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An orthonormal set of optical vortex modes is put forward and identified as the polarized truncated optical

Bessel (TOB) set, which is endowed with orbital as well as spin angular momentum. Members of this set of

modes can be realized once a circular aperture of radius R is placed centrally in the path of an optical Bessel

beam of winding number ℓ. For a fixed power input P , the properties of the TOB set, namely, its helicity, energy,

linear momentum, and spin and orbital angular momenta, are evaluated, and their main features are explored.

The similarities and differences between the properties of the TOB mode set and those of the Laguerre-Gaussian

set are pointed out and discussed.

DOI: 10.1103/PhysRevA.105.063512

I. INTRODUCTION

Free-space optical Bessel modes form one class of vortex

modes characterized by orbital angular momentum as well as

spin. Their electric field is an exact solution of the Helmholtz

equation ∇2E + (ω2/c2)E = 0. In cylindrical polar coordi-

nates r = (ρ, φ, z) the electric field of the Bessel mode has

the form

E(r, t ) = E0êJℓ(κρ)eiℓφeikzze−iωt . (1)

Here the unit vector ê represents wave polarization, E0 is a

normalization factor, and Jℓ is the Bessel function of the first

kind of order ℓ and frequency ω; the wave numbers kz and κ

are the axial (longitudinal) and radial (transverse) components

of the total wave vector k such that k =
√

(k2
z + κ2). As a

form of structured light [1], the optical Bessel modes have

received considerable attention both theoretically and experi-

mentally, with a number of prominent applications, including

the controlled manipulation of small particles [2–5].

It is, however, well understood that such an unbounded

“free-space” optical Bessel mode Jℓ of frequency ω propa-

gating along the +z axis with an axial wave number kz is not

realizable in practice since it would need an infinite amount

of energy. One method to realize it, albeit approximately, is

to use an aperture of radius R which is large relative to the

wavelength and so acts to isolate a sizable central part of the

beam cross section.

In this paper we are concerned with a scenario in which

the aperture radius R is so chosen that the Bessel argument κρ

at ρ = R as in Eq. (1) coincides with one of the zeros λ of

the Bessel function. The concept of an aperture introduced in

this manner first featured in the case of Bessel electron vortex

waves in an electron microscope [6]. Our optical Bessel mode

is subject to a circular aperture of radius R and acquires a well-

*Corresponding author: kkoksal@beu.edu.tr

defined transverse wave number κ = λ/R, so that J|ℓ|(κR) =
J|ℓ|(λ) = 0. A zero denoted as λpℓ is the (p + 1)th zero of

the Bessel function of order ℓ, where p = 0, 1, 2, . . . is a

radial index and κ pℓ = λpℓ/R is the transverse (in-plane) wave

number. Thus, the truncated optical Bessel (TOB) modes are

characterized by two discrete indices ℓ and p, resembling in

this way the two indices of Laguerre-Gaussian modes.

The optical field produced in the manner described above

is derivable from a vector potential Apℓ(r, t ), which, in cylin-

drical polar coordinates, has the form

Apℓ(r, t ) = (αx̂ + β ŷ)Fpℓ(ρ, φ)e(ikzz−iωt ), (2)

where α and β are, in general, complex constants. The am-

plitude function Fpℓ(ρ, φ) conforming with the requirements

whereby the Bessel argument κ pℓρ at ρ = R coincides with

one of the zeros λpℓ of the Bessel function is given by

Fpℓ(ρ, φ) = E0J|ℓ|(κ
pℓρ)eiℓφ (ρ � R), (3)

Fpℓ(ρ, φ) = 0 (ρ > R), (4)

where E0 is an overall normalization factor which is fixed by

the requirement that its value is consistent with an input power

of known magnitude P . The members of this set of optical

vortex modes can be called truncated optical Bessel modes.

The magnetic field of the representative TOB mode

emerges from ∇ × A in the exact form

B = ikz(αŷ − βx̂)Feikzz + ẑ

(

β
∂F

∂x
− α

∂F

∂y

)

eikzz, (5)

where we have dropped the mode label pℓ from F and κ

and do not show the time exponential exp(−iωt ) for ease of

notation; these can be restored where required. It is easy to

check that this magnetic field satisfies ∇ · B = 0. The asso-

ciated electric field must follow from the main requirement

of duality such that E is related to B via the Maxwell equa-

tion for a monochromatic field, namely, E = (ic2/ω)∇ × B.

2469-9926/2022/105(6)/063512(9) 063512-1 ©2022 American Physical Society
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FIG. 1. The radial variations of the amplitude function for three

members of the TOB set for which ℓ = 1 and p = 0, 1, 2. Note that

all TOB mode functions vanish at ρ = R, coinciding with λpℓ, the

(p + 1)th zero of the Bessel function.

