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Abstract

Stated simply the paradox is as follows: it is clear that the orbital angular

momentum of a light beam in its direction of propagation is an intrinsic quan-

tity, and therefore has the same value everywhere in the beam. How then can a

Gaussian beam, with precisely zero orbital angular momentum, drive a (single-

photon) quadrupole transitionwhich requires the transfer of angularmomentum

2h̄ to an absorbing atom?

Keywords: optical angular momentum, atomic transitions, quadrupole

transitions

(Some figures may appear in colour only in the online journal)

1. Introduction

It has long been appreciated that light has mechanical properties including energy, momentum

and also angular momentum. The energy property was known to the ancients but the first sug-

gestion of the momentum appears to be by Kepler who observed that the dust tails of comets

point away from the Sun and ascribed this effect to radiation pressure [1]. It was Maxwell

who first calculated the radiation pressure due to sunlight on the surface of the Earth [2] and
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Poynting who quantified the momentum and energy flux associated with the electromagnetic

field [3, 4]. Poynting also proposed that light can carry angular momentum and suggested, in

particular, that angular momentum was associated with circular polarisation [5].

Themodern study of optical angularmomentum, and in particular of orbital angularmomen-

tum, can be traced to the work of Allen et al [6] who showed that laser modes, specifically

the Laguerre–Gaussian modes, carry ℓh̄ units of orbital angular momentum about the beam

axis for each photon, where ℓ is the charge of the phase vortex at the centre of the mode.

Within the paraxial regime we can assign also a separate spin part of ±h̄ per photon asso-

ciated with the circular polarisation. The combination of these orbital and spin parts of the

optical angular momentumhas proven to bemost versatile and has found numerous and diverse

applications [7–11].

Optical angular momentum plays a crucial role in the interaction between light and matter.

Selection rules between atomic andmolecular energy levels are determined in terms of changes

in angular momentum [12–15], as are transitions occurring in nuclei [16]. The strongest transi-

tions in an atom are thosemediated by the electric dipole interaction. For these the conservation

of angularmomentum imposes selection rules on the electronic total angularmomentumand on

the angular momentum component quantum numbers in the form∆l = ±1 and∆m = 0,±1.

(It is an accident of history that the letter l is used both for the z-component of the optical

angular momentum and also for the electronic total angular momentum quantum number. In

the hope of avoiding confusion we use different fonts for these two quantities, ℓ for the optical
orbital angular momentum and l for the total electronic angular momentum quantum num-

ber.) The required angular momentum is readily provided by the absorption of a photon with

the appropriate polarisation; in particular the absorption of a left- or right-circularly polarised

photon exciting a transition with∆m = +1 or −1 respectively. The absorption of a photon in

this way transfers energy to excite the atom and spin angular momentum to change the internal

angular momentum. It is not possible for the required angular momentum to be provided by

the orbital angular momentum of the field [17]. The absorbed photon transfers, also, linear

momentum and also orbital angular momentum to the centre of mass motion of the atom [18].

The last of these has its strongest and most subtle effect when the atom is in the vicinity of an

optical vortex [19–21].

In this paper we are principally concerned with angular momentum transfer to an atom

via higher-order multipolar transitions and, in particular, by an electric quadrupole transition,

in which the angular momentum of the atom changes by ∆l = +2, ∆m = +2. We have in

mind something like the 52S1/2 to 5
2D5/2 transition in rubidium 87 [22], but our analysis is not

restricted to a particular transition or atom. In an elegant experiment,Afanasev et al showed that

such a transition can be enhanced if the atom (in the experiment it was a calcium 40 ion) is held

at the vortex core of a suitably prepared beam. In one case in particular, a circularly polarised

ℓ = 1 beamwas employed, so that the required two quanta of angular momentum are provided

by one of optical spin angular momentum and one of optical orbital angular momentum [23].

The paradox in our title arises when we consider driving the quadrupole transition by a

circularly polarised beam of light carrying zero units of orbital angular momentum, as shown

in figure 1. The phase fronts are approximately perpendicular to the propagation direction and

do not have the helical form characteristic of the presence of orbital angularmomentum [6–11].

