrated in Fig. 2. Each model has

different probability weight. Then, IMM calculate estimate and

covariance matrices to send to Kalman filter as inputs [19]. In

this section, general IMM formula parts have been explained.

There are three models have been implemented in proposed

IMM structure. They have been one constant velocity (FCVM )

and two different constant turning models (FCTM ).



Fig. 2. Interacting multiple model structure [19]

FCVM =




1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1


 (8)

FCTM =




1 sin(ωiT)/ωi 0 −(1− cos(ωiT)/ωi

0 cos(ωiT) 0 −sin(ωiT)
0 (1− cos(ωiT))/ωi 1 sin(ωiT)/ωi

0 sin(ωiT) 0 cos(ωiT)




(9)

In Eqn. (8) and (9), sampling time is declared as T and

maneuverings of UAV ω have existed of 2 parts. For the left

acceleration model, ωi is ω = 2π/180, on the other hand ω =
−2π/180 is chosen for right acceleration model. These two

acceleration models generate constant turning model(FCTM ).

The IMM consists of 4 parts; mixing, filtering, mode

update, and output, respectively. Predicted model probability

and mixing weight, estimate and covariance are in the mixing

part.

Firstly, predicted model probability (µ̂
(i)
k|k−1) formula Eqn.

(10), and mixing weight (µ
j|i
k−1) can be seen in Eqn. (11). Here

zk shows current measurement data.

µ̂
(i)
k|k−1 = P

{
m

(i)
k |zk−1

}
=

∑
j πjiµ̂

(j)
k−1 (10)

µ
j|i
k−1 = P

{
m

(j)
k−1|m

(i)
k , zk−1

}
= πjiµ

(j)
k−1/µ̂

(i)
k|k−1 (11)

After that, estimated state Eqn. (12) and covariance Eqn.

(13) and can be calculated:

x̄
(i)
k−1|k−1 = E

[
xk−1|m(i)

k , zk−1
]
=

∑
j x̂

(j)
k−1|k−1µ

j|i
k−1

(12)

P̄
(i)
k−1|k−1 =

∑
j

[
P

(j)
k−1|k−1 +

(
x̄
(i)
k−1|k−1 − x̂

(j)
k−1|k−1

)

(
x̄
(i)
k−1|k−1 − x̂

(j)
k−1|k−1

)′
]
µ
j|i
k−1

(13)

These mixed-estimated state and covariance matrices has

been used for proposed Kalman filter. Next section Maximum

correntropy Kalman filter (MCKF) will be explained. In this

section, it is assumed that the Kalman filter is applied. Also,

Kalman filter outputs has been defined as updated state x̂
(i)
k|k

and updated covariance P
(i)
k|k.

After skipping filtering part, model probability update part

has been used. It means that model likelihood and model

probability will be calculated.

The model likelihood and the model probability are given

Eqn. (14) and Eqn. (15), respectively.

L
(i)
k = p

[
z̃
(i)
k |m(i)

k , zk−1
]
∼= e

−(1/2)(z̃
(i)
k

)′(Si
k)−1(z̃

(i)
k

)√
|2πSi

k|
(14)

µi
k = P

[
m

(i)
k |zk

]
=

µ̂
(i)

k|k−1
L

(i)
k

∑

j µ̂
j
k|k−1

L
(j)
k

(15)

The last part of the IMM is described next. It is composed

of the overall state estimate and the covariance matrix.

x̂k|k = E
[
xk|zk

]
=

∑
i x̂

(i)
k|kµ

(i)
k (16)

P k|k =
∑

i

[
P

(i)
k|k +

(
x̂k|k − x̂i

k|k

)(
x̂k|k − x̂i

k|k

)′
]
µ
(i)
k .

(17)

The following Section III presents the developed IMM-

MCKF algorithm.

III. PROPOSED IMM APPROACH WITH MCKF

The Maximum Correntropy Kalman filter (MCKF) is based

on maximum correntropy criteria and a fixed-point iterative

algorithm [8], [10], [21]. It is well known that the conventional

Kalman filter gives a good result under Gaussian noises.

However, its performance worsens under non-Gaussian noises.

It is an inevitable consequence due to the use of the traditional

Kalman filter based on the Gaussian distribution [8], [10], [21].