Consistency demands that the electric field must be of the

form

E = ickz(αx̂ + β ŷ)Feikzz − c

{

α
∂F

∂x
+ β

∂F

∂y

}

eikzz ẑ. (6)

This field satisfies ∇ · E = 0. Also, it can be verified, for

consistency, that the exact field B, Eq. (5), emerging as ∇ × A

must also emerge from E in Eq. (6) by application of the

second Maxwell equation for a monochromatic field, namely,

B = (1/iω)∇ × E. Note that both E and B have z (longi-

tudinal) components in addition to the transverse x and y

components.

It is straightforward to ensure that the set of TOB modes

defined by Eqs. (3) and (4), denoted as

{Fpℓ(ρ, φ)}, |ℓ| = 0, 1, 2, . . . , p = 0, 1, 2, . . . ,

forms a complete orthonormal set of functions in the aperture

plane. The relevant integrals needed for orthonormalization

are

1
2π

∫ 2π

0
eiℓφe−iℓ′φdφ = δℓℓ′, (7)

∫ R

0
J|ℓ|(κ

pℓρ)J|ℓ′|(κ
p′ℓ′

ρ)ρdρ = R2

2
[J|ℓ|+1(λpℓ)]2δℓℓ′δpp′ . (8)

The normalization factor E0 is fixed in terms of the applied

power P . Appendix A shows the details and supplies the result

as follows:

E2
0 =

2μ0P

cπk2
z R2[J|ℓ|+1(λpℓ)]2

. (9)

It is also clear that these TOB modes are eigenfunctions

of the z component of the orbital-angular-momentum oper-

ator L̂z = −ih̄∂/∂φ with eigenvalues h̄ℓ and, like free-space

Bessel modes, they are orbital-angular-momentum modes. For

illustration, Fig. 1 displays the radial variations of the three

TOB modes for which ℓ = +1 but p = 0, 1, 2.

As is the case for all electromagnetic fields satisfying

duality within Maxwell’s equations, the TOB modes are char-

acterized by the main properties, namely, optical helicity,

energy, linear momentum, and spin and angular momentum.

Besides identifying the set of the TOB modes, as detailed

above, the goal of this paper is to explore these proper-

FIG. 2. The radial variations of the helicity density (in Jsm−3)

displayed by the TOB modes pℓ with ℓ = ±1 for the three cases in

which σ = 0, ±1. (a) and (b) refer to the cases for which p = 0,

but with ℓ = 1 and ℓ = −1, respectively. (c) and (d) refer to the

cases for which p = 1, but with ℓ = 1 and ℓ = −1, respectively.

Note that for the cases where σ = ±1, the helicity density does not

vanish at ρ = R. This can be traced to the contribution of the middle

term in Eq. (26), which depends on the first derivative of the Bessel

function, which does not vanish at ρ = R. Note also how the choices

of the signs of σ and ℓ lead to different shapes of the helicity-density

distributions.

ties specifically for the TOB modes. We first consider the

cycle-averaged densities in turn and evaluate them specifically

for a general TOB mode, displaying the spatial distributions

in the aperture plane and identifying contributions from the

transverse- and longitudinal-field components. The next task

for each property is to integrate the respective densities over

the aperture plane, thereby deriving the total respective mode

063512-2
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properties. In the Sec. VIII we summarize the main results of

the work and point out their main features relative to other

vortex modes.

II. CYCLE-AVERAGED DENSITIES

With the electric and magnetic fields of the truncated

Bessel mode as detailed in Eqs. (2) to (6), we can now pro-

ceed (i) to evaluate the cycle-averaged helicity density η̄, the

Poynting vector w̄, the linear momentum density π̄, the optical

spin angular momentum (SAM) density s̄, and the angular

momentum (AM) density j̄ of a polarized truncated optical

Bessel mode; (ii) to evaluate the cycle average per unit length

of the total helicity, total energy, total SAM, and total angular

momentum as space integrals over the x-y plane of the respec-

tive densities; and (iii) finally, to discuss the results obtained,

with special emphasis on the roles of the wave polarization

and vortex contributions to the properties.

The cycle-averaged densities are defined as follows:

η̄(r) = − ǫ0c

2ω
Im[E∗ · B] (helicity density), (10)

w̄ = 1
2μ0

Re[E∗ × B] (Poynting vector), (11)

π̄ = 1
c2 w̄ (linear momentum density), (12)

s̄ = ǫ0

ω
Im[E∗ × E] (SAM density), (13)

j̄ = r × π̄ (AM density), (14)

where Re[·] and Im[·] stand for the real and imaginary parts

and the asterisk (*) in E∗ stands for the complex conjugate of

E. As stated above, we deal in turn with the evaluations of the

above densities specifically in relation to the TOB modes.

III. HELICITY OF TOB MODES

The cycle-averaged helicity density η̄ of the TOB mode is

as defined in Eq. (10). The helicity as one of the main prop-

erties of an optical mode has attracted much interest recently

[7–12], and more recent accounts have revived interest in this

beam property and its relation to optical spin [13–19].