Such a beam carries only one quantum of spin angular momentum per photon and, moreover,

as both the spin and the orbital angular momenta are intrinsic, it appears to be the case that

whatever the position of the atom, no quanta of orbital angular momenta are available. How

then is the angular momentum conserved in such a transition?
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Figure 1. An atom displaced a distance x0 from the z-axis of a Gaussian beam. This beam
has flat phase fronts and therefore the orbital angular momentum about the beam’s z-axis
is zero. The orbital angular momentum about the atom’s axis z′ is also identically zero, as
orbital angular momentum is intrinsic, and therefore we must ask from where the atom
can obtain the two quanta of angular momenta required to drive the stated quadrupole
transition.

2. Optical orbital angular momentum: intrinsic or extrinsic?

Inmechanics it is often helpful and straightforward to separate spin and orbital angularmomen-

tum. Themotion of the Earth, for example, is readily separated into an intrinsic spin component

(responsible for the cycle of days and nights) and an extrinsic orbital motion associated with

the calendar year. The former is intrinsic in that its value does not depend on the position

of the chosen axis, but the latter does depend on the choice of axis and so is extrinsic. For

light the situation is more subtle. We have long known how to extract spin and orbital parts

[24] but it is clear that, although these are separately measurable, neither is a true angular

momentum [25–29].

We are concerned with the component of the optical angular momentum in the direction of

propagation of our light beam. Here we can readily identify separate spin and orbital parts of

the total angular momentum and, indeed, observe the individual contributions from these [30].

However in this case both the spin and orbital parts are intrinsic, that is they are unchanged if

we evaluate them about any axis parallel to the direction of the beam. Berry provided a simple

and general proof of this, which we reproduce here [31].

The spin part of the optical angular momentum is intrinsic and we can determine the extrin-

sic or intrinsic nature of the orbital part by examining the total angular momentum. Consider
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a beam of light propagating in the z-direction, carrying some quantity of the z-component of

angular momentum. If we shift by r0 the axis about which the angular momentum is evaluated,

then we find that the total angular momentum changes to

J′z = Jz − (r0 × p)z, (1)

where p is the total momentum of the beam. Yet if the beam is propagating in the z-direction,

then the transverse components of the total momentum of the light px and py, are both zero and

we conclude that the angularmomentumof the beam is independentof the position aboutwhich

it is determined: J′z = Jz. The spin angular momentum is intrinsic and it follows, therefore, that

the orbital part is also intrinsic.

We note that it is possible to define local densities of the spin and orbital angular momenta

[27, 32, 33] and that the density of the spin is intrinsic while the density of the orbital part is not

[34], although the densities themselves are, of course, not unique [26]. An atom undergoing

a suitable transition acquires quanta of angular momentum rather than of angular momentum

density, however, and it is in the global conservation of angular momentum that our paradox

resides.

3. Electric dipole and electric quadrupole transitions

To highlight the issue of angular momentum conservation, we present here simple analyses of

a∆m = +1 electric dipole transition and a∆m = +2 quadrupole transition, both driven by a

circularly polarised Gaussian beam of light which carries h̄ units of spin angular momentum

per photon, but zero units of orbital angular momentum. For definiteness we consider a pair of

transitions from the ground state of atomic rubidium 87, 52S1/2, to the 52P3/2 level and to the

42D5/2 level. The first of these is an electric dipole transition with ∆l = +1 and ∆m = +1,

corresponding to the gain, by the atom, of one quantum h̄ of angular momentum. The second

is an electric quadrupole transition in which the atom acquires two quanta, 2h̄, of angular

momentum from the single photon absorbed.

3.1. Electric dipole transition

The electric dipole transition is associated with the interaction energy of the form [35, 36]

Vd = −DiEi, (2)

whereD is the dipole moment operator for the atom andE is the resonant driving electric field.

Here we adopt the summation convention in which repeated indices imply a summation over

the three Cartesian coordinates. The dipole moment has the form

Di = −e
∑

α

rαi , (3)

where the summation runs over all the atomic charges. For rubidium we need consider only

the valence electron and so replace the summation by the coordinates (relative to the nucleus)

of this single electron, so the dipole moment operator becomes

Di = −eri. (4)

Let us consider the interaction matrix element for the transition from the ground state,

52S1/2, to the excited state, 52P3/2. As we are increasing the energy of the atom, we can asso-

ciate this with photon absorption and therefore with the positive frequency, e−iωt, part of the
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electric field.We consider a monochromatic paraxial (or weakly focussed) beam of light propa-

gating in the z-direction.Hencewe canwrite the transitionmatrix element from the ground state

(|g〉 = |5, 0, 0, 1/2〉, where the four entries in this state correspond to the quantum numbers n,

l, m and s) to the excited state (|e〉 = |5, 1, 1, 1/2〉) in the form

〈e|Vd|g〉 = e〈e|ri|g〉Ei(R)e−iωt. (5)

Here Ei(R) is the space-dependent part of the complex electric field at the position of the atom.