Before starting the whole algorithm, correntropy criteria will

be explained. When given two random variables X,Y ∈ R

with joint distributed function dFXY (xy), correntropy is de-

scribed by

V (X,Y ) = E [κ(X,Y )] =
∫
κ(x, y)dFXY (xy) (18)

In Eqn. 18, shift-invariant Mercer Kernel is indicated as

κ(., .) and E shows the expectation operator. In this paper,

Gaussian Kernel has been chosen and it is given by

κ(x, y) = Gσ(ϵ) = e

(

− ϵ2

2σ2

)

. (19)

where e = x−y is calculated. Moreover, the σ value is chosen

to be equal to 7 and the kernel bandwidth ε gets 10−3 values.

For state prediction and covariance matrix prediction can be

performed with the following equations:

x̂(k|k − 1) = F(k − 1)x̂(k − 1|k − 1)
P(k|k − 1) = F(k − 1)P(k − 1|k − 1)FT (k − 1) +Q(k − 1).

(20)

The kernel bandwidth σ and small positive threshold ε are

set up accordingly, from practical considerations. Also,



[
P(k|k − 1|) 0

0 R(k)

]

=

[
Pp(k|k − 1|)PT

p (k|k − 1|) 0
0 Br(k)B

T
r (k)

]

= B(k)BT (k).

(21)

In Eqn. 21, B(k) has existed of Cholesky decomposition.

Then,

D(k) = W(k)x(k) + e(k)

D(k) = B−1(k)

[
x̂(k|k − 1|)

y(k)

]
, W(k) = B−1(k)

[
I

H(k)

]

(22)

For the posterior estimation, it is updated by using fixed-

point iteration for each x̂(t)(k|k)

x̂(t)(k|k) = x̂(k|k − 1) + K̃(t−1)(y(k)−H(k)x̂(k|k − 1))
(23)

Considering the above equation, it includes some parameters

which are detailed between in Eqn. 24 and Eqn. 29

K̃(t−1)(k) = P̃(t−1)(k|k − 1|)ĤT(k)...

×
(
H(k)P̃(k|k − 1|)HT(k) + R̃(t−1)(k)

)−1 (24)

P̃(t−1)(k|k − 1) = Bp(k|k − 1)
(
C̃

(t−1)
x (k)

)−1

...

×BT
p (k|k − 1)

(25)

R̃(t−1)(k) = Br(k)
(
C̃

(t−1)
y (k)

)−1

×BT
r (k) (26)

C̃
(t−1)
x (k) =




Gσ

(
ẽ
(t−1)
1 (k)

)
0 0

0
. . . 0

0 0 Gσ

(
ẽ
(t−1)
n (k)

)




(27)

C̃
(t−1)
y (k) =




. . . 0 0 0

0 Gσ

(
ẽ
(t−1)
n+1 (k)

)
0 0

0 0
. . . 0

0 0 0 Gσ

(
ẽ
(t−1)
n+m (k)

)




(28)

ẽ
(t−1)
i = di(k)− wi(k)x̂

(t−1)(k|k) (29)

In Eqn. (30), estimation states have been compared with the

current and the last step by small positive threshold (ε).

∥x̂(t)(k|k)−x̂
(t−1)(k|k)∥

∥x̂(t−1)(k|k)∥ ≤ ε (30)

When the required condition in the above equation is

satisfied, posterior covariance matrix can be determined

P(k|k) =
(
I− K̃(k)H(k)

)
P(k|k − 1)

(
I− K̃(k)H(k)

)T

+K̃(k)R(k)K̃(k)T

(31)

In Fig. 3, the architecture of IMM-MCKF has been shown.

In this paper, unlike the conventional IMM structure, IMM

and MCKF have been combined each other. Compare with

the proposed architecture, the conventional one has used

traditional Kalman filter in the model-conditioned filtering part

(IMM-KF or IMM). With the proposed method, it has been

aimed to estimate localisation under non-uniform distribution.

For this reason, Students-T distribution which is a type of

non-uniform or non-Gaussian distribution has been used for

the experiments.

Fig. 3. Architecture of IMM-MCKF

At the end of this section, IMM and MCKF have been

explained in terms of equations and structures. Simulation

results will be given by the following section.