Substituting the electric and magnetic fields in Eqs. (5) and

(6), we have for the dot product E∗ · B

E∗ · B = ck2(αβ∗ − βα∗)|F |2 − c

{

α∗
(

∂F

∂x

)∗
+ β∗

(

∂F

∂y

)∗}(

β
∂F

∂x
− α

∂F

∂y

)

, (15)

where, for ease of notation, we do not show the labels pℓ and the argument ρ, φ in the field function F , as defined in Eq. (3).

In Eq. (15) we identify the derivative terms as contributions to the helicity density due to the z components (longitudinal

components). Multiplying out in the second term, we obtain

E∗ · B = ck2(αβ∗ − βα∗)|F |2 − c

{

βα∗
∣

∣

∣

∣

∂F

∂x

∣

∣

∣

∣

2

− αβ∗
∣

∣

∣

∣

∂F

∂y

∣

∣

∣

∣

2

+ |β|2
(

∂F

∂x

)(

∂F

∂y

)∗
− |α|2

(

∂F

∂x

)∗(
∂F

∂y

)}

. (16)

As F is a function of (ρ, φ), it is straightforward to evaluate

the x and y derivatives. We obtain, not showing the labels (pℓ)

in κ ,

(

∂F

∂x

)

= (Q cos φ − iT sin φ) (17)

and

(

∂F

∂y

)

= (Q sin φ + iT cos φ), (18)

where Q and T are given by

Q = E0κJ ′
|ℓ|e

iℓφ, T = E0

ℓ

ρ
J|ℓ|e

iℓφ, (19)

where J ′
|ℓ|(s) is the first derivative d[J|ℓ|(s)]/ds. Without loss

of generality we now restrict considerations to the cases in

which the complex parameters α and β conform with the

following identities:

|α|2 + |β|2 = 1, αβ∗ − βα∗ = 2iIm[αβ∗]. (20)

So we then have

σ = i(αβ∗ − α∗β ) = 2αβ ′, (21)

where we have set β = iβ ′. We shall consider two cases.

(a) The linear polarization case is as follows:

α = 1, β = 0, so σ = 0. (22)

(b) The circular polarization case is such that

α = 1/
√

2, β = i/
√

2, so σ �= 0. (23)

We now explore the helicity properties of cases (a) and (b).

Continuing with the evaluation of the general helicity density,

we obtain for the dot product E∗ · B after some algebra

E∗ · B = −iσck2
z |J|ℓ||2 − c

{

1

2
iσ (Q2 + T 2) − iQT

}

. (24)

Thus, we find for the cycle-averaged helicity density

η̄ = E2
0

ǫ0c2

4ω

{

σ
(

2k2
z |J|ℓ||2 + Q2 + T 2

)

− 2QT
}

. (25)

The first term is the σ -dependent helicity density of the

transverse-field components, and we can now see that the

longitudinal fields are responsible for adding the terms (Q2 +
T 2) to the σ -dependent part of the helicity density and they

give rise to a σ -independent, but ℓ-dependent, contribution to

the density in the term −2QT . It is convenient at this stage to

063512-3



KOKSAL, BABIKER, LEMBESSIS, AND YUAN PHYSICAL REVIEW A 105, 063512 (2022)

substitute for T and obtain

η̄ = E2
0

ǫ0c2

4ω

{

σ

[

2k2
z |J|ℓ||2 + (κJ ′

|ℓ|)
2 +

(

ℓ

ρ
|J|ℓ||

)2]

− ℓ

(

2κJ ′
|ℓ|J|ℓ|

ρ

)}

, (26)

where the arguments in all functions are (κ pℓρ). This is the

general form of the helicity density of the circularly polar-

ized TOB mode, as defined above. Recall that the mode is

characterized by the winding number ℓ and radial number p.

The helicity density consists of two distinct contributions: the

first, denoted η̄σ , is associated with wave polarization and is

proportional to σ . The second, denoted η̄ℓ,p,0, is given by the

second term. This is a σ -independent contribution associated

with the orbital-angular-momentum vortex. Characteristically,

it is proportional to the vortex winding number ℓ. Thus, we

can write the helicity density of the most general TOB beam

as the sum of the two contributions as follows:

η̄ = η̄σ + η̄ℓ,p,0, (27)

where η̄σ is the expression in Eq. (26) that is proportional to

σ . We have

η̄σ = E2
0

ǫ0c2

4ω
σ

[

2k2
z |J|ℓ||2 + κ2|J ′

|ℓ||
2 +

(

|ℓ|
ρ

|J|ℓ||
)2]

. (28)

The rest of the expression in Eq. (26) defines η̄ℓ,p,0,

η̄ℓ,p,0 = −ℓE2
0

ǫ0c2

4ω

(

2κJ ′
|ℓ|J|ℓ|

ρ

)

= −ℓE2
0

ǫ0c2

4ωρ
κJ|ℓ|{J|ℓ|−1 − J|ℓ|+1}. (29)

The helicity-density term η̄ℓ,p,0 is nonzero when σ = 0,

i.e., for a linearly polarized TOB mode. This σ -independent

helicity density stems only from the longitudinal-field com-

ponents and is directly proportional to the winding number

ℓ and changes sign when the winding number changes sign.