The dominant components of the electric field lie in the x − y plane and there is no need to

consider, for our purposes, the much smaller component in the z-direction.

To determine the optimal formof the field with which to drive the transition, we need to eval-

uate the required form of the dipole matrix element. To this end we note that the wavefunction

for the electron to which the field is coupled can be written in the form

ψn,l,m(r) = Rn,lY
m
l (ϑ,ϕ), (6)

where Yml (ϑ,ϕ) is the spherical harmonic [12–15] and we have omitted mention of the electron

spin, which does not change in the transition. We then find that the dipole matrix element is

di = 〈e|Di|g〉

= −e
∫ ∞

0

r2 dr

∫ π

0

sin ϑ

∫ 2π

0

dϕR5,1(r)Y
1∗
1 (ϑ,ϕ)riR5,0(r)Y

0
0 (ϑ,ϕ), (7)

where the spherical harmonics are

Y0
0 (ϑ,ϕ) =

1

2

√

1

π

Y1
1 (ϑ,ϕ) = −

√

3

8π
sin ϑ eiϕ. (8)

It follows that the components of the dipole matrix element are

dx =
e√
6

∫ ∞

0

r2 drR5,1rR5,0 = d

dy = −id. (9)

Hence the matrix element of the interaction energy is

〈e|Vd|g〉 = −d(Ex(R)− iEy(R))e−iωt. (10)

To maximise the magnitude of this, and thereby find the maximum rate for driving this

transition, we simply set Ey = iEx , so that the electric field takes the form

E(R) =
E0(R)√

2
(x̂+ iŷ)e−iωt, (11)

where x̂ and ŷ are unit vectors in the x- and y-directions. Note that this corresponds to a

field with left-handed circular polarisation, corresponding to +h̄ spin angular momentum per

photon.

Whatever the position of the absorbing atom, the intrinsic spin angular momentum of the

light provides the required single quantum of angular momentum about the displaced z-axis

centred on the position of the atom. The only dependence on position comes from the spatial

variation of the strength of the field E0 and hence the intensity.

5
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3.2. Electric quadrupole excitation

The electric quadrupole interaction energy depends on the derivatives of the electric field at

the position of the atom:

Vq = Qi j∇iE j, (12)

where Qi j is the quadrupole moment defined to be [35, 36]

Qi j = −1

2
rir j. (13)

Note that both the electric dipole and electric quadrupole interactions can readily be derived

within the Power–Zienau–Woolley multipolar expansion [17, 35]. We are interested in transi-

tions in our rubidium atom from the ground state, 52P1/2, to the excited state, 42D5/2. We can

write the transition matrix element from the ground to the excited state (|e〉 = |4, 2, 2, 1/2〉) in
the form

〈e|Vq|〉 = −1

2
〈e|rir j|g〉∇ jEi e

−iωt, (14)

where the derivatives of the field are evaluated at the position of the atom R.

To determine the form of the field required to drive this transition, we need to evaluate

the quadrupole matrix element. In order to calculate this we require the spherical harmonic

associated with the excited state:

Y2
2 (ϑ,ϕ) =

1

4

√

15

2π
sin2 ϑ ei2ϕ. (15)

Hence our quadrupole matrix elements 〈e|Qi j|g〉 are

qxx = 〈e|Qxx |g〉

= − e

2

1√
30

∫ ∞

0

r2 drR4,2(r)r
2R5,0(r)

= Q
qxy = −iQ = qyx

qyy = −Q. (16)

To proceed let us consider the possible forms for the driving field. As noted above, the domi-

nant componentswill be in the x- and y-directions and it is the derivatives of the field that couple

to the atom. To this end we expand the components of the electric field as a Taylor–Maclaurin

series in the form

Ex(r) = Ex(R)e−iωt
+ (x − X)