IV. SIMULATION RESULTS

This paper is about the implementation of IMM-MCKF for

the UAV. Unlike conventional methods such as IMM-KF or

single model approaches, IMM-MCKF has been tested under

non-uniform distribution. In this way, Student’s-T distribution

has been used to choose different degrees of freedoms [15],

[16], [24]. All experiments have been run 3000 independent

Monte-Carlo times. The computer used for these experiments

has an Intel i7 processor 16GB RAM Matlab 2021 environ-

ment.

For the experiments, the same error covariance matrices

have been chosen. The covariance matrices have been defined

as Gaussian covariances. Two different IMM methods have

been compared under Student’s-T distribution. Also, variable

degrees of freedom (DoF) has been selected for the Student’s-

T distribution in these tests. These distributions have been used

as noises for the UAV measurement.

In this paper, Student’s T distributions have been chosen as

a Non-Gaussian Distribution, and this noise has been added to

measurement. In Eqn. (32), H measurement matrix has been

defined as below:



Fig. 4. Gaussian and Student’s-T distributions

H =

[
1 0 0 0
0 0 1 0

]
. (32)

It has been remarked that initial covariance, process noise,

and measurement noise matrices have been constructed with

the same values for a fair comparison of IMM filters.

In Fig. 4, Gaussian and Student’s-T distributions have been

shown. The important point of this figure has been about

changing DoF. Noises have been implemented into measured

data (x, y, υx, υy) with using scaling matrix factor (β). The

scaling matrix factor shows the power of noises.

In Fig. 5 shows UAV reference trajectory under Student’s-T

noises with choosing µ1 = 4 and µ2 = 8. Moreover, β has

been chosen 0.02. Trajectory reference, noise added reference,

IMM-KF result, and IMM-MCKF result has been shown with

different colors as green, black, blue, and red, respectively.

Fig. 5. Reference trajectory tracking under Student’s-T distribution (µ1 = 4

and µ2 = 8)

It is shown that IMM-MCKF and IMM-KF have given

almost the same results for the first x-axis. Then, IMM-MCKF

has been shown better results than IMM-KF at the first y-axis

and the second side of x-axis.

After the first experiment, µ1 = 1, µ2 = 3 and β = 0.002
have been selected for the second experiment. With these

selections, DoF and scaling matrix factor effects have been

seen in Fig.6. Considering the IMM-KF reference trajectory

Fig. 6. Reference trajectory tracking under Student’s-T distribution (µ1 = 1

and µ2 = 3)

estimation, the UAV has gone out of axes. Although, IMM-

MCKF has been continued to reference with a small oscilla-

tion.

The testing parameters have been given in Table I. The

average of Root Mean Square Errors (RMSEs) values (is

meters) over the 3000 Monte Carlo independent runs and

their total times (in seconds) have been given in this table.

Considering the total time differences for both experiments,

the IMM-KF has given a 3.35 times faster response.

TABLE I
TEST RESULTS OF IMM-KF AND IMM-MCKF

Multi-Models Student’s-T Distribution

µ = 4− 8 β = 0.02 µ = 1− 3 β = 0.002
Time RMSE Time RMSE

IMM-MCKF 7710 sec 0.081 m 6950 sec 0.077
IMM-KF 2300 sec 0.335 2024 sec 0.343

Table I shows the average RMSE and the total computa-

tional time of both algorithms. When choosing µ1 = 4, µ2 = 8
and β = 0.02, the IMM-MCKF has been given 4.1 times better

RMSE results than IMM-KF. These consequences have been

almost the same with the second experiment. IMM-MCKF

has been 4.45 times better than the other under non-Gaussian

noises.

V. CONCLUSION AND FUTURE WORKS

This paper has shown how to estimate UAV states with

an IMM-MCKF approach. Unlike conventional methods such

as IMM-KF or single model approaches, IMM-MCKF has

been tested under a non-uniform distribution. In this paper,

the Student’s-T distribution has been used. Simulation results

showed that IMM-MCKF results are better than the IMM-KF

in terms of RMSE. Furthermore, although the computational

time is a challenge for the IMM-MCKF, the IMM-KF is

faster. However, both algorithms could be applied in real-time

systems after a further optimisation of the code efficiency. In

this experiment, the computational time is averaged over 3000

repeated Monte Carlo runs and it is 3.3522 seconds for IMM-

MCKF and 0.7667 seconds for the IMM-KF.



Future work will focus on a swarm of UAVs and control

with the developed estimation approaches.
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