For example, the helicity-density distributions η̄1,0,0(ρ) and

η̄−1,0,0(ρ) of two linearly polarized TOB modes which differ

only in their winding numbers ℓ are such that η̄1,0,0(ρ) =
−η̄−1,0,0(ρ) for all radial positions ρ in the aperture plane.

This is shown clearly by the orange dashed curves in Figs. 2(a)

and 2(b), and the same applies for the cases for the orange

dashed curves in Figs. 2(c) and 2(d) for which p = 1. As the

cycle-averaged helicity density is directly proportional to the

chirality density, this change in sign confirms that linearly

polarized TOB modes are characterized by a handedness, i.e.,

exhibit a chiral behavior [20].

IV. INTEGRATED HELICITY

A. Linear polarization

Note that the helicity-density distribution is, in general,

nonzero at points in the aperture plane. Using standard inte-

grals, we obtain the total helicity per unit length for a linearly

polarized TOB mode (σ = 0). Thus, we have

C̄ℓ,p,0 =
∫ 2π

0
dφ

∫ R

0
ρ dρ η̄ℓ,p,0

= −ℓE2
0

ǫ0c2

4ω

∫ 2π

0
dφ

∫ R

0

(

2κ pℓJ|ℓ|(κ
pℓρ)J ′

|ℓ|(κ
pℓρ)

ρ

)

ρ dρ. (30)

The integral can be dealt with as follows. Let x = κ pℓρ, and

we have κ pℓR = λpℓ; then

κ pℓ
∫ R

0
J|ℓ|(κ

pℓρ)J ′
|ℓ|(κ

pℓρ)dρ =
∫ λpℓ

0
J|ℓ|(x)J ′

|ℓ|(x)dx

= 1
2

∫ λpℓ

0
d
dx

[J|ℓ|(x)]2dx = [J|ℓ|(λpℓ)]2/2 = 0. (31)

Thus, we have reached the conclusion that, although the he-

licity density of a linearly polarized TOB mode has a nonzero

distribution which exhibits chirality, its space integral C̄ℓ,p,0

vanishes identically for all TOB modes. The statement that

C̄ℓ,p,0 = 0 is the first of our main results in this paper. It

asserts that without optical spin an optical vortex alone cannot

produce total helicity, even though it exhibits helicity-density

distributions, which in turn indicates that on radial integration

the different parts of the density distribution are canceled out

by other parts. A similar observation in the case of Laguerre-

Gaussian modes was pointed out recently [19].

B. CIRCULAR POLARIZATION

The total helicity for a circularly polarized TOB is obtained

by integrating over the density in Eq. (26). We have, restoring

the notation in the Bessel functions,

Cℓp,σ=E2
0

ǫ0c2

4ω

∫ 2π

0

dφ

∫ R

0

{

σ

[

2k2
z |J|ℓ|(κ

pℓρ)|2+[κ pℓJ ′
|ℓ|(κ

pℓρ)]2 +
(

ℓ

ρ
|J|ℓ|(κ

pℓρ)|
)2]

− ℓ

(

2κ pℓJ|ℓ|(κ
pℓρ)J ′

|ℓ|(κ
pℓρ)

ρ

)}

ρ dρ.

(32)

As shown in Eq. (31) integrating the last term in Eq. (32) gives zero. Dropping the last term, we have for the total helicity

Cℓp,σ = σE2
0

ǫ0c2

4ω

∫ 2π

0

dφ

∫ R

0

{

2k2
z |J|ℓ|(κ

pℓρ)|2 + [κ pℓJ ′
|ℓ|(κ

pℓρ)]2 +
(

ℓ

ρ
|J|ℓ|(κ

pℓρ)|
)2}

ρ dρ. (33)

The evaluation of Eq. (33) is detailed in Appendix C. The

result is as follows:

Cℓp,σ = σE2
0

πǫ0c2

2ω
{I1 + (I2 + I3)}, (34)

where I1, I2, and I3 are, respectively, the first, second, and

third integrals in Eq. (33). Appendix C supplies the results

for these integrals. We find on substitution from Eq. (C8)

Cℓp,σ = σE2
0

πǫ0c2k2
z R2

2ω

{

1 +
λ2

pℓ

2k2
z R2

}

[J|ℓ|+1(λpℓ)]2. (35)

063512-4
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Substituting E0 from Eq. (A5), we can write the total helicity

per unit length as

Cℓ,p,σ = σL0

{

1 +
λ2

pℓ

2k2
z R2

}

, (36)

where L0 has the dimensions of angular momentum per unit

length,

L0 =
P

ωc
. (37)

We identify Eq. (36) as the second of our main results. It

is easy to check that for a large R → ∞ the second term

in Eq. (36) is zero and total helicity becomes Cℓ,p,σ = σL0,

which coincides with the helicity of a free Bessel mode. We

show below that the total axial spin angular momentum of

the TOB mode is S̄z = σL0. This suggests that the helicity for

the TOB mode as given by Eq. (36) differs from that of the

free-space Bessel mode by the additional second term, so it

no longer coincides with the optical spin.