∂

∂x
Ex(R)e−iωt

+ (y− Y)
∂

∂y
Ex(R)e−iωt

+ · · ·

= Ex(R)e−iωt
+ [α(x − X)+ β(y− Y)]E(1)(R)e−iωt

+ · · ·

Ey(r) = Ey(R)e−iωt
+ (x − X)

∂

∂x
Ey(R)e−iωt

+ (y− Y)
∂

∂y
Ey(R)e−iωt

+ · · ·

= Ey(R)e−iωt
+ [γ(x − X)+ δ(y− Y)]E(1)(R)e−iωt

+ · · · . (17)

6
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Without loss of generality, we can fix select our four complex constants such that |α|2 + |β|2 +
|γ|2 + |δ|2 = 2. With this choice we fix E(1)(R) to be

E(1)(R) =
1√
2

[

∑

i, j=x,y

(

∇iE j

) (

∇iE
∗
j

)

]1/2
∣

∣

∣

∣

∣

∣

R

. (18)

We can compare this with the required form for our particular transition, for which we have

calculated the quadrupole matrix elements, equation (16). Thus,

Qi j∇iE j = E(1) e−iωtQ(α− iβ − iγ − δ). (19)

Clearly this is maximised if the magnitudes of each of our parameters α, β, γ and δ are equal.
There is one arbitrary phase, but if we choose α to be real and positive, then the strongest

driving occurs for

α =
1√
2
, β =

i√
2
= γ, δ = − 1√

2
. (20)

Note that the fact that δ = −α is a consequence of the transversality of the electric field

(∇iEi = 0). The values of α, β, γ and δ correspond to an electric field in the vicinity of the

atom of the form

E(r) = E(R)e−iωt
+ E(1)e−iωt[(x − X)+ i(y− Y)]

1√
2
(x̂+ iŷ), (21)

the second term of which corresponds to a circularly polarised ℓ = +1 beam, with a charge+1

phase vortex centred on the atom, at (X, Y), corresponding to+h̄ of orbital angular momentum

per photon.

4. The paradox

We have determined the required form of the electric field in order to drive our quadrupole

transition; it should be circularly polarised,with an ℓ = +1 phase vortex centred on the position

of the atom. Let us see how a simple circularly polarised Gaussian beam performs. To this end

consider an electric field of the form

E = E0

1√
2
(x̂+ iŷ)

1√
πw0

exp

(

− (x2 + y2)

2w2
0

)

e−iωt. (22)

It is straightforward to calculate the quadrupole couplingmatrix element for an atom at position

(X, Y) in this field:

〈e|Vq|g〉 = E0Q
√

2

π

1

w3
0

(X + iY) exp

(

− (X2 + Y2)

2w2
0

)

. (23)

This is non-zero everywhere apart from along the z-axis, corresponding to the centre of the

beam, for which X = 0 = Y. The perturbative transition probability, which is proportional to

the squared modulus of this matrix element, is greatest for an atom at a distance w0 from the

centre of the beam, where the gradient of the magnitude of the field is greatest.

It follows that a circularly polarised Gaussian beam with only one quantum of angular

momentum per photon can readily excite a quadrupole transition requiring two quanta of angu-

lar momentum. Moreover, because the orbital angular momentum is an intrinsic quantity, the

7
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orbital angular momentum of the beam about an axis passing through the atom is also zero.

The puzzle, therefore, is where can the required second quantum of angular momentum have

come from?

We note that it does not help to appeal to the density of orbital angular momentum as the

z-component of this, as it is usually defined, at the position of the atom is precisely zero.

5. An insight from quantum theory

We recall that a mode of well-defined orbital angular momentum is an eigenmode of the differ-

ential operator−i∂/∂φ. Indeed it was the similarity between this property and the form of the

quantum mechanical operator for the z-component of the angular momentum Lz = −ih̄∂/∂φ
that led to the conclusion that such eigenmodes carry ℓh̄ of orbital angular momentum for each

photon [6]. The z-component of the orbital angular momentum about an axis shifted from the

z-axis to x = x0, L
′
z is related to that about the z-axis Lz by

L′z = Lz − x0py, (24)

where py is the operator corresponding to the y-component of the linear momentum. As in