V. ENERGY MOMENTUM OF THE TOB MODE

The components of the cycle-averaged Poynting vector w̄

are formally given by

w̄i =
1

2μ0

ǫi jkRe[E∗
j Bk]. (38)

Substituting the fields in Eqs. (5) and (6) and making use of

the Cartesian derivatives in Eqs. (17), (18), and (19), we find

after some algebra

w̄x = −
c

2μ0

{

kzℓ

ρ
sin φ|J|ℓ||2 − 2ikzαβ∗J|ℓ|Q sin φ

}

, (39)

w̄y =
c

2μ0

{

kzℓ

ρ
cos φ|J|ℓ||2 + 2ikzα

∗βJ|ℓ|Q cos φ

}

, (40)

w̄z =
c

2μ0

k2
z |J|ℓ||2E2

0 , (41)

where we have assumed circular polarization and so have

made use of the relations in Eqs. (20) and (21).

The linear-momentum-density vector π̄ is given by

Eq. (12), with components proportional to the Poynting-vector

components, so they can readily be deduced from the compo-

nents in Eqs. (39) to (41). These π̄ components enable the

evaluation of the total angular momentum, as we show in the

next section.

The cycle-averaged energy density is obtained on multiply-

ing the z component of the linear momentum density by the

velocity of light, so the TOB mode energy per unit length is

the integral over the aperture plane. We have

Ū =
∫ 2π

0

dφ

∫ R

0

[

c
w̄z

c2

]

ρ dρ. (42)

Substituting w̄z in Eq. (41), we find

Ū =
πk2

z E
2
0

cμ0

∫ R

0

|J|ℓ|(κ
pℓρ)|2ρ dρ, (43)

which yields

Ū = E2
0

πck2
z R2

2cμ0

[J|ℓ|+1(λpℓ)]2 (44)

Substituting E0 from Eq. (A5), we find in terms of the input

power P

Ū =
P

c
, (45)

which has the dimensions of energy per unit length.

VI. ANGULAR MOMENTUM OF THE TOB MODE

The cycle-averaged angular-momentum-density vector of

the TOB mode is given by Eq. (14), which is

j̄ = r × w̄/c2 =
1

2μ0c2
r × Re[E∗ × B] (46)

The three components of the angular-momentum-density vec-

tor can be evaluated on the focal plane by substituting directly

from Eqs. (39) to (41). We obtain for the x component

j̄x = ρ sin φw̄z =
ck2

z E
2
0

2μ0

|J|ℓ||2ρ sin φ. (47)

Similarly, we have for the y component

j̄y = −ρ cos φw̄z = −
ck2

z E
2
0

2μ0

|J|ℓ||2ρ cos φ, (48)

and we note that these transverse components are φ depen-

dent. Finally, we evaluate the z component and obtain, using

Eqs. (39) and (40),

j̄z = E2
0

ckz

2μ0c2
{ℓ|J|ℓ||2 − ρσκJ|ℓ|J

′
|ℓ|}. (49)

The total AM per unit length of the three angular momentum

components is defined as the two-dimensional space integral

of the respective densities. It is easy to see that on integrating

j̄x and j̄y we obtain zero in each case by virtue of a vanishing

φ integral. We therefore write

J̄x = 0 = J̄y. (50)

Thus, we conclude that although the transverse angular

momentum displays density distributions, their total space

integrals vanish identically. However, the z component is non-

vanishing on integration. We have, restoring the notation on

the Bessel functions,

J̄z = E2
0

ckzπ

μ0c2

∫ R

0

{ℓ|J|ℓ|(κ
pℓρ)|2

− ρσκ pℓJ|ℓ|(κ
pℓρ)J ′

|ℓ|(κ
pℓρ)}ρ dρ. (51)

The evaluations of the integrals are shown in Appendix B. We

have, with κ pℓ = λpℓ/R,

J̄z = E2
0

ckzπ

μ0c2

{

ℓI1 − σ
λpℓ

R
I2

}

=
R2

2
E2

0

ckzπ

μ0c2
[Jℓ+1(λpℓ)]2{ℓ + σ }

= E2
0

πckzR
2

2μ0c2
[Jℓ+1(λpℓ)]2{ℓ + σ }. (52)

Substituting for E0 from Eq. (A5) we have

J̄z =
πckzR

2

2μ0c2
[Jℓ+1(λpℓ)]2{ℓ + σ }

2μ0P

cπk2
z R2[Jℓ+1(λpℓ)]2

. (53)
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We obtain, finally, on performing the cancellations

J̄z =
P

c2kz

{ℓ + σ } = L̃{ℓ + σ }, (54)

where L̃ has the dimensions of angular momentum per unit

length. We have, using ω = ck and kz =
√

k2 − (κ pℓ)2,

L̃ = L0/
√

1 − (κ pℓ)2c2/ω2, (55)

where

L0 =
P

ωc
. (56)

The ratio of angular momentum per unit length and energy per

unit length follows immediately from Eqs. (54) and (45),

J̄z

Ū
=

{ℓ + σ }P/(kzc
2)

P/c
=

ℓ + σ

ω
√

1 − (κ pℓ)2c2/ω2
. (57)

This result differs from the corresponding result given by

Allen et al. [21] by the square-root-factor term in the de-

nominator which depends on κ pℓ = λpℓ/R. Thus, for large R

we recover the standard result (ℓ + σ )/ω. The total-angular-

momentum axial component per unit length of the TOB mode

is the sum (ℓ + σ ) multiplied by the angular momentum factor

L̃, which differs from L0 by the same square-root factor. The

constant L0 enters the helicity and, also enters the axial spin

angular momentum of the TOB mode. It follows that the

spin and orbital angular momenta are coupled for the TOB

mode, and furthermore, as we have shown above, the helicity

does not coincide with the axial spin angular momentum. The

square-root factor in the denominator of Eq. (54) suggests that

the axial angular momentum increases with diminishing R.

This result may well be amenable to experimental verification.

VII. SPIN ANGULAR MOMENTUM

The cycle-averaged optical spin-angular-momentum den-

sity is as defined in Eq. (13),

s̄ℓ,p,σ =
ǫ0

2ω
Im[E∗ × E], (58)

where the TOB mode electric field is as given by Eq. (6). All

three components of s̄ℓ,p,σ can be evaluated. Consider the x

component

[E∗ × E]x = (E∗
y Ez − E∗

z Ey)

= ic2kz

{

β∗αF∗
(

∂F

∂x

)

+ α∗βF

(

∂F

∂x

)∗}

+ ic2kz|β|2
{

F∗
(

∂F

∂y

)

+ F

(

∂F

∂y

)∗}

. (59)

Substituting the derivatives in Eqs. (17) and (18), we find for the x component of the SAM density

s̄x =
ǫ0

2ω
Im[E∗ × E]x

= −
c2kzǫ0

2ω
E2

0

{

σ
ℓ

ρ
|J|ℓ||2 − κJ ′

|ℓ|J|ℓ|

}

sin φ. (60)

The y component of the SAM density follows in a similar fashion. We have

[E∗ × E]y = E∗
z Ex − E∗

x Ez = −ic2kz

{

αβ∗F

(

∂F

∂y

)∗
+ α∗βF∗

(

∂F

∂y

)

+ |α|2
[

F

(

∂F

∂x

)∗
+ F∗

(

∂F

∂x

)]}

. (61)

Then the y component of the SAM density is

s̄y =
ǫ0

2ω
Im[E∗ × E]y

= −
c2kzǫ0

2ω
E2

0

{

σ
ℓ

ρ
|J|ℓ||2 − κJ ′

|ℓ|J|ℓ|

}

cos φ. (62)

It is interesting to note that the transverse density compo-

nents s̄x and s̄y both display distributions in the focal plane

and each shows a spin-orbit term. However, all terms in these

SAM densities turn out to be proportional to the sine or cosine

of the azimuthal coordinate φ. As we show below, the space

integrals of these transverse density components both vanish

identically because of the angular integral.

Finally, we consider the SAM z component. We have

[E∗ × E]z = (E∗
x Ey − E∗

y Ex )

= k2(α∗β − αβ∗) = iσk2|F |2, (63)

so that the z component of the SAM density is

s̄z =
ǫ0

2ω
Im[E∗ × E]z =

k2ǫ0c2

2ω
σ |F |2. (64)

The total (integrated) SAM density components are obtained

by integration over the aperture plane. We have for the trans-

verse components at once

S̄x = 0 = S̄y. (65)

The vanishing of S̄x and S̄y follows the pattern of the trans-

verse components of the angular momentum, as discussed

earlier [Eq. (50)]. As in the case of angular momentum, the

only surviving SAM component is the z component, which

yields, on integrating the z component of the SAM density,

S̄z = 2E2
0 π

k2
z ǫ0c2

2ω
σ

∫ R

0

|J|ℓ|(κ
pℓρ)|2ρdρ. (66)
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We proceed to evaluate S̄z by making use of the standard

integrals
∫ R

0

J|ℓ|(κ
pℓρ)J|ℓ|(κ

p′ℓρ)ρ dρ = R2 δpp′

2
[J|ℓ|+1(λpℓ)]2. (67)

We then have

S̄z = 2E2
0 π

k2
z ǫ0c2

2ω
σ

R2

2
[J|ℓ|+1(λpℓ)]2, (68)

which is

S̄z = σE2
0

πk2
z R2ǫ0c2

2ω
[J|ℓ|+1(λpℓ)]2. (69)

But from Appendix A we have for E0

E2
0 =

2μ0P

cπk2
z R2[J|ℓ|+1(λpℓ)]2

, (70)

which leads, after cancellations, to the cycle-averaged axial

component of SAM,

S̄z = σ

(

P

ωc

)

= σL0, (71)

and we note the same overall factor L0 in the optical spin

angular momentum. As the result in Eq. (71) is independent of

the aperture radius R, it applies also to the free-space Bessel

modes. Furthermore, the result is the same as for the total

SAM of a Laguerre-Gaussian mode.