Berry’s demonstration, this means that the total values of Lz and L
′
z, which correspond to the

expectation values in quantum theory, are the same [31]. The operators Lz and L
′
z, however, are

incompatible in that they do not commute:

[L′z, Lz] = ih̄x0px (25)

and it follows that Lz and L
′
z do not share common eigenmodes. Hence an eigenmode of L̂z

must correspond to a superpositon of eigenmodes of L′z. It is worth remarking that this simple

idea does not seem to appear in texts concernedwith the quantum theory of angularmomentum

[37–42]. We note, however, that the angular momenta about different axes have been shown

to occur for free electrons moving in a uniform magnetic field making it possible to separate

angular momenta associated with the cyclotron and diamagnetic angular momenta [43]. It is

worth noting that in the commutator (25), x0 can be arbitrarily large. This is a reflection of the

fact that the difference between Lz and L
′
z is the product of the y-component of the momentum

operator and x0, the distance between the two rotation axes considered. This is reminiscent of

the parallel axes theorem in mechanics [44].

Consider a normalised wavefunction of the same form as our Gaussian mode:

ψ(x, y) =
1√
πw0

exp

(

− (x2 + y2)

2w2
0

)

. (26)

This is an eigenfunction of Lz with eigenvalue 0 and therefore the expectation value of L′z is
also 0. It is not an eigenfunction of L′z, however, and has the non-zero variance

∆L′2z = x20〈p2y〉 =
h̄2x20
2w2

0

. (27)

When expressed in terms of the corresponding orbital angular momentum numbers ℓ and ℓ′

(associated with the operators Lz and L
′
z respectively) this variance becomes

∆ℓ′2 =
x20
2w2

0

. (28)

8
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This indicates that our mode with zero orbital angular momentum about the z-axis includes a

superposition of a range of eigenmodes of the orbital angular momentum about our displaced

axis and suggests that our atom, undergoing a quadrupole transition, absorbs a photon from

the ℓ′ = +1 eigenmodes of L′z within this superposition.
To test the idea suggested above we seek to expand our Gaussian mode in terms of a com-

plete set of angular-momentum eigenmodes centred on the position of the atom. We introduce

a primed set of coordinates, (x′, y′) or (ρ′,φ′), centred on the position of the atom. In terms of

these coordinates our normalised Gaussian mode has the form

ψ(x′, y′) =
1√
πw0

exp

(

− [(x′ + x0)
2 + y′2]

2w2
0

)

. (29)

The Laguerre–Gaussian modes are all eigenmodes of L′z angular momentum and we can use

them as a complete basis [45, 46]:

up′ℓ′(ρ
′,φ′) =

1

w0

(

p′!

π(|ℓ′|+ p′)!

)1/2

exp

(

− ρ′2

2w2
0

)(

ρ′

w0

)|ℓ′|
× L

|ℓ′ |
p′

(

ρ′2

w2
0

)

eiℓ
′φ′ . (30)

Our expansion has the form

ψ(x′, y′) =
∞
∑

ℓ′=−∞

∞
∑

p′=0

cp′ℓ′up′ℓ′ (ρ
′,φ′) (31)

and we can exploit the orthonormality of the Laguerre–Gaussian modes to show that the

expansion coefficients have the form [47]:

cp′ℓ′ = (−1)p
′
(

1

(|ℓ′|+ p′)!p′!

)1/2(

− x0

2w0

)2p′+|ℓ′|
exp

(

− x20
4w2

0

)

. (32)

It is clear, in particular, that modes with ℓ′ = +1 are present in the superposition. It is from

these modes that the atom can absorb a single photon, acquiring in the process +h̄ from the

orbital angular momentum to add to the single quantum of spin angular momentum.

We can use the expansion to determine the fraction of the total intensity that is in modes

with the required optical angular momentum to drive the quadrupole transition. It is convenient

to express this in terms of the probability that any single photon in the beam has orbital angular

momentum ℓ′ h̄:

P(ℓ′) =
∞
∑

p′=0

|cp′ℓ′ |2

= exp

(

− x20
2w2

0

)

Iℓ′

(

x20
2w2

0

)

, (33)

where In is the modified Bessel function of the first kind of order n. It is clear that the mean

value of ℓ′ is zero. This follows directly from the fact that I−n = In. We can show by direct

calculation from this probability distribution, moreover, that

∆ℓ′2 =
x20
2w2

0

, (34)

as anticipated above.