VIII. COMMENTS AND CONCLUSIONS

We have focused on the electromagnetic modes arising

from the physical constraints due to the application of an aper-

ture on Bessel modes, and we have compared and contrasted

their properties with those of Laguerre-Gaussian modes. The

use of an aperture is commonplace in beam-shaping tech-

niques. Most laser systems operate in their fundamental mode,

and typically, spatial light modulators (SLMs) and other

beam-shaping devices are used. In higher-power applications,

beam shaping using an SLM of a finite size would lead to

a low power efficiency. Truncation allows a uniform beam

input in order to maximize the power throughput of the SLM

without damaging it. Truncation also arises naturally as in

biological experiments where small holes are used to isolate

the excitation volume of a broad beam illumination in a single

molecular fluorescence experiment.

Our aim here has been to study the properties of optical

modes which arise when Bessel modes are subject to an

aperture which is chosen so that the radius of the aperture

coincides with a zero of the mode Bessel function, leading

to what we termed truncated Bessel modes. We pointed out

that the TOB modes form an orthonormal set of modes in the

aperture plane and proceeded to evaluate in turn their optical

properties.

One of our main results states that the helicity C̄ℓ,p,0 given

by Eq. (31) is identically zero for all linearly polarized TOB

modes. This asserts that with σ = 0 any linearly polarized

optical TOB mode alone cannot give rise to a nonzero to-

tal helicity, even though it exhibits nonzero helicity-density

distributions. This in turn indicates that on radial integration

the different parts of the density distribution are canceled out

by other parts. A similar observation in the case of Laguerre-

Gaussian modes was pointed out recently [19].

Our second main result is stated in Eq. (36) for the total

helicity when σ �= 0. It is easy to check that for a large

R → ∞ the second term in Eq. (36) is zero and total helicity

becomes C̄ℓ,p,σ = σL0, which coincides with the helicity of a

free Bessel mode. We have also shown that the total optical

axial spin angular momentum of the TOB mode is S̄z = σL0.

This suggests that the helicity for the TOB mode as given by

Eq. (36) differs from that of the free-space Bessel mode by

the additional second term and it no longer coincides with the

axial optical spin angular momentum.

In our third main set of results in Eqs. (54) to (57), we

have shown that the ratio of total angular momentum to en-

ergy per unit length differs from the corresponding standard

result given by Allen et al. [21] by a square-root-factor term

which depends on κ pℓ = λpℓ/R. Thus, for large R we recover

the standard result (ℓ + σ )/ω. The total-angular-momentum

axial component per unit length of the TOB mode is the

sum (ℓ + σ ) multiplied by the angular momentum factor L̃,

which differs by the same square-root factor from L0 which

enters the helicity and, also enters the axial spin angular

momentum of the TOB mode. It follows that the spin and

orbital angular momenta are coupled for the TOB mode, and

as we have shown above, the helicity does not coincide with

the axial spin angular momentum. The square-root factor in

the denominator of Eq. (54) suggests that the axial angular

momentum increases with diminishing R. This result may

well be amenable to experimental verification.

Although we have shown that the total (integrated) trans-

verse components of the SAM (namely, S̄x and S̄y) and the

transverse components of the optical angular momentum J̄x

and J̄y all vanish identically and so could all be understood to

have no role to play in the vortex beam characteristics, there

has been considerable emphasis recently on the significant

roles which the nonvanishing transverse density distributions

s̄x and s̄y and j̄x and j̄y of twisted light play in a number of

scenarios. Such densities are considered to lead to various

applications, including optical chirality in the interaction with

chiral matter, optical sensing of biosystems, near-field mi-

croscopy, plasmonic devices, and the manipulation of atoms

and molecules as well as the control of bulk matter at the

nanoscale [22,23].

The significance of the total helicity result of the TOB

mode, namely, Eq. (36), is worth a separate comment. The

second term in the brackets in this equation stems directly

from the presence of the longitudinal-field components. This

term increases with diminishing radius R. For a TOB mode of

given ℓ, p this term becomes greater than or equal to unity for

R values satisfying

λpℓ
�

√
2kzR = 2

√
2π

R

�
, (72)

where � is the wavelength. As an example we consider the

case ℓ = 1. Table I shows the zeros of the TOB modes for

which ℓ = 1. Clearly, as the TOB radial number p increases,

the second term in Eq. (36) can equal or exceed unity when the

Bessel zero equals or exceeds the right-hand side of Eq. (72)

and the value of the helicity more than doubles in magnitude.

This is a manifestation of the inclusion of the longitudinal-
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TABLE I. The (p + 1)th zeros of the ℓ = 1 Bessel function J1(s)

for p = 0 to 4.

(p + 1, ℓ = 1) λp1

1 3.83

2 7.01

3 10.17

4 13.32

5 16.47

· · · · · ·

field components, and since it is ℓ dependent, the second

helicity term is essentially a spin-orbit term which vanishes

when ℓ = 0.

Finally, it should be remembered that we have focused

only on the beam properties in the focal plane at z = 0. The

question arises as to what properties the beam is destined to

have in other planes with z > 0 along the axis as influenced

by diffraction. However, an investigation of the effects of the

beam propagation on the beam properties, albeit interesting, is

beyond the scope of this paper, but in general, we expect the

densities of the helicity, spin, orbital, and linear momenta of

the truncated Bessel beam to change as the diffraction alters

the beam profile. In contrast, we expect the corresponding

integrated (total) properties will not change. This issue is not

considered any further in this paper.
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APPENDIX A: THE NORMALIZATION FACTOR E0

The overall normalization factor which appears in the form

of the truncated optical Bessel mode is evaluated in terms

of the average power P , which is the surface integral of the

average Poynting vector E∗ × B/2μ0 over the aperture plane.

The surface element is d� = d�ẑ, so only the z component

of the Poynting vector enters the integration,

P =
1

2μ0

∫ 2π

0

dφ

∫ R

0

|(E∗ × B)z|ρdρ. (A1)

The z component of the Poynting vector is given by

1

2μ0

Re[E∗ × B]z =
cE2

0

2μ0

k2
z |J|ℓ||2. (A2)

Thus, we have

P = E2
0

(

πck2
z

μ0

) ∫ R

0

|J|ℓ|(κρ)|2ρdρ. (A3)

We can then make use of the standard integral

∫ R

0

J|ℓ|(κ
pℓρ)J|ℓ|(κ

p′ℓρ)ρ dρ = R2 δpp′

2
[J|ℓ|+1(λpℓ)]2 (A4)

and so obtain, finally, for the normalization factor E0

E2
0 =

2μ0P

cπk2
z R2[J|ℓ|+1(λpℓ)]2

. (A5)

It is straightforward to check that the dimensions of E0 are

consistent with Eq. (3).

APPENDIX B: EVALUATION OF EQUATION (51)

The relevant integrals are as follows. For I1 we have

I1 =
∫ R

0

[J|ℓ|(κ
pℓρ)]2ρ dρ. (B1)

Recall that κpℓ = λpℓ/R. Thus, we have

I1 =
∫ R

0

[J|ℓ|(λpℓρ/R)]2ρ dρ =
R2

2
[J|ℓ|+1(λpℓ)]2. (B2)

Next, we deal with I2, which is

I2 =
∫ R

0

J|ℓ|(κ
pℓρ)J ′

|ℓ|(κ
pℓρ)ρ2 dρ. (B3)

It is convenient to write κ pℓρ = x; then ρ = x(R/λpℓ). The

integral becomes

I2 =
R3

(λpℓ)3

∫ λpℓ

0

J|ℓ|(x)J ′
|ℓ|(x)x2 dx

= −
R3

2λpℓ

[Jℓ+1(λpℓ)]2. (B4)

APPENDIX C: EVALUATION OF EQUATION (32)

The relevant integrals are

I1 =
∫ R

0

{

2k2
z |J|ℓ|(κ

pℓρ)|2
}

ρ dρ, (C1)

I2 =
∫ R

0

[κ pℓJ ′
|ℓ|(κ

pℓρ)]2ρ dρ, (C2)

I3 =
∫ R

0

(

ℓ

ρ
|J|ℓ|(κ

pℓρ)|
)2

ρ dρ. (C3)

We deal with these integrals in turn. For I1 we make use of the

standard integral in Eq. (C4). We have

I1 = k2
z R2[J|ℓ|+1(λpℓ)]2. (C4)

Next, consider I2. We have

I2 = (κ pℓ)2

∫ R

0

[J ′
|ℓ|(κ

pℓρ)]2ρ dρ

=
1

4
(κ pℓ)2

∫ R

0

[J|ℓ|−1(x) − J|ℓ|+1(x)]2ρ dρ. (C5)

We proceed to consider I3. We have, using the identity 2ℓ
x

=
[J|ℓ|−1(x) + J|ℓ|+1(x)], with x = κ pℓρ,

I3 =
∫ R

0

(

ℓ

ρ
|J|ℓ|(κ

pℓρ)|
)2

ρ dρ

=
1

4
(κ pℓ)2

∫ R

0

[J|ℓ|−1(κ pℓρ) + J|ℓ|+1(κ pℓρ)]2ρ dρ.

(C6)

063512-8



TRUNCATED OPTICAL BESSEL MODES PHYSICAL REVIEW A 105, 063512 (2022)

We can now combine the two integrals I2 + I3 to obtain

(I2 + I3) =
1

2
(κ pℓ)2

∫ R

0

{[J|ℓ|−1(κ pℓρ)]2

+ [J|ℓ|+1(κ pℓρ)]2}ρ dρ

=
1

2
λ2

pℓ[J|ℓ|+1(λpℓ)]2. (C7)

The sum of integrals is then given by

I1 + (I2 + I3) =
{

k2
z R2 +

1

2
λ2

pℓ

}

[J|ℓ|+1(λpℓ)]2. (C8)
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