9
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Figure 2. The probability P(1) that any single photon in the beam has orbital angular
momentum h̄, as a function of relative position from the beam waist

x0
w0

, as given by

equation (33).

The fraction of the light that is in the correct mode for driving our quadrupole transition is

exp(−x20/2w2
0)I1(x

2
0/2w

2
0). This probability is depicted in figure 2. We note that if the atom is

positioned on the beam axis, so that x0 = 0, this probability is zero and the field cannot drive

the quadrupole transition. As we move the position of the atom away from the beam axis the

probability that the local orbital angular momentum is+h̄ increases and with it the probability

of exciting the transition. At large distances from the beam axis the spread in the distribution

of the orbital angular momentum increases and with this the components of the field having

ℓ = +1 decrease in amplitude.

6. Resolution: orbital angular momentum is quasi-intrinsic

It is certainly true that the optical orbital angular momentum is an intrinsic quantity in that

the total orbital angular momentum is unchanged by a parallel displacement of the axis about

which it is calculated. Yet this is not the whole story as such a displacement leaves the total

mean orbital angular momentum unchanged, but the mode is not an eigenmode of the orbital

angular momentum about the displaced axis. In this sense it is, perhaps, better to think of the

optical orbital angular momentum as a quasi-intrinsic quantity [48]: it is, in effect, intrinsic on

average.

An atom positioned off the axis of a circularly polarisedGaussian beam can interactwith any

of a superposition of eigenmodes of L′z (about an axis passing through the atom). This means

that the orbital angular momentum required to conserve angular momentum in a quadrupole

transition is readily available to the atom at every position except on the beam axis.

7. Absorption from a beam with no angular momentum

As a final point we ask how our quadrupole transition can be driven by a Gaussian beam that is

linearly polarised. The issue here is that such a beam carries zero orbital angular momentum,

but also zero spin angular momentum. We have seen that an atom that is not on the beam axis

10
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sees a field that is a superposition of orbital angular momentum modes about an axis passing

through the atom and, in this way, the field can provide the required quantum of orbital angular

momentum.

If the field is linearly polarised then it carries zero units of spin angular momentum. As the

spin angular momentum is intrinsic, it is zero at every point in a linearly polarised beam and we

can ask where the required quantum of spin angular momentum comes from. The solution to

this question mirrors that for the orbital angular momentum paradox in that a linearly polarised

beam is an equally weighted superposition of left- and right-handed circularly polarised beams.

This follows simply from the decomposition

x̂ =
1√
2

[

1√
2
(x̂+ iŷ)+

1√
2
(x̂− iŷ)

]

. (35)

It follows that half of the light in a linearly polarised beam carries the required spin angu-

lar momentum to drive either a ∆m = +1 electric dipole transition or, in combination with

the correct component orbital angular momentum mode, a ∆m = +2 electric quadrupole

transition.

8. Conclusion

The orbital angular momentum of a light beam in the direction of propagation is intrinsic,

which means that its value is the same everywhere in the beam [31]. Our paradox was that

given this intrinsic nature, where does the required angular momentum come from to drive a

∆m = +2 electric quadrupole transition? The resolution, inspired by quantum theory, is that

modes of well-defined orbital angular momentum about the beam axis do not also have well-

defined orbital angular momentum about a displaced axis; the orbital angular momenta about

the z- and z′-axes are, in effect, incompatible quantities.

It follows that a Gaussian beam with precisely zero orbital angular momentum per photon

about the beam axis is also a superposition of modes with all possible orbital angular momenta

about any axis parallel to that of the beam [47, 48]. The orbital angular momentum required

to drive an electric quadrupole transition derives from the modes in this superposition that

have +h̄ orbital angular momentum about an axis passing through the atom. This exists at all

positions in the beam except on the beam axis.

The ideas and the paradox presented and resolved here apply, also, to higher ordermultipolar

transitions. An electric octopole transition, with∆m = +3 for example [49], can be driven by

a circularly polarised Gaussian beam if the absorbing atom is away from the beam axis. In

this case there are two quanta of orbital angular momentum required and these will come from

those modes in the superposition with ℓ′ = +2.